| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > uztrn2 | Unicode version | ||
| Description: Transitive law for sets of upper integers. (Contributed by Mario Carneiro, 26-Dec-2013.) |
| Ref | Expression |
|---|---|
| uztrn2.1 |
|
| Ref | Expression |
|---|---|
| uztrn2 |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | uztrn2.1 |
. . . 4
| |
| 2 | 1 | eleq2i 2263 |
. . 3
|
| 3 | uztrn 9635 |
. . . 4
| |
| 4 | 3 | ancoms 268 |
. . 3
|
| 5 | 2, 4 | sylanb 284 |
. 2
|
| 6 | 5, 1 | eleqtrrdi 2290 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 615 ax-in2 616 ax-io 710 ax-5 1461 ax-7 1462 ax-gen 1463 ax-ie1 1507 ax-ie2 1508 ax-8 1518 ax-10 1519 ax-11 1520 ax-i12 1521 ax-bndl 1523 ax-4 1524 ax-17 1540 ax-i9 1544 ax-ial 1548 ax-i5r 1549 ax-13 2169 ax-14 2170 ax-ext 2178 ax-sep 4152 ax-pow 4208 ax-pr 4243 ax-un 4469 ax-setind 4574 ax-cnex 7987 ax-resscn 7988 ax-pre-ltwlin 8009 |
| This theorem depends on definitions: df-bi 117 df-3or 981 df-3an 982 df-tru 1367 df-fal 1370 df-nf 1475 df-sb 1777 df-eu 2048 df-mo 2049 df-clab 2183 df-cleq 2189 df-clel 2192 df-nfc 2328 df-ne 2368 df-nel 2463 df-ral 2480 df-rex 2481 df-rab 2484 df-v 2765 df-sbc 2990 df-dif 3159 df-un 3161 df-in 3163 df-ss 3170 df-pw 3608 df-sn 3629 df-pr 3630 df-op 3632 df-uni 3841 df-br 4035 df-opab 4096 df-mpt 4097 df-id 4329 df-xp 4670 df-rel 4671 df-cnv 4672 df-co 4673 df-dm 4674 df-rn 4675 df-res 4676 df-ima 4677 df-iota 5220 df-fun 5261 df-fn 5262 df-f 5263 df-fv 5267 df-ov 5928 df-pnf 8080 df-mnf 8081 df-xr 8082 df-ltxr 8083 df-le 8084 df-neg 8217 df-z 9344 df-uz 9619 |
| This theorem is referenced by: eluznn0 9690 eluznn 9691 elfzuz2 10121 rexuz3 11172 r19.29uz 11174 r19.2uz 11175 clim2 11465 clim2c 11466 clim0c 11468 2clim 11483 climabs0 11489 climcn1 11490 climcn2 11491 climsqz 11517 climsqz2 11518 clim2ser 11519 clim2ser2 11520 climub 11526 serf0 11534 mertenslemi1 11717 clim2divap 11722 fprodntrivap 11766 fprodeq0 11799 lmbrf 14535 lmss 14566 lmres 14568 txlm 14599 |
| Copyright terms: Public domain | W3C validator |