ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  rexanuz2 Unicode version

Theorem rexanuz2 11135
Description: Combine two different upper integer properties into one. (Contributed by Mario Carneiro, 26-Dec-2013.)
Hypothesis
Ref Expression
rexuz3.1  |-  Z  =  ( ZZ>= `  M )
Assertion
Ref Expression
rexanuz2  |-  ( E. j  e.  Z  A. k  e.  ( ZZ>= `  j ) ( ph  /\ 
ps )  <->  ( E. j  e.  Z  A. k  e.  ( ZZ>= `  j ) ph  /\  E. j  e.  Z  A. k  e.  ( ZZ>= `  j ) ps )
)
Distinct variable groups:    j, M    ph, j    j, k, Z    ps, j
Allowed substitution hints:    ph( k)    ps( k)    M( k)

Proof of Theorem rexanuz2
StepHypRef Expression
1 eluzel2 9597 . . . . 5  |-  ( j  e.  ( ZZ>= `  M
)  ->  M  e.  ZZ )
2 rexuz3.1 . . . . 5  |-  Z  =  ( ZZ>= `  M )
31, 2eleq2s 2288 . . . 4  |-  ( j  e.  Z  ->  M  e.  ZZ )
43a1d 22 . . 3  |-  ( j  e.  Z  ->  ( A. k  e.  ( ZZ>=
`  j ) (
ph  /\  ps )  ->  M  e.  ZZ ) )
54rexlimiv 2605 . 2  |-  ( E. j  e.  Z  A. k  e.  ( ZZ>= `  j ) ( ph  /\ 
ps )  ->  M  e.  ZZ )
63a1d 22 . . . 4  |-  ( j  e.  Z  ->  ( A. k  e.  ( ZZ>=
`  j ) ph  ->  M  e.  ZZ ) )
76rexlimiv 2605 . . 3  |-  ( E. j  e.  Z  A. k  e.  ( ZZ>= `  j ) ph  ->  M  e.  ZZ )
87adantr 276 . 2  |-  ( ( E. j  e.  Z  A. k  e.  ( ZZ>=
`  j ) ph  /\ 
E. j  e.  Z  A. k  e.  ( ZZ>=
`  j ) ps )  ->  M  e.  ZZ )
92rexuz3 11134 . . 3  |-  ( M  e.  ZZ  ->  ( E. j  e.  Z  A. k  e.  ( ZZ>=
`  j ) (
ph  /\  ps )  <->  E. j  e.  ZZ  A. k  e.  ( ZZ>= `  j ) ( ph  /\ 
ps ) ) )
10 rexanuz 11132 . . . 4  |-  ( E. j  e.  ZZ  A. k  e.  ( ZZ>= `  j ) ( ph  /\ 
ps )  <->  ( E. j  e.  ZZ  A. k  e.  ( ZZ>= `  j ) ph  /\  E. j  e.  ZZ  A. k  e.  ( ZZ>= `  j ) ps ) )
112rexuz3 11134 . . . . 5  |-  ( M  e.  ZZ  ->  ( E. j  e.  Z  A. k  e.  ( ZZ>=
`  j ) ph  <->  E. j  e.  ZZ  A. k  e.  ( ZZ>= `  j ) ph )
)
122rexuz3 11134 . . . . 5  |-  ( M  e.  ZZ  ->  ( E. j  e.  Z  A. k  e.  ( ZZ>=
`  j ) ps  <->  E. j  e.  ZZ  A. k  e.  ( ZZ>= `  j ) ps )
)
1311, 12anbi12d 473 . . . 4  |-  ( M  e.  ZZ  ->  (
( E. j  e.  Z  A. k  e.  ( ZZ>= `  j ) ph  /\  E. j  e.  Z  A. k  e.  ( ZZ>= `  j ) ps )  <->  ( E. j  e.  ZZ  A. k  e.  ( ZZ>= `  j ) ph  /\  E. j  e.  ZZ  A. k  e.  ( ZZ>= `  j ) ps ) ) )
1410, 13bitr4id 199 . . 3  |-  ( M  e.  ZZ  ->  ( E. j  e.  ZZ  A. k  e.  ( ZZ>= `  j ) ( ph  /\ 
