| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > psrbagf | GIF version | ||
| Description: A finite bag is a function. (Contributed by Mario Carneiro, 29-Dec-2014.) Remove a sethood antecedent. (Revised by SN, 30-Jul-2024.) |
| Ref | Expression |
|---|---|
| psrbag.d | ⊢ 𝐷 = {𝑓 ∈ (ℕ0 ↑𝑚 𝐼) ∣ (◡𝑓 “ ℕ) ∈ Fin} |
| Ref | Expression |
|---|---|
| psrbagf | ⊢ (𝐹 ∈ 𝐷 → 𝐹:𝐼⟶ℕ0) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | psrbag.d | . . 3 ⊢ 𝐷 = {𝑓 ∈ (ℕ0 ↑𝑚 𝐼) ∣ (◡𝑓 “ ℕ) ∈ Fin} | |
| 2 | 1 | eleq2i 2273 | . 2 ⊢ (𝐹 ∈ 𝐷 ↔ 𝐹 ∈ {𝑓 ∈ (ℕ0 ↑𝑚 𝐼) ∣ (◡𝑓 “ ℕ) ∈ Fin}) |
| 3 | elrabi 2930 | . . 3 ⊢ (𝐹 ∈ {𝑓 ∈ (ℕ0 ↑𝑚 𝐼) ∣ (◡𝑓 “ ℕ) ∈ Fin} → 𝐹 ∈ (ℕ0 ↑𝑚 𝐼)) | |
| 4 | elmapi 6775 | . . 3 ⊢ (𝐹 ∈ (ℕ0 ↑𝑚 𝐼) → 𝐹:𝐼⟶ℕ0) | |
| 5 | 3, 4 | syl 14 | . 2 ⊢ (𝐹 ∈ {𝑓 ∈ (ℕ0 ↑𝑚 𝐼) ∣ (◡𝑓 “ ℕ) ∈ Fin} → 𝐹:𝐼⟶ℕ0) |
| 6 | 2, 5 | sylbi 121 | 1 ⊢ (𝐹 ∈ 𝐷 → 𝐹:𝐼⟶ℕ0) |
| Colors of variables: wff set class |
| Syntax hints: → wi 4 = wceq 1373 ∈ wcel 2177 {crab 2489 ◡ccnv 4687 “ cima 4691 ⟶wf 5281 (class class class)co 5962 ↑𝑚 cmap 6753 Fincfn 6845 ℕcn 9066 ℕ0cn0 9325 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 615 ax-in2 616 ax-io 711 ax-5 1471 ax-7 1472 ax-gen 1473 ax-ie1 1517 ax-ie2 1518 ax-8 1528 ax-10 1529 ax-11 1530 ax-i12 1531 ax-bndl 1533 ax-4 1534 ax-17 1550 ax-i9 1554 ax-ial 1558 ax-i5r 1559 ax-13 2179 ax-14 2180 ax-ext 2188 ax-sep 4173 ax-pow 4229 ax-pr 4264 ax-un 4493 ax-setind 4598 |
| This theorem depends on definitions: df-bi 117 df-3an 983 df-tru 1376 df-fal 1379 df-nf 1485 df-sb 1787 df-eu 2058 df-mo 2059 df-clab 2193 df-cleq 2199 df-clel 2202 df-nfc 2338 df-ne 2378 df-ral 2490 df-rex 2491 df-rab 2494 df-v 2775 df-sbc 3003 df-dif 3172 df-un 3174 df-in 3176 df-ss 3183 df-pw 3623 df-sn 3644 df-pr 3645 df-op 3647 df-uni 3860 df-br 4055 df-opab 4117 df-id 4353 df-xp 4694 df-rel 4695 df-cnv 4696 df-co 4697 df-dm 4698 df-rn 4699 df-iota 5246 df-fun 5287 df-fn 5288 df-f 5289 df-fv 5293 df-ov 5965 df-oprab 5966 df-mpo 5967 df-map 6755 |
| This theorem is referenced by: (None) |
| Copyright terms: Public domain | W3C validator |