ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  elmapi Unicode version

Theorem elmapi 6738
Description: A mapping is a function, forward direction only with superfluous antecedent removed. (Contributed by Stefan O'Rear, 10-Oct-2014.)
Assertion
Ref Expression
elmapi  |-  ( A  e.  ( B  ^m  C )  ->  A : C --> B )

Proof of Theorem elmapi
StepHypRef Expression
1 elmapex 6737 . . 3  |-  ( A  e.  ( B  ^m  C )  ->  ( B  e.  _V  /\  C  e.  _V ) )
2 elmapg 6729 . . 3  |-  ( ( B  e.  _V  /\  C  e.  _V )  ->  ( A  e.  ( B  ^m  C )  <-> 
A : C --> B ) )
31, 2syl 14 . 2  |-  ( A  e.  ( B  ^m  C )  ->  ( A  e.  ( B  ^m  C )  <->  A : C
--> B ) )
43ibi 176 1  |-  ( A  e.  ( B  ^m  C )  ->  A : C --> B )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 104    <-> wb 105    e. wcel 2167   _Vcvv 2763   -->wf 5255  (class class class)co 5925    ^m cmap 6716
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 710  ax-5 1461  ax-7 1462  ax-gen 1463  ax-ie1 1507  ax-ie2 1508  ax-8 1518  ax-10 1519  ax-11 1520  ax-i12 1521  ax-bndl 1523  ax-4 1524  ax-17 1540  ax-i9 1544  ax-ial 1548  ax-i5r 1549  ax-13 2169  ax-14 2170  ax-ext 2178  ax-sep 4152  ax-pow 4208  ax-pr 4243  ax-un 4469  ax-setind 4574
This theorem depends on definitions:  df-bi 117  df-3an 982  df-tru 1367  df-fal 1370  df-nf 1475  df-sb 1777  df-eu 2048  df-mo 2049  df-clab 2183  df-cleq 2189  df-clel 2192  df-nfc 2328  df-ne 2368  df-ral 2480  df-rex 2481  df-v 2765  df-sbc 2990  df-dif 3159  df-un 3161  df-in 3163  df-ss 3170  df-pw 3608  df-sn 3629  df-pr 3630  df-op 3632  df-uni 3841  df-br 4035  df-opab 4096  df-id 4329  df-xp 4670  df-rel 4671  df-cnv 4672  df-co 4673  df-dm 4674  df-rn 4675  df-iota 5220  df-fun 5261  df-fn 5262  df-f 5263  df-fv 5267  df-ov 5928  df-oprab 5929  df-mpo 5930  df-map 6718
This theorem is referenced by:  elmapfn  6739  elmapfun  6740  elmapssres  6741  mapsspm  6750  map0b  6755  mapss  6759  mapsncnv  6763  mapen  6916  mapxpen  6918  nninff  7197  ismkvnex  7230  nninfwlpoim  7253  finacn  7287  acnccim  7355  psrbagf  14300  plycn  15082  dvply2g  15086  bj-charfunr  15540  2omap  15726  nninfalllem1  15739  nninfall  15740  nninfsellemdc  15741  nninfsellemqall  15746  nninfomnilem  15749  isomninnlem  15761  trilpo  15774  iswomninnlem  15780  iswomni0  15782  ismkvnnlem  15783  redcwlpo  15786  nconstwlpo  15797  neapmkv  15799
  Copyright terms: Public domain W3C validator