| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > uztrn2 | Unicode version | ||
| Description: Transitive law for sets of upper integers. (Contributed by Mario Carneiro, 26-Dec-2013.) |
| Ref | Expression |
|---|---|
| uztrn2.1 |
|
| Ref | Expression |
|---|---|
| uztrn2 |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | uztrn2.1 |
. . . 4
| |
| 2 | 1 | eleq2i 2274 |
. . 3
|
| 3 | uztrn 9700 |
. . . 4
| |
| 4 | 3 | ancoms 268 |
. . 3
|
| 5 | 2, 4 | sylanb 284 |
. 2
|
| 6 | 5, 1 | eleqtrrdi 2301 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 615 ax-in2 616 ax-io 711 ax-5 1471 ax-7 1472 ax-gen 1473 ax-ie1 1517 ax-ie2 1518 ax-8 1528 ax-10 1529 ax-11 1530 ax-i12 1531 ax-bndl 1533 ax-4 1534 ax-17 1550 ax-i9 1554 ax-ial 1558 ax-i5r 1559 ax-13 2180 ax-14 2181 ax-ext 2189 ax-sep 4178 ax-pow 4234 ax-pr 4269 ax-un 4498 ax-setind 4603 ax-cnex 8051 ax-resscn 8052 ax-pre-ltwlin 8073 |
| This theorem depends on definitions: df-bi 117 df-3or 982 df-3an 983 df-tru 1376 df-fal 1379 df-nf 1485 df-sb 1787 df-eu 2058 df-mo 2059 df-clab 2194 df-cleq 2200 df-clel 2203 df-nfc 2339 df-ne 2379 df-nel 2474 df-ral 2491 df-rex 2492 df-rab 2495 df-v 2778 df-sbc 3006 df-dif 3176 df-un 3178 df-in 3180 df-ss 3187 df-pw 3628 df-sn 3649 df-pr 3650 df-op 3652 df-uni 3865 df-br 4060 df-opab 4122 df-mpt 4123 df-id 4358 df-xp 4699 df-rel 4700 df-cnv 4701 df-co 4702 df-dm 4703 df-rn 4704 df-res 4705 df-ima 4706 df-iota 5251 df-fun 5292 df-fn 5293 df-f 5294 df-fv 5298 df-ov 5970 df-pnf 8144 df-mnf 8145 df-xr 8146 df-ltxr 8147 df-le 8148 df-neg 8281 df-z 9408 df-uz 9684 |
| This theorem is referenced by: eluznn0 9755 eluznn 9756 elfzuz2 10186 rexuz3 11416 r19.29uz 11418 r19.2uz 11419 clim2 11709 clim2c 11710 clim0c 11712 2clim 11727 climabs0 11733 climcn1 11734 climcn2 11735 climsqz 11761 climsqz2 11762 clim2ser 11763 clim2ser2 11764 climub 11770 serf0 11778 mertenslemi1 11961 clim2divap 11966 fprodntrivap 12010 fprodeq0 12043 lmbrf 14802 lmss 14833 lmres 14835 txlm 14866 |
| Copyright terms: Public domain | W3C validator |