ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  nninfisollem0 Unicode version

Theorem nninfisollem0 7196
Description: Lemma for nninfisol 7199. The case where  N is zero. (Contributed by Jim Kingdon, 13-Sep-2024.)
Hypotheses
Ref Expression
nninfisol.x  |-  ( ph  ->  X  e. )
nninfisol.0  |-  ( ph  ->  ( X `  N
)  =  (/) )
nninfisol.n  |-  ( ph  ->  N  e.  om )
nninfisollem0.0  |-  ( ph  ->  N  =  (/) )
Assertion
Ref Expression
nninfisollem0  |-  ( ph  -> DECID  ( i  e.  om  |->  if ( i  e.  N ,  1o ,  (/) ) )  =  X )
Distinct variable groups:    i, N    ph, i
Allowed substitution hint:    X( i)

Proof of Theorem nninfisollem0
Dummy variable  j is distinct from all other variables.
StepHypRef Expression
1 nninfisol.x . . . . 5  |-  ( ph  ->  X  e. )
2 nninfisol.n . . . . 5  |-  ( ph  ->  N  e.  om )
3 ral0 3552 . . . . . 6  |-  A. j  e.  (/)  ( X `  j )  =  1o
4 nninfisollem0.0 . . . . . . 7  |-  ( ph  ->  N  =  (/) )
54raleqdv 2699 . . . . . 6  |-  ( ph  ->  ( A. j  e.  N  ( X `  j )  =  1o  <->  A. j  e.  (/)  ( X `
 j )  =  1o ) )
63, 5mpbiri 168 . . . . 5  |-  ( ph  ->  A. j  e.  N  ( X `  j )  =  1o )
7 nninfisol.0 . . . . 5  |-  ( ph  ->  ( X `  N
)  =  (/) )
81, 2, 6, 7nnnninfeq 7194 . . . 4  |-  ( ph  ->  X  =  ( i  e.  om  |->  if ( i  e.  N ,  1o ,  (/) ) ) )
98eqcomd 2202 . . 3  |-  ( ph  ->  ( i  e.  om  |->  if ( i  e.  N ,  1o ,  (/) ) )  =  X )
109orcd 734 . 2  |-  ( ph  ->  ( ( i  e. 
om  |->  if ( i  e.  N ,  1o ,  (/) ) )  =  X  \/  -.  (
i  e.  om  |->  if ( i  e.  N ,  1o ,  (/) ) )  =  X ) )
11 df-dc 836 . 2  |-  (DECID  ( i  e.  om  |->  if ( i  e.  N ,  1o ,  (/) ) )  =  X  <->  ( (
i  e.  om  |->  if ( i  e.  N ,  1o ,  (/) ) )  =  X  \/  -.  ( i  e.  om  |->  if ( i  e.  N ,  1o ,  (/) ) )  =  X ) )
1210, 11sylibr 134 1  |-  ( ph  -> DECID  ( i  e.  om  |->  if ( i  e.  N ,  1o ,  (/) ) )  =  X )
Colors of variables: wff set class
Syntax hints:   -. wn 3    -> wi 4    \/ wo 709  DECID wdc 835    = wceq 1364    e. wcel 2167   A.wral 2475   (/)c0 3450   ifcif 3561    |-> cmpt 4094   omcom 4626   ` cfv 5258   1oc1o 6467  ℕxnninf 7185
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 710  ax-5 1461  ax-7 1462  ax-gen 1463  ax-ie1 1507  ax-ie2 1508  ax-8 1518  ax-10 1519  ax-11 1520  ax-i12 1521  ax-bndl 1523  ax-4 1524  ax-17 1540  ax-i9 1544  ax-ial 1548  ax-i5r 1549  ax-13 2169  ax-14 2170  ax-ext 2178  ax-sep 4151  ax-nul 4159  ax-pow 4207  ax-pr 4242  ax-un 4468  ax-setind 4573  ax-iinf 4624
This theorem depends on definitions:  df-bi 117  df-dc 836  df-3or 981  df-3an 982  df-tru 1367  df-fal 1370  df-nf 1475  df-sb 1777  df-eu 2048  df-mo 2049  df-clab 2183  df-cleq 2189  df-clel 2192  df-nfc 2328  df-ne 2368  df-ral 2480  df-rex 2481  df-rab 2484  df-v 2765  df-sbc 2990  df-csb 3085  df-dif 3159  df-un 3161  df-in 3163  df-ss 3170  df-nul 3451  df-if 3562  df-pw 3607  df-sn 3628  df-pr 3629  df-op 3631  df-uni 3840  df-int 3875  df-br 4034  df-opab 4095  df-mpt 4096  df-tr 4132  df-id 4328  df-iord 4401  df-on 4403  df-suc 4406  df-iom 4627  df-xp 4669  df-rel 4670  df-cnv 4671  df-co 4672  df-dm 4673  df-rn 4674  df-iota 5219  df-fun 5260  df-fn 5261  df-f 5262  df-fv 5266  df-ov 5925  df-oprab 5926  df-mpo 5927  df-1o 6474  df-2o 6475  df-map 6709  df-nninf 7186
This theorem is referenced by:  nninfisol  7199
  Copyright terms: Public domain W3C validator