ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  ltmul1 Unicode version

Theorem ltmul1 8665
Description: Multiplication of both sides of 'less than' by a positive number. Theorem I.19 of [Apostol] p. 20. Part of Definition 11.2.7(vi) of [HoTT], p. (varies). (Contributed by NM, 13-Feb-2005.) (Revised by Mario Carneiro, 27-May-2016.)
Assertion
Ref Expression
ltmul1  |-  ( ( A  e.  RR  /\  B  e.  RR  /\  ( C  e.  RR  /\  0  <  C ) )  -> 
( A  <  B  <->  ( A  x.  C )  <  ( B  x.  C ) ) )

Proof of Theorem ltmul1
Dummy variable  x is distinct from all other variables.
StepHypRef Expression
1 ltmul1a 8664 . . 3  |-  ( ( ( A  e.  RR  /\  B  e.  RR  /\  ( C  e.  RR  /\  0  <  C ) )  /\  A  < 
B )  ->  ( A  x.  C )  <  ( B  x.  C
) )
21ex 115 . 2  |-  ( ( A  e.  RR  /\  B  e.  RR  /\  ( C  e.  RR  /\  0  <  C ) )  -> 
( A  <  B  ->  ( A  x.  C
)  <  ( B  x.  C ) ) )
3 recexgt0 8653 . . . 4  |-  ( ( C  e.  RR  /\  0  <  C )  ->  E. x  e.  RR  ( 0  <  x  /\  ( C  x.  x
)  =  1 ) )
433ad2ant3 1023 . . 3  |-  ( ( A  e.  RR  /\  B  e.  RR  /\  ( C  e.  RR  /\  0  <  C ) )  ->  E. x  e.  RR  ( 0  <  x  /\  ( C  x.  x
)  =  1 ) )
5 simpl1 1003 . . . . . . . . . 10  |-  ( ( ( A  e.  RR  /\  B  e.  RR  /\  ( C  e.  RR  /\  0  <  C ) )  /\  ( x  e.  RR  /\  (
0  <  x  /\  ( C  x.  x
)  =  1 ) ) )  ->  A  e.  RR )
6 simpl3l 1055 . . . . . . . . . 10  |-  ( ( ( A  e.  RR  /\  B  e.  RR  /\  ( C  e.  RR  /\  0  <  C ) )  /\  ( x  e.  RR  /\  (
0  <  x  /\  ( C  x.  x
)  =  1 ) ) )  ->  C  e.  RR )
75, 6remulcld 8103 . . . . . . . . 9  |-  ( ( ( A  e.  RR  /\  B  e.  RR  /\  ( C  e.  RR  /\  0  <  C ) )  /\  ( x  e.  RR  /\  (
0  <  x  /\  ( C  x.  x
)  =  1 ) ) )  ->  ( A  x.  C )  e.  RR )
8 simpl2 1004 . . . . . . . . . 10  |-  ( ( ( A  e.  RR  /\  B  e.  RR  /\  ( C  e.  RR  /\  0  <  C ) )  /\  ( x  e.  RR  /\  (
0  <  x  /\  ( C  x.  x
)  =  1 ) ) )  ->  B  e.  RR )
98, 6remulcld 8103 . . . . . . . . 9  |-  ( ( ( A  e.  RR  /\  B  e.  RR  /\  ( C  e.  RR  /\  0  <  C ) )  /\  ( x  e.  RR  /\  (
0  <  x  /\  ( C  x.  x
)  =  1 ) ) )  ->  ( B  x.  C )  e.  RR )
10 simprl 529 . . . . . . . . . 10  |-  ( ( ( A  e.  RR  /\  B  e.  RR  /\  ( C  e.  RR  /\  0  <  C ) )  /\  ( x  e.  RR  /\  (
0  <  x  /\  ( C  x.  x
