ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  r19.29uz Unicode version

Theorem r19.29uz 10956
Description: A version of 19.29 1613 for upper integer quantifiers. (Contributed by Mario Carneiro, 10-Feb-2014.)
Hypothesis
Ref Expression
rexuz3.1  |-  Z  =  ( ZZ>= `  M )
Assertion
Ref Expression
r19.29uz  |-  ( ( A. k  e.  Z  ph 
/\  E. j  e.  Z  A. k  e.  ( ZZ>=
`  j ) ps )  ->  E. j  e.  Z  A. k  e.  ( ZZ>= `  j )
( ph  /\  ps )
)
Distinct variable groups:    j, M    ph, j    j, k, Z
Allowed substitution hints:    ph( k)    ps( j,
k)    M( k)

Proof of Theorem r19.29uz
StepHypRef Expression
1 rexuz3.1 . . . . . . . . 9  |-  Z  =  ( ZZ>= `  M )
21uztrn2 9504 . . . . . . . 8  |-  ( ( j  e.  Z  /\  k  e.  ( ZZ>= `  j ) )  -> 
k  e.  Z )
32ex 114 . . . . . . 7  |-  ( j  e.  Z  ->  (
k  e.  ( ZZ>= `  j )  ->  k  e.  Z ) )
4 pm3.2 138 . . . . . . . 8  |-  ( ph  ->  ( ps  ->  ( ph  /\  ps ) ) )
54a1i 9 . . . . . . 7  |-  ( j  e.  Z  ->  ( ph  ->  ( ps  ->  (
ph  /\  ps )
) ) )
63, 5imim12d 74 . . . . . 6  |-  ( j  e.  Z  ->  (
( k  e.  Z  ->  ph )  ->  (
k  e.  ( ZZ>= `  j )  ->  ( ps  ->  ( ph  /\  ps ) ) ) ) )
76ralimdv2 2540 . . . . 5  |-  ( j  e.  Z  ->  ( A. k  e.  Z  ph 
->  A. k  e.  (
ZZ>= `  j ) ( ps  ->  ( ph  /\ 
ps ) ) ) )
87impcom 124 . . . 4  |-  ( ( A. k  e.  Z  ph 
/\  j  e.  Z
)  ->  A. k  e.  ( ZZ>= `  j )
( ps  ->  ( ph  /\  ps ) ) )
9 ralim 2529 . . . 4  |-  ( A. k  e.  ( ZZ>= `  j ) ( ps 
->  ( ph  /\  ps ) )  ->  ( A. k  e.  ( ZZ>=
`  j ) ps 
->  A. k  e.  (
ZZ>= `  j ) (
ph  /\  ps )
) )
108, 9syl 14 . . 3  |-  ( ( A. k  e.  Z  ph 
/\  j  e.  Z
)  ->  ( A. k  e.  ( ZZ>= `  j ) ps  ->  A. k  e.  ( ZZ>= `  j ) ( ph  /\ 
ps ) ) )
1110reximdva 2572 . 2  |-  ( A. k  e.  Z  ph  ->  ( E. j  e.  Z  A. k  e.  ( ZZ>=
`  j ) ps 
->  E. j  e.  Z  A. k  e.  ( ZZ>=
`  j ) (
ph  /\  ps )
) )
1211imp 123 1  |-  ( ( A. k  e.  Z  ph 
/\  E. j  e.  Z  A. k  e.  ( ZZ>=
`  j ) ps )  ->  E. j  e.  Z  A. k  e.  ( ZZ>= `  j )
( ph  /\  ps )
)
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 103    = wceq 1348    e. wcel 2141   A.wral 2448   E.wrex 2449   ` cfv 5198   ZZ>=cuz 9487
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-in1 609  ax-in2 610  ax-io 704  ax-5 1440  ax-7 1441  ax-gen 1442  ax-ie1 1486  ax-ie2 1487  ax-8 1497  ax-10 1498  ax-11 1499  ax-i12 1500  ax-bndl 1502  ax-4 1503  ax-17 1519  ax-i9 1523  ax-ial 1527  ax-i5r 1528  ax-13 2143  ax-14 2144  ax-ext 2152  ax-sep 4107  ax-pow 4160  ax-pr 4194  ax-un 4418  ax-setind 4521  ax-cnex 7865  ax-resscn 7866  ax-pre-ltwlin 7887
This theorem depends on definitions:  df-bi 116  df-3or 974  df-3an 975  df-tru 1351  df-fal 1354  df-nf 1454  df-sb 1756  df-eu 2022  df-mo 2023  df-clab 2157  df-cleq 2163  df-clel 2166  df-nfc 2301  df-ne 2341  df-nel 2436  df-ral 2453  df-rex 2454  df-rab 2457  df-v 2732  df-sbc 2956  df-dif 3123  df-un 3125  df-in 3127  df-ss 3134  df-pw 3568  df-sn 3589  df-pr 3590  df-op 3592  df-uni 3797  df-br 3990  df-opab 4051  df-mpt 4052  df-id 4278  df-xp 4617  df-rel 4618  df-cnv 4619  df-co 4620  df-dm 4621  df-rn 4622  df-res 4623  df-ima 4624  df-iota 5160  df-fun 5200  df-fn 5201  df-f 5202  df-fv 5206  df-ov 5856  df-pnf 7956  df-mnf 7957  df-xr 7958  df-ltxr 7959  df-le 7960  df-neg 8093  df-z 9213  df-uz 9488
This theorem is referenced by:  climcaucn  11314
  Copyright terms: Public domain W3C validator