ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  elmapi Unicode version

Theorem elmapi 6618
Description: A mapping is a function, forward direction only with superfluous antecedent removed. (Contributed by Stefan O'Rear, 10-Oct-2014.)
Assertion
Ref Expression
elmapi  |-  ( A  e.  ( B  ^m  C )  ->  A : C --> B )

Proof of Theorem elmapi
StepHypRef Expression
1 elmapex 6617 . . 3  |-  ( A  e.  ( B  ^m  C )  ->  ( B  e.  _V  /\  C  e.  _V ) )
2 elmapg 6609 . . 3  |-  ( ( B  e.  _V  /\  C  e.  _V )  ->  ( A  e.  ( B  ^m  C )  <-> 
A : C --> B ) )
31, 2syl 14 . 2  |-  ( A  e.  ( B  ^m  C )  ->  ( A  e.  ( B  ^m  C )  <->  A : C
--> B ) )
43ibi 175 1  |-  ( A  e.  ( B  ^m  C )  ->  A : C --> B )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 103    <-> wb 104    e. wcel 2128   _Vcvv 2712   -->wf 5169  (class class class)co 5827    ^m cmap 6596
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-in1 604  ax-in2 605  ax-io 699  ax-5 1427  ax-7 1428  ax-gen 1429  ax-ie1 1473  ax-ie2 1474  ax-8 1484  ax-10 1485  ax-11 1486  ax-i12 1487  ax-bndl 1489  ax-4 1490  ax-17 1506  ax-i9 1510  ax-ial 1514  ax-i5r 1515  ax-13 2130  ax-14 2131  ax-ext 2139  ax-sep 4085  ax-pow 4138  ax-pr 4172  ax-un 4396  ax-setind 4499
This theorem depends on definitions:  df-bi 116  df-3an 965  df-tru 1338  df-fal 1341  df-nf 1441  df-sb 1743  df-eu 2009  df-mo 2010  df-clab 2144  df-cleq 2150  df-clel 2153  df-nfc 2288  df-ne 2328  df-ral 2440  df-rex 2441  df-v 2714  df-sbc 2938  df-dif 3104  df-un 3106  df-in 3108  df-ss 3115  df-pw 3546  df-sn 3567  df-pr 3568  df-op 3570  df-uni 3775  df-br 3968  df-opab 4029  df-id 4256  df-xp 4595  df-rel 4596  df-cnv 4597  df-co 4598  df-dm 4599  df-rn 4600  df-iota 5138  df-fun 5175  df-fn 5176  df-f 5177  df-fv 5181  df-ov 5830  df-oprab 5831  df-mpo 5832  df-map 6598
This theorem is referenced by:  elmapfn  6619  elmapfun  6620  elmapssres  6621  mapsspm  6630  map0b  6635  mapss  6639  mapsncnv  6643  mapen  6794  mapxpen  6796  nninff  7069  ismkvnex  7101  bj-charfunr  13482  nninfalllem1  13677  nninfall  13678  nninfsellemdc  13679  nninfsellemqall  13684  nninfomnilem  13687  isomninnlem  13698  trilpo  13711  iswomninnlem  13717  iswomni0  13719  ismkvnnlem  13720  redcwlpo  13723  nconstwlpo  13733  neapmkv  13735
  Copyright terms: Public domain W3C validator