)  =  1 ) ) )  ->  x  e.  RR )
11 simprrl 539 . . . . . . . . . 10  |-  ( ( ( A  e.  RR  /\  B  e.  RR  /\  ( C  e.  RR  /\  0  <  C ) )  /\  ( x  e.  RR  /\  (
0  <  x  /\  ( C  x.  x
)  =  1 ) ) )  ->  0  <  x )
1210, 11jca 306 . . . . . . . . 9  |-  ( ( ( A  e.  RR  /\  B  e.  RR  /\  ( C  e.  RR  /\  0  <  C ) )  /\  ( x  e.  RR  /\  (
0  <  x  /\  ( C  x.  x
)  =  1 ) ) )  ->  (
x  e.  RR  /\  0  <  x ) )
137, 9, 123jca 1180 . . . . . . . 8  |-  ( ( ( A  e.  RR  /\  B  e.  RR  /\  ( C  e.  RR  /\  0  <  C ) )  /\  ( x  e.  RR  /\  (
0  <  x  /\  ( C  x.  x
)  =  1 ) ) )  ->  (
( A  x.  C
)  e.  RR  /\  ( B  x.  C
)  e.  RR  /\  ( x  e.  RR  /\  0  <  x ) ) )
14 ltmul1a 8664 . . . . . . . 8  |-  ( ( ( ( A  x.  C )  e.  RR  /\  ( B  x.  C
)  e.  RR  /\  ( x  e.  RR  /\  0  <  x ) )  /\  ( A  x.  C )  < 
( B  x.  C
) )  ->  (
( A  x.  C
)  x.  x )  <  ( ( B  x.  C )  x.  x ) )
1513, 14sylan 283 . . . . . . 7  |-  ( ( ( ( A  e.  RR  /\  B  e.  RR  /\  ( C  e.  RR  /\  0  <  C ) )  /\  ( x  e.  RR  /\  ( 0  <  x  /\  ( C  x.  x
)  =  1 ) ) )  /\  ( A  x.  C )  <  ( B  x.  C
) )  ->  (
( A  x.  C
)  x.  x )  <  ( ( B  x.  C )  x.  x ) )
165recnd 8101 . . . . . . . . 9  |-  ( ( ( A  e.  RR  /\  B  e.  RR  /\  ( C  e.  RR  /\  0  <  C ) )  /\  ( x  e.  RR  /\  (
0  <  x  /\  ( C  x.  x
)  =  1 ) ) )  ->  A  e.  CC )
1716adantr 276 . . . . . . . 8  |-  ( ( ( ( A  e.  RR  /\  B  e.  RR  /\  ( C  e.  RR  /\  0  <  C ) )  /\  ( x  e.  RR  /\  ( 0  <  x  /\  ( C  x.  x
)  =  1 ) ) )  /\  ( A  x.  C )  <  ( B  x.  C
) )  ->  A  e.  CC )
186recnd 8101 . . . . . . . . 9  |-  ( ( ( A  e.  RR  /\  B  e.  RR  /\  ( C  e.  RR  /\  0  <  C ) )  /\  ( x  e.  RR  /\  (
0  <  x  /\  ( C  x.  x
)  =  1 ) ) )  ->  C  e.  CC )
1918adantr 276 . . . . . . . 8  |-  ( ( ( ( A  e.  RR  /\  B  e.  RR  /\  ( C  e.  RR  /\  0  <  C ) )  /\  ( x  e.  RR  /\  ( 0  <  x  /\  ( C  x.  x
)  =  1 ) ) )  /\  ( A  x.  C )  <  ( B  x.  C
) )  ->  C  e.  CC )
2010recnd 8101 . . . . . . . . 9  |-  ( ( ( A  e.  RR  /\  B  e.  RR  /\  ( C  e.  RR  /\  0  <  C ) )  /\  ( x  e.  RR  /\  (
0  <  x  /\  ( C  x.  x
)  =  1 ) ) )  ->  x  e.  CC )
2120adantr 276 . . . . . . . 8  |-  ( ( ( ( A  e.  RR  /\  B  e.  RR  /\  ( C  e.  RR  /\  0  <  C ) )  /\  ( x  e.  RR  /\  ( 0  <  x  /\  ( C  x.  x
