ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  fczpsrbag Unicode version

Theorem fczpsrbag 14157
Description: The constant function equal to zero is a finite bag. (Contributed by AV, 8-Jul-2019.)
Hypothesis
Ref Expression
psrbag.d  |-  D  =  { f  e.  ( NN0  ^m  I )  |  ( `' f
" NN )  e. 
Fin }
Assertion
Ref Expression
fczpsrbag  |-  ( I  e.  V  ->  (
x  e.  I  |->  0 )  e.  D )
Distinct variable groups:    f, I, x   
x, V
Allowed substitution hints:    D( x, f)    V( f)

Proof of Theorem fczpsrbag
StepHypRef Expression
1 0nn0 9255 . . . 4  |-  0  e.  NN0
21a1i 9 . . 3  |-  ( ( I  e.  V  /\  x  e.  I )  ->  0  e.  NN0 )
32fmpttd 5713 . 2  |-  ( I  e.  V  ->  (
x  e.  I  |->  0 ) : I --> NN0 )
4 eqid 2193 . . . . . 6  |-  ( x  e.  I  |->  0 )  =  ( x  e.  I  |->  0 )
54mptpreima 5159 . . . . 5  |-  ( `' ( x  e.  I  |->  0 ) " NN )  =  { x  e.  I  |  0  e.  NN }
6 0nnn 9009 . . . . . . 7  |-  -.  0  e.  NN
76rgenw 2549 . . . . . 6  |-  A. x  e.  I  -.  0  e.  NN
8 rabeq0 3476 . . . . . 6  |-  ( { x  e.  I  |  0  e.  NN }  =  (/)  <->  A. x  e.  I  -.  0  e.  NN )
97, 8mpbir 146 . . . . 5  |-  { x  e.  I  |  0  e.  NN }  =  (/)
105, 9eqtri 2214 . . . 4  |-  ( `' ( x  e.  I  |->  0 ) " NN )  =  (/)
11 0fin 6940 . . . 4  |-  (/)  e.  Fin
1210, 11eqeltri 2266 . . 3  |-  ( `' ( x  e.  I  |->  0 ) " NN )  e.  Fin
1312a1i 9 . 2  |-  ( I  e.  V  ->  ( `' ( x  e.  I  |->  0 ) " NN )  e.  Fin )
14 psrbag.d . . 3  |-  D  =  { f  e.  ( NN0  ^m  I )  |  ( `' f
" NN )  e. 
Fin }
1514psrbag 14155 . 2  |-  ( I  e.  V  ->  (
( x  e.  I  |->  0 )  e.  D  <->  ( ( x  e.  I  |->  0 ) : I --> NN0  /\  ( `' ( x  e.  I  |->  0 ) " NN )  e.  Fin )
) )
163, 13, 15mpbir2and 946 1  |-  ( I  e.  V  ->  (
x  e.  I  |->  0 )  e.  D )
Colors of variables: wff set class
Syntax hints:   -. wn 3    -> wi 4    /\ wa 104    = wceq 1364    e. wcel 2164   A.wral 2472   {crab 2476   (/)c0 3446    |-> cmpt 4090   `'ccnv 4658   "cima 4662   -->wf 5250  (class class class)co 5918    ^m cmap 6702   Fincfn 6794   0cc0 7872   NNcn 8982   NN0cn0 9240
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 710  ax-5 1458  ax-7 1459  ax-gen 1460  ax-ie1 1504  ax-ie2 1505  ax-8 1515  ax-10 1516  ax-11 1517  ax-i12 1518  ax-bndl 1520  ax-4 1521  ax-17 1537  ax-i9 1541  ax-ial 1545  ax-i5r 1546  ax-13 2166  ax-14 2167  ax-ext 2175  ax-sep 4147  ax-nul 4155  ax-pow 4203  ax-pr 4238  ax-un 4464  ax-setind 4569  ax-cnex 7963  ax-resscn 7964  ax-1cn 7965  ax-1re 7966  ax-icn 7967  ax-addcl 7968  ax-addrcl 7969  ax-mulcl 7970  ax-i2m1 7977  ax-0lt1 7978  ax-0id 7980  ax-rnegex 7981  ax-pre-ltirr 7984  ax-pre-lttrn 7986  ax-pre-ltadd 7988
This theorem depends on definitions:  df-bi 117  df-3an 982  df-tru 1367  df-fal 1370  df-nf 1472  df-sb 1774  df-eu 2045  df-mo 2046  df-clab 2180  df-cleq 2186  df-clel 2189  df-nfc 2325  df-ne 2365  df-nel 2460  df-ral 2477  df-rex 2478  df-rab 2481  df-v 2762  df-sbc 2986  df-dif 3155  df-un 3157  df-in 3159  df-ss 3166  df-nul 3447  df-pw 3603  df-sn 3624  df-pr 3625  df-op 3627  df-uni 3836  df-int 3871  df-br 4030  df-opab 4091  df-mpt 4092  df-id 4324  df-iom 4623  df-xp 4665  df-rel 4666  df-cnv 4667  df-co 4668  df-dm 4669  df-rn 4670  df-res 4671  df-ima 4672  df-iota 5215  df-fun 5256  df-fn 5257  df-f 5258  df-f1 5259  df-fo 5260  df-f1o 5261  df-fv 5262  df-ov 5921  df-oprab 5922  df-mpo 5923  df-map 6704  df-en 6795  df-fin 6797  df-pnf 8056  df-mnf 8057  df-xr 8058  df-ltxr 8059  df-le 8060  df-inn 8983  df-n0 9241
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator