ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  elmapi Unicode version

Theorem elmapi 6672
Description: A mapping is a function, forward direction only with superfluous antecedent removed. (Contributed by Stefan O'Rear, 10-Oct-2014.)
Assertion
Ref Expression
elmapi  |-  ( A  e.  ( B  ^m  C )  ->  A : C --> B )

Proof of Theorem elmapi
StepHypRef Expression
1 elmapex 6671 . . 3  |-  ( A  e.  ( B  ^m  C )  ->  ( B  e.  _V  /\  C  e.  _V ) )
2 elmapg 6663 . . 3  |-  ( ( B  e.  _V  /\  C  e.  _V )  ->  ( A  e.  ( B  ^m  C )  <-> 
A : C --> B ) )
31, 2syl 14 . 2  |-  ( A  e.  ( B  ^m  C )  ->  ( A  e.  ( B  ^m  C )  <->  A : C
--> B ) )
43ibi 176 1  |-  ( A  e.  ( B  ^m  C )  ->  A : C --> B )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 104    <-> wb 105    e. wcel 2148   _Vcvv 2739   -->wf 5214  (class class class)co 5877    ^m cmap 6650
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 614  ax-in2 615  ax-io 709  ax-5 1447  ax-7 1448  ax-gen 1449  ax-ie1 1493  ax-ie2 1494  ax-8 1504  ax-10 1505  ax-11 1506  ax-i12 1507  ax-bndl 1509  ax-4 1510  ax-17 1526  ax-i9 1530  ax-ial 1534  ax-i5r 1535  ax-13 2150  ax-14 2151  ax-ext 2159  ax-sep 4123  ax-pow 4176  ax-pr 4211  ax-un 4435  ax-setind 4538
This theorem depends on definitions:  df-bi 117  df-3an 980  df-tru 1356  df-fal 1359  df-nf 1461  df-sb 1763  df-eu 2029  df-mo 2030  df-clab 2164  df-cleq 2170  df-clel 2173  df-nfc 2308  df-ne 2348  df-ral 2460  df-rex 2461  df-v 2741  df-sbc 2965  df-dif 3133  df-un 3135  df-in 3137  df-ss 3144  df-pw 3579  df-sn 3600  df-pr 3601  df-op 3603  df-uni 3812  df-br 4006  df-opab 4067  df-id 4295  df-xp 4634  df-rel 4635  df-cnv 4636  df-co 4637  df-dm 4638  df-rn 4639  df-iota 5180  df-fun 5220  df-fn 5221  df-f 5222  df-fv 5226  df-ov 5880  df-oprab 5881  df-mpo 5882  df-map 6652
This theorem is referenced by:  elmapfn  6673  elmapfun  6674  elmapssres  6675  mapsspm  6684  map0b  6689  mapss  6693  mapsncnv  6697  mapen  6848  mapxpen  6850  nninff  7123  ismkvnex  7155  nninfwlpoim  7178  bj-charfunr  14601  nninfalllem1  14796  nninfall  14797  nninfsellemdc  14798  nninfsellemqall  14803  nninfomnilem  14806  isomninnlem  14817  trilpo  14830  iswomninnlem  14836  iswomni0  14838  ismkvnnlem  14839  redcwlpo  14842  nconstwlpo  14853  neapmkv  14855
  Copyright terms: Public domain W3C validator