ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  nninfisollem0 Unicode version

Theorem nninfisollem0 7106
Description: Lemma for nninfisol 7109. The case where  N is zero. (Contributed by Jim Kingdon, 13-Sep-2024.)
Hypotheses
Ref Expression
nninfisol.x  |-  ( ph  ->  X  e. )
nninfisol.0  |-  ( ph  ->  ( X `  N
)  =  (/) )
nninfisol.n  |-  ( ph  ->  N  e.  om )
nninfisollem0.0  |-  ( ph  ->  N  =  (/) )
Assertion
Ref Expression
nninfisollem0  |-  ( ph  -> DECID  ( i  e.  om  |->  if ( i  e.  N ,  1o ,  (/) ) )  =  X )
Distinct variable groups:    i, N    ph, i
Allowed substitution hint:    X( i)

Proof of Theorem nninfisollem0
Dummy variable  j is distinct from all other variables.
StepHypRef Expression
1 nninfisol.x . . . . 5  |-  ( ph  ->  X  e. )
2 nninfisol.n . . . . 5  |-  ( ph  ->  N  e.  om )
3 ral0 3516 . . . . . 6  |-  A. j  e.  (/)  ( X `  j )  =  1o
4 nninfisollem0.0 . . . . . . 7  |-  ( ph  ->  N  =  (/) )
54raleqdv 2671 . . . . . 6  |-  ( ph  ->  ( A. j  e.  N  ( X `  j )  =  1o  <->  A. j  e.  (/)  ( X `
 j )  =  1o ) )
63, 5mpbiri 167 . . . . 5  |-  ( ph  ->  A. j  e.  N  ( X `  j )  =  1o )
7 nninfisol.0 . . . . 5  |-  ( ph  ->  ( X `  N
)  =  (/) )
81, 2, 6, 7nnnninfeq 7104 . . . 4  |-  ( ph  ->  X  =  ( i  e.  om  |->  if ( i  e.  N ,  1o ,  (/) ) ) )
98eqcomd 2176 . . 3  |-  ( ph  ->  ( i  e.  om  |->  if ( i  e.  N ,  1o ,  (/) ) )  =  X )
109orcd 728 . 2  |-  ( ph  ->  ( ( i  e. 
om  |->  if ( i  e.  N ,  1o ,  (/) ) )  =  X  \/  -.  (
i  e.  om  |->  if ( i  e.  N ,  1o ,  (/) ) )  =  X ) )
11 df-dc 830 . 2  |-  (DECID  ( i  e.  om  |->  if ( i  e.  N ,  1o ,  (/) ) )  =  X  <->  ( (
i  e.  om  |->  if ( i  e.  N ,  1o ,  (/) ) )  =  X  \/  -.  ( i  e.  om  |->  if ( i  e.  N ,  1o ,  (/) ) )  =  X ) )
1210, 11sylibr 133 1  |-  ( ph  -> DECID  ( i  e.  om  |->  if ( i  e.  N ,  1o ,  (/) ) )  =  X )
Colors of variables: wff set class
Syntax hints:   -. wn 3    -> wi 4    \/ wo 703  DECID wdc 829    = wceq 1348    e. wcel 2141   A.wral 2448   (/)c0 3414   ifcif 3526    |-> cmpt 4050   omcom 4574   ` cfv 5198   1oc1o 6388  ℕxnninf 7096
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-in1 609  ax-in2 610  ax-io 704  ax-5 1440  ax-7 1441  ax-gen 1442  ax-ie1 1486  ax-ie2 1487  ax-8 1497  ax-10 1498  ax-11 1499  ax-i12 1500  ax-bndl 1502  ax-4 1503  ax-17 1519  ax-i9 1523  ax-ial 1527  ax-i5r 1528  ax-13 2143  ax-14 2144  ax-ext 2152  ax-sep 4107  ax-nul 4115  ax-pow 4160  ax-pr 4194  ax-un 4418  ax-setind 4521  ax-iinf 4572
This theorem depends on definitions:  df-bi 116  df-dc 830  df-3or 974  df-3an 975  df-tru 1351  df-fal 1354  df-nf 1454  df-sb 1756  df-eu 2022  df-mo 2023  df-clab 2157  df-cleq 2163  df-clel 2166  df-nfc 2301  df-ne 2341  df-ral 2453  df-rex 2454  df-rab 2457  df-v 2732  df-sbc 2956  df-csb 3050  df-dif 3123  df-un 3125  df-in 3127  df-ss 3134  df-nul 3415  df-if 3527  df-pw 3568  df-sn 3589  df-pr 3590  df-op 3592  df-uni 3797  df-int 3832  df-br 3990  df-opab 4051  df-mpt 4052  df-tr 4088  df-id 4278  df-iord 4351  df-on 4353  df-suc 4356  df-iom 4575  df-xp 4617  df-rel 4618  df-cnv 4619  df-co 4620  df-dm 4621  df-rn 4622  df-iota 5160  df-fun 5200  df-fn 5201  df-f 5202  df-fv 5206  df-ov 5856  df-oprab 5857  df-mpo 5858  df-1o 6395  df-2o 6396  df-map 6628  df-nninf 7097
This theorem is referenced by:  nninfisol  7109
  Copyright terms: Public domain W3C validator