ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  nninfisollem0 Unicode version

Theorem nninfisollem0 7234
Description: Lemma for nninfisol 7237. The case where  N is zero. (Contributed by Jim Kingdon, 13-Sep-2024.)
Hypotheses
Ref Expression
nninfisol.x  |-  ( ph  ->  X  e. )
nninfisol.0  |-  ( ph  ->  ( X `  N
)  =  (/) )
nninfisol.n  |-  ( ph  ->  N  e.  om )
nninfisollem0.0  |-  ( ph  ->  N  =  (/) )
Assertion
Ref Expression
nninfisollem0  |-  ( ph  -> DECID  ( i  e.  om  |->  if ( i  e.  N ,  1o ,  (/) ) )  =  X )
Distinct variable groups:    i, N    ph, i
Allowed substitution hint:    X( i)

Proof of Theorem nninfisollem0
Dummy variable  j is distinct from all other variables.
StepHypRef Expression
1 nninfisol.x . . . . 5  |-  ( ph  ->  X  e. )
2 nninfisol.n . . . . 5  |-  ( ph  ->  N  e.  om )
3 ral0 3562 . . . . . 6  |-  A. j  e.  (/)  ( X `  j )  =  1o
4 nninfisollem0.0 . . . . . . 7  |-  ( ph  ->  N  =  (/) )
54raleqdv 2708 . . . . . 6  |-  ( ph  ->  ( A. j  e.  N  ( X `  j )  =  1o  <->  A. j  e.  (/)  ( X `
 j )  =  1o ) )
63, 5mpbiri 168 . . . . 5  |-  ( ph  ->  A. j  e.  N  ( X `  j )  =  1o )
7 nninfisol.0 . . . . 5  |-  ( ph  ->  ( X `  N
)  =  (/) )
81, 2, 6, 7nnnninfeq 7232 . . . 4  |-  ( ph  ->  X  =  ( i  e.  om  |->  if ( i  e.  N ,  1o ,  (/) ) ) )
98eqcomd 2211 . . 3  |-  ( ph  ->  ( i  e.  om  |->  if ( i  e.  N ,  1o ,  (/) ) )  =  X )
109orcd 735 . 2  |-  ( ph  ->  ( ( i  e. 
om  |->  if ( i  e.  N ,  1o ,  (/) ) )  =  X  \/  -.  (
i  e.  om  |->  if ( i  e.  N ,  1o ,  (/) ) )  =  X ) )
11 df-dc 837 . 2  |-  (DECID  ( i  e.  om  |->  if ( i  e.  N ,  1o ,  (/) ) )  =  X  <->  ( (
i  e.  om  |->  if ( i  e.  N ,  1o ,  (/) ) )  =  X  \/  -.  ( i  e.  om  |->  if ( i  e.  N ,  1o ,  (/) ) )  =  X ) )
1210, 11sylibr 134 1  |-  ( ph  -> DECID  ( i  e.  om  |->  if ( i  e.  N ,  1o ,  (/) ) )  =  X )
Colors of variables: wff set class
Syntax hints:   -. wn 3    -> wi 4    \/ wo 710  DECID wdc 836    = wceq 1373    e. wcel 2176   A.wral 2484   (/)c0 3460   ifcif 3571    |-> cmpt 4106   omcom 4639   ` cfv 5272   1oc1o 6497  ℕxnninf 7223
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 711  ax-5 1470  ax-7 1471  ax-gen 1472  ax-ie1 1516  ax-ie2 1517  ax-8 1527  ax-10 1528  ax-11 1529  ax-i12 1530  ax-bndl 1532  ax-4 1533  ax-17 1549  ax-i9 1553  ax-ial 1557  ax-i5r 1558  ax-13 2178  ax-14 2179  ax-ext 2187  ax-sep 4163  ax-nul 4171  ax-pow 4219  ax-pr 4254  ax-un 4481  ax-setind 4586  ax-iinf 4637
This theorem depends on definitions:  df-bi 117  df-dc 837  df-3or 982  df-3an 983  df-tru 1376  df-fal 1379  df-nf 1484  df-sb 1786  df-eu 2057  df-mo 2058  df-clab 2192  df-cleq 2198  df-clel 2201  df-nfc 2337  df-ne 2377  df-ral 2489  df-rex 2490  df-rab 2493  df-v 2774  df-sbc 2999  df-csb 3094  df-dif 3168  df-un 3170  df-in 3172  df-ss 3179  df-nul 3461  df-if 3572  df-pw 3618  df-sn 3639  df-pr 3640  df-op 3642  df-uni 3851  df-int 3886  df-br 4046  df-opab 4107  df-mpt 4108  df-tr 4144  df-id 4341  df-iord 4414  df-on 4416  df-suc 4419  df-iom 4640  df-xp 4682  df-rel 4683  df-cnv 4684  df-co 4685  df-dm 4686  df-rn 4687  df-iota 5233  df-fun 5274  df-fn 5275  df-f 5276  df-fv 5280  df-ov 5949  df-oprab 5950  df-mpo 5951  df-1o 6504  df-2o 6505  df-map 6739  df-nninf 7224
This theorem is referenced by:  nninfisol  7237
  Copyright terms: Public domain W3C validator