ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  r19.29uz Unicode version

Theorem r19.29uz 11014
Description: A version of 19.29 1630 for upper integer quantifiers. (Contributed by Mario Carneiro, 10-Feb-2014.)
Hypothesis
Ref Expression
rexuz3.1  |-  Z  =  ( ZZ>= `  M )
Assertion
Ref Expression
r19.29uz  |-  ( ( A. k  e.  Z  ph 
/\  E. j  e.  Z  A. k  e.  ( ZZ>=
`  j ) ps )  ->  E. j  e.  Z  A. k  e.  ( ZZ>= `  j )
( ph  /\  ps )
)
Distinct variable groups:    j, M    ph, j    j, k, Z
Allowed substitution hints:    ph( k)    ps( j,
k)    M( k)

Proof of Theorem r19.29uz
StepHypRef Expression
1 rexuz3.1 . . . . . . . . 9  |-  Z  =  ( ZZ>= `  M )
21uztrn2 9558 . . . . . . . 8  |-  ( ( j  e.  Z  /\  k  e.  ( ZZ>= `  j ) )  -> 
k  e.  Z )
32ex 115 . . . . . . 7  |-  ( j  e.  Z  ->  (
k  e.  ( ZZ>= `  j )  ->  k  e.  Z ) )
4 pm3.2 139 . . . . . . . 8  |-  ( ph  ->  ( ps  ->  ( ph  /\  ps ) ) )
54a1i 9 . . . . . . 7  |-  ( j  e.  Z  ->  ( ph  ->  ( ps  ->  (
ph  /\  ps )
) ) )
63, 5imim12d 74 . . . . . 6  |-  ( j  e.  Z  ->  (
( k  e.  Z  ->  ph )  ->  (
k  e.  ( ZZ>= `  j )  ->  ( ps  ->  ( ph  /\  ps ) ) ) ) )
76ralimdv2 2557 . . . . 5  |-  ( j  e.  Z  ->  ( A. k  e.  Z  ph 
->  A. k  e.  (
ZZ>= `  j ) ( ps  ->  ( ph  /\ 
ps ) ) ) )
87impcom 125 . . . 4  |-  ( ( A. k  e.  Z  ph 
/\  j  e.  Z
)  ->  A. k  e.  ( ZZ>= `  j )
( ps  ->  ( ph  /\  ps ) ) )
9 ralim 2546 . . . 4  |-  ( A. k  e.  ( ZZ>= `  j ) ( ps 
->  ( ph  /\  ps ) )  ->  ( A. k  e.  ( ZZ>=
`  j ) ps 
->  A. k  e.  (
ZZ>= `  j ) (
ph  /\  ps )
) )
108, 9syl 14 . . 3  |-  ( ( A. k  e.  Z  ph 
/\  j  e.  Z
)  ->  ( A. k  e.  ( ZZ>= `  j ) ps  ->  A. k  e.  ( ZZ>= `  j ) ( ph  /\ 
ps ) ) )
1110reximdva 2589 . 2  |-  ( A. k  e.  Z  ph  ->  ( E. j  e.  Z  A. k  e.  ( ZZ>=
`  j ) ps 
->  E. j  e.  Z  A. k  e.  ( ZZ>=
`  j ) (
ph  /\  ps )
) )
1211imp 124 1  |-  ( ( A. k  e.  Z  ph 
/\  E. j  e.  Z  A. k  e.  ( ZZ>=
`  j ) ps )  ->  E. j  e.  Z  A. k  e.  ( ZZ>= `  j )
( ph  /\  ps )
)
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 104    = wceq 1363    e. wcel 2158   A.wral 2465   E.wrex 2466   ` cfv 5228   ZZ>=cuz 9541
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 710  ax-5 1457  ax-7 1458  ax-gen 1459  ax-ie1 1503  ax-ie2 1504  ax-8 1514  ax-10 1515  ax-11 1516  ax-i12 1517  ax-bndl 1519  ax-4 1520  ax-17 1536  ax-i9 1540  ax-ial 1544  ax-i5r 1545  ax-13 2160  ax-14 2161  ax-ext 2169  ax-sep 4133  ax-pow 4186  ax-pr 4221  ax-un 4445  ax-setind 4548  ax-cnex 7915  ax-resscn 7916  ax-pre-ltwlin 7937
This theorem depends on definitions:  df-bi 117  df-3or 980  df-3an 981  df-tru 1366  df-fal 1369  df-nf 1471  df-sb 1773  df-eu 2039  df-mo 2040  df-clab 2174  df-cleq 2180  df-clel 2183  df-nfc 2318  df-ne 2358  df-nel 2453  df-ral 2470  df-rex 2471  df-rab 2474  df-v 2751  df-sbc 2975  df-dif 3143  df-un 3145  df-in 3147  df-ss 3154  df-pw 3589  df-sn 3610  df-pr 3611  df-op 3613  df-uni 3822  df-br 4016  df-opab 4077  df-mpt 4078  df-id 4305  df-xp 4644  df-rel 4645  df-cnv 4646  df-co 4647  df-dm 4648  df-rn 4649  df-res 4650  df-ima 4651  df-iota 5190  df-fun 5230  df-fn 5231  df-f 5232  df-fv 5236  df-ov 5891  df-pnf 8007  df-mnf 8008  df-xr 8009  df-ltxr 8010  df-le 8011  df-neg 8144  df-z 9267  df-uz 9542
This theorem is referenced by:  climcaucn  11372
  Copyright terms: Public domain W3C validator