ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  uztrn2 Unicode version

Theorem uztrn2 9701
Description: Transitive law for sets of upper integers. (Contributed by Mario Carneiro, 26-Dec-2013.)
Hypothesis
Ref Expression
uztrn2.1  |-  Z  =  ( ZZ>= `  K )
Assertion
Ref Expression
uztrn2  |-  ( ( N  e.  Z  /\  M  e.  ( ZZ>= `  N ) )  ->  M  e.  Z )

Proof of Theorem uztrn2
StepHypRef Expression
1 uztrn2.1 . . . 4  |-  Z  =  ( ZZ>= `  K )
21eleq2i 2274 . . 3  |-  ( N  e.  Z  <->  N  e.  ( ZZ>= `  K )
)
3 uztrn 9700 . . . 4  |-  ( ( M  e.  ( ZZ>= `  N )  /\  N  e.  ( ZZ>= `  K )
)  ->  M  e.  ( ZZ>= `  K )
)
43ancoms 268 . . 3  |-  ( ( N  e.  ( ZZ>= `  K )  /\  M  e.  ( ZZ>= `  N )
)  ->  M  e.  ( ZZ>= `  K )
)
52, 4sylanb 284 . 2  |-  ( ( N  e.  Z  /\  M  e.  ( ZZ>= `  N ) )  ->  M  e.  ( ZZ>= `  K ) )
65, 1eleqtrrdi 2301 1  |-  ( ( N  e.  Z  /\  M  e.  ( ZZ>= `  N ) )  ->  M  e.  Z )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 104    = wceq 1373    e. wcel 2178   ` cfv 5290   ZZ>=cuz 9683
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 711  ax-5 1471  ax-7 1472  ax-gen 1473  ax-ie1 1517  ax-ie2 1518  ax-8 1528  ax-10 1529  ax-11 1530  ax-i12 1531  ax-bndl 1533  ax-4 1534  ax-17 1550  ax-i9 1554  ax-ial 1558  ax-i5r 1559  ax-13 2180  ax-14 2181  ax-ext 2189  ax-sep 4178  ax-pow 4234  ax-pr 4269  ax-un 4498  ax-setind 4603  ax-cnex 8051  ax-resscn 8052  ax-pre-ltwlin 8073
This theorem depends on definitions:  df-bi 117  df-3or 982  df-3an 983  df-tru 1376  df-fal 1379  df-nf 1485  df-sb 1787  df-eu 2058  df-mo 2059  df-clab 2194  df-cleq 2200  df-clel 2203  df-nfc 2339  df-ne 2379  df-nel 2474  df-ral 2491  df-rex 2492  df-rab 2495  df-v 2778  df-sbc 3006  df-dif 3176  df-un 3178  df-in 3180  df-ss 3187  df-pw 3628  df-sn 3649  df-pr 3650  df-op 3652  df-uni 3865  df-br 4060  df-opab 4122  df-mpt 4123  df-id 4358  df-xp 4699  df-rel 4700  df-cnv 4701  df-co 4702  df-dm 4703  df-rn 4704  df-res 4705  df-ima 4706  df-iota 5251  df-fun 5292  df-fn 5293  df-f 5294  df-fv 5298  df-ov 5970  df-pnf 8144  df-mnf 8145  df-xr 8146  df-ltxr 8147  df-le 8148  df-neg 8281  df-z 9408  df-uz 9684
This theorem is referenced by:  eluznn0  9755  eluznn  9756  elfzuz2  10186  rexuz3  11416  r19.29uz  11418  r19.2uz  11419  clim2  11709  clim2c  11710  clim0c  11712  2clim  11727  climabs0  11733  climcn1  11734  climcn2  11735  climsqz  11761  climsqz2  11762  clim2ser  11763  clim2ser2  11764  climub  11770  serf0  11778  mertenslemi1  11961  clim2divap  11966  fprodntrivap  12010  fprodeq0  12043  lmbrf  14802  lmss  14833  lmres  14835  txlm  14866
  Copyright terms: Public domain W3C validator