| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > ltmul1 | Unicode version | ||
| Description: Multiplication of both sides of 'less than' by a positive number. Theorem I.19 of [Apostol] p. 20. Part of Definition 11.2.7(vi) of [HoTT], p. (varies). (Contributed by NM, 13-Feb-2005.) (Revised by Mario Carneiro, 27-May-2016.) |
| Ref | Expression |
|---|---|
| ltmul1 |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ltmul1a 8699 |
. . 3
| |
| 2 | 1 | ex 115 |
. 2
|
| 3 | recexgt0 8688 |
. . . 4
| |
| 4 | 3 | 3ad2ant3 1023 |
. . 3
|
| 5 | simpl1 1003 |
. . . . . . . . . 10
| |
| 6 | simpl3l 1055 |
. . . . . . . . . 10
| |
| 7 | 5, 6 | remulcld 8138 |
. . . . . . . . 9
|
| 8 | simpl2 1004 |
. . . . . . . . . 10
| |
| 9 | 8, 6 | remulcld 8138 |
. . . . . . . . 9
|
| 10 | simprl 529 |
. . . . . . . . . 10
| |
| 11 | simprrl 539 |
. . . . . . . . . 10
| |
| 12 | 10, 11 | jca 306 |
. . . . . . . . 9
|
| 13 | 7, 9, 12 | 3jca 1180 |
. . . . . . . 8
|
| 14 | ltmul1a 8699 |
. . . . . . . 8
| |
| 15 | 13, 14 | sylan 283 |
. . . . . . 7
|
| 16 | 5 | recnd 8136 |
. . . . . . . . 9
|
| 17 | 16 | adantr 276 |
. . . . . . . 8
|
| 18 | 6 | recnd 8136 |
. . . . . . . . 9
|
| 19 | 18 | adantr 276 |
. . . . . . . 8
|
| 20 | 10 | recnd 8136 |
. . . . . . . . 9
|
| 21 | 20 | adantr 276 |
. . . . . . . 8
|
| 22 | 17, 19, 21 | mulassd 8131 |
. . . . . . 7
|
| 23 | 8 | recnd 8136 |
. . . . . . . . 9
|
| 24 | 23 | adantr 276 |
. . . . . . . 8
|
| 25 | 24, 19, 21 | mulassd 8131 |
. . . . . . 7
|
| 26 | 15, 22, 25 | 3brtr3d 4090 |
. . . . . 6
|
| 27 | simprrr 540 |
. . . . . . . 8
| |
| 28 | 27 | adantr 276 |
. . . . . . 7
|
| 29 | 28 | oveq2d 5983 |
. . . . . 6
|
| 30 | 28 | oveq2d 5983 |
. . . . . 6
|
| 31 | 26, 29, 30 | 3brtr3d 4090 |
. . . . 5
|
| 32 | 17 | mulridd 8124 |
. . . . 5
|
| 33 | 24 | mulridd 8124 |
. . . . 5
|
| 34 | 31, 32, 33 | 3brtr3d 4090 |
. . . 4
|
| 35 | 34 | ex 115 |
. . 3
|
| 36 | 4, 35 | rexlimddv 2630 |
. 2
|
| 37 | 2, 36 | impbid 129 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 615 ax-in2 616 ax-io 711 ax-5 1471 ax-7 1472 ax-gen 1473 ax-ie1 1517 ax-ie2 1518 ax-8 1528 ax-10 1529 ax-11 1530 ax-i12 1531 ax-bndl 1533 ax-4 1534 ax-17 1550 ax-i9 1554 ax-ial 1558 ax-i5r 1559 ax-13 2180 ax-14 2181 ax-ext 2189 ax-sep 4178 ax-pow 4234 ax-pr 4269 ax-un 4498 ax-setind 4603 ax-cnex 8051 ax-resscn 8052 ax-1cn 8053 ax-1re 8054 ax-icn 8055 ax-addcl 8056 ax-addrcl 8057 ax-mulcl 8058 ax-mulrcl 8059 ax-addcom 8060 ax-mulcom 8061 ax-addass 8062 ax-mulass 8063 ax-distr 8064 ax-i2m1 8065 ax-1rid 8067 ax-0id 8068 ax-rnegex 8069 ax-precex 8070 ax-cnre 8071 ax-pre-ltadd 8076 ax-pre-mulgt0 8077 |
| This theorem depends on definitions: df-bi 117 df-3an 983 df-tru 1376 df-fal 1379 df-nf 1485 df-sb 1787 df-eu 2058 df-mo 2059 df-clab 2194 df-cleq 2200 df-clel 2203 df-nfc 2339 df-ne 2379 df-nel 2474 df-ral 2491 df-rex 2492 df-reu 2493 df-rab 2495 df-v 2778 df-sbc 3006 df-dif 3176 df-un 3178 df-in 3180 df-ss 3187 df-pw 3628 df-sn 3649 df-pr 3650 df-op 3652 df-uni 3865 df-br 4060 df-opab 4122 df-id 4358 df-xp 4699 df-rel 4700 df-cnv 4701 df-co 4702 df-dm 4703 df-iota 5251 df-fun 5292 df-fv 5298 df-riota 5922 df-ov 5970 df-oprab 5971 df-mpo 5972 df-pnf 8144 df-mnf 8145 df-ltxr 8147 df-sub 8280 df-neg 8281 |
| This theorem is referenced by: lemul1 8701 reapmul1lem 8702 ltmul2 8964 ltdiv1 8976 ltdiv23 9000 recp1lt1 9007 ltmul1i 9028 ltmul1d 9895 mertenslemi1 11961 flodddiv4t2lthalf 12365 qnumgt0 12635 4sqlem12 12840 tangtx 15425 lgsquadlem1 15669 lgsquadlem2 15670 |
| Copyright terms: Public domain | W3C validator |