ps )  <->  ( E. j  e.  Z  A. k  e.  ( ZZ>= `  j ) ph  /\  E. j  e.  Z  A. k  e.  ( ZZ>= `  j ) ps )
) )
159, 14bitrd 188 . 2  |-  ( M  e.  ZZ  ->  ( E. j  e.  Z  A. k  e.  ( ZZ>=
`  j ) (
ph  /\  ps )  <->  ( E. j  e.  Z  A. k  e.  ( ZZ>=
`  j ) ph  /\ 
E. j  e.  Z  A. k  e.  ( ZZ>=
`  j ) ps ) ) )
165, 8, 15pm5.21nii 705 1  |-  ( E. j  e.  Z  A. k  e.  ( ZZ>= `  j ) ( ph  /\ 
ps )  <->  ( E. j  e.  Z  A. k  e.  ( ZZ>= `  j ) ph  /\  E. j  e.  Z  A. k  e.  ( ZZ>= `  j ) ps )
)
Colors of variables: wff set class
Syntax hints:    /\ wa 104    <-> wb 105    = wceq 1364    e. wcel 2164   A.wral 2472   E.wrex 2473   ` cfv 5254   ZZcz 9317   ZZ>=cuz 9592
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 710  ax-5 1458  ax-7 1459  ax-gen 1460  ax-ie1 1504  ax-ie2 1505  ax-8 1515  ax-10 1516  ax-11 1517  ax-i12 1518  ax-bndl 1520  ax-4 1521  ax-17 1537  ax-i9 1541  ax-ial 1545  ax-i5r 1546  ax-13 2166  ax-14 2167  ax-ext 2175  ax-sep 4147  ax-pow 4203  ax-pr 4238  ax-un 4464  ax-setind 4569  ax-cnex 7963  ax-resscn 7964  ax-1cn 7965  ax-1re 7966  ax-icn 7967  ax-addcl 7968  ax-addrcl 7969  ax-mulcl 7970  ax-addcom 7972  ax-addass 7974  ax-distr 7976  ax-i2m1 7977  ax-0lt1 7978  ax-0id 7980  ax-rnegex 7981  ax-cnre 7983  ax-pre-ltirr 7984  ax-pre-ltwlin 7985  ax-pre-lttrn 7986  ax-pre-apti 7987  ax-pre-ltadd 7988
This theorem depends on definitions:  df-bi 117  df-dc 836  df-3or 981  df-3an 982  df-tru 1367  df-fal 1370  df-nf 1472  df-sb 1774  df-eu 2045  df-mo 2046  df-clab 2180  df-cleq 2186  df-clel 2189  df-nfc 2325  df-ne 2365  df-nel 2460  df-ral 2477  df-rex 2478  df-reu 2479  df-rab 2481  df-v 2762  df-sbc 2986  df-dif 3155  df-un 3157  df-in 3159  df-ss 3166  df-if 3558  df-pw 3603  df-sn 3624  df-pr 3625  df-op 3627  df-uni 3836  df-int 3871  df-br 4030  df-opab 4091  df-mpt 4092  df-id 4324  df-xp 4665  df-rel 4666  df-cnv 4667  df-co 4668  df-dm 4669  df-rn 4670  df-res 4671  df-ima 4672  df-iota 5215  df-fun 5256  df-fn 5257  df-f 5258  df-fv 5262  df-riota 5873  df-ov 5921  df-oprab 5922  df-mpo 5923  df-pnf 8056  df-mnf 8057  df-xr 8058  df-ltxr 8059  df-le 8060  df-sub 8192  df-neg 8193  df-inn 8983  df-n0 9241  df-z 9318  df-uz 9593
This theorem is referenced by:  recvguniq  11139  climuni  11436  2clim  11444  climcn2  11452  txlm  14447
  Copyright terms: Public domain W3C validator