ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  elmapi Unicode version

Theorem elmapi 6756
Description: A mapping is a function, forward direction only with superfluous antecedent removed. (Contributed by Stefan O'Rear, 10-Oct-2014.)
Assertion
Ref Expression
elmapi  |-  ( A  e.  ( B  ^m  C )  ->  A : C --> B )

Proof of Theorem elmapi
StepHypRef Expression
1 elmapex 6755 . . 3  |-  ( A  e.  ( B  ^m  C )  ->  ( B  e.  _V  /\  C  e.  _V ) )
2 elmapg 6747 . . 3  |-  ( ( B  e.  _V  /\  C  e.  _V )  ->  ( A  e.  ( B  ^m  C )  <-> 
A : C --> B ) )
31, 2syl 14 . 2  |-  ( A  e.  ( B  ^m  C )  ->  ( A  e.  ( B  ^m  C )  <->  A : C
--> B ) )
43ibi 176 1  |-  ( A  e.  ( B  ^m  C )  ->  A : C --> B )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 104    <-> wb 105    e. wcel 2175   _Vcvv 2771   -->wf 5266  (class class class)co 5943    ^m cmap 6734
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 710  ax-5 1469  ax-7 1470  ax-gen 1471  ax-ie1 1515  ax-ie2 1516  ax-8 1526  ax-10 1527  ax-11 1528  ax-i12 1529  ax-bndl 1531  ax-4 1532  ax-17 1548  ax-i9 1552  ax-ial 1556  ax-i5r 1557  ax-13 2177  ax-14 2178  ax-ext 2186  ax-sep 4161  ax-pow 4217  ax-pr 4252  ax-un 4479  ax-setind 4584
This theorem depends on definitions:  df-bi 117  df-3an 982  df-tru 1375  df-fal 1378  df-nf 1483  df-sb 1785  df-eu 2056  df-mo 2057  df-clab 2191  df-cleq 2197  df-clel 2200  df-nfc 2336  df-ne 2376  df-ral 2488  df-rex 2489  df-v 2773  df-sbc 2998  df-dif 3167  df-un 3169  df-in 3171  df-ss 3178  df-pw 3617  df-sn 3638  df-pr 3639  df-op 3641  df-uni 3850  df-br 4044  df-opab 4105  df-id 4339  df-xp 4680  df-rel 4681  df-cnv 4682  df-co 4683  df-dm 4684  df-rn 4685  df-iota 5231  df-fun 5272  df-fn 5273  df-f 5274  df-fv 5278  df-ov 5946  df-oprab 5947  df-mpo 5948  df-map 6736
This theorem is referenced by:  elmapfn  6757  elmapfun  6758  elmapssres  6759  mapsspm  6768  map0b  6773  mapss  6777  mapsncnv  6781  mapen  6942  mapxpen  6944  nninff  7223  ismkvnex  7256  nninfwlpoim  7280  nninfinfwlpo  7281  finacn  7315  acnccim  7383  psrbagf  14403  psrbagfi  14406  mplsubgfilemcl  14432  plycn  15205  dvply2g  15209  bj-charfunr  15708  2omap  15894  nninfalllem1  15907  nninfall  15908  nninfsellemdc  15909  nninfsellemqall  15914  nninfomnilem  15917  isomninnlem  15931  trilpo  15944  iswomninnlem  15950  iswomni0  15952  ismkvnnlem  15953  redcwlpo  15956  nconstwlpo  15967  neapmkv  15969
  Copyright terms: Public domain W3C validator