)  =  1 ) ) )  /\  ( A  x.  C )  <  ( B  x.  C
) )  ->  x  e.  CC )
2217, 19, 21mulassd 8096 . . . . . . 7  |-  ( ( ( ( A  e.  RR  /\  B  e.  RR  /\  ( C  e.  RR  /\  0  <  C ) )  /\  ( x  e.  RR  /\  ( 0  <  x  /\  ( C  x.  x
)  =  1 ) ) )  /\  ( A  x.  C )  <  ( B  x.  C
) )  ->  (
( A  x.  C
)  x.  x )  =  ( A  x.  ( C  x.  x
) ) )
238recnd 8101 . . . . . . . . 9  |-  ( ( ( A  e.  RR  /\  B  e.  RR  /\  ( C  e.  RR  /\  0  <  C ) )  /\  ( x  e.  RR  /\  (
0  <  x  /\  ( C  x.  x
)  =  1 ) ) )  ->  B  e.  CC )
2423adantr 276 . . . . . . . 8  |-  ( ( ( ( A  e.  RR  /\  B  e.  RR  /\  ( C  e.  RR  /\  0  <  C ) )  /\  ( x  e.  RR  /\  ( 0  <  x  /\  ( C  x.  x
)  =  1 ) ) )  /\  ( A  x.  C )  <  ( B  x.  C
) )  ->  B  e.  CC )
2524, 19, 21mulassd 8096 . . . . . . 7  |-  ( ( ( ( A  e.  RR  /\  B  e.  RR  /\  ( C  e.  RR  /\  0  <  C ) )  /\  ( x  e.  RR  /\  ( 0  <  x  /\  ( C  x.  x
)  =  1 ) ) )  /\  ( A  x.  C )  <  ( B  x.  C
) )  ->  (
( B  x.  C
)  x.  x )  =  ( B  x.  ( C  x.  x
) ) )
2615, 22, 253brtr3d 4075 . . . . . 6  |-  ( ( ( ( A  e.  RR  /\  B  e.  RR  /\  ( C  e.  RR  /\  0  <  C ) )  /\  ( x  e.  RR  /\  ( 0  <  x  /\  ( C  x.  x
)  =  1 ) ) )  /\  ( A  x.  C )  <  ( B  x.  C
) )  ->  ( A  x.  ( C  x.  x ) )  < 
( B  x.  ( C  x.  x )
) )
27 simprrr 540 . . . . . . . 8  |-  ( ( ( A  e.  RR  /\  B  e.  RR  /\  ( C  e.  RR  /\  0  <  C ) )  /\  ( x  e.  RR  /\  (
0  <  x  /\  ( C  x.  x
)  =  1 ) ) )  ->  ( C  x.  x )  =  1 )
2827adantr 276 . . . . . . 7  |-  ( ( ( ( A  e.  RR  /\  B  e.  RR  /\  ( C  e.  RR  /\  0  <  C ) )  /\  ( x  e.  RR  /\  ( 0  <  x  /\  ( C  x.  x
)  =  1 ) ) )  /\  ( A  x.  C )  <  ( B  x.  C
) )  ->  ( C  x.  x )  =  1 )
2928oveq2d 5960 . . . . . 6  |-  ( ( ( ( A  e.  RR  /\  B  e.  RR  /\  ( C  e.  RR  /\  0  <  C ) )  /\  ( x  e.  RR  /\  ( 0  <  x  /\  ( C  x.  x
)  =  1 ) ) )  /\  ( A  x.  C )  <  ( B  x.  C
) )  ->  ( A  x.  ( C  x.  x ) )  =  ( A  x.  1 ) )
3028oveq2d 5960 . . . . . 6  |-  ( ( ( ( A  e.  RR  /\  B  e.  RR  /\  ( C  e.  RR  /\  0  <  C ) )  /\  ( x  e.  RR  /\  ( 0  <  x  /\  ( C  x.  x
)  =  1 ) ) )  /\  ( A  x.  C )  <  ( B  x.  C
) )  ->  ( B  x.  ( C  x.  x ) )  =  ( B  x.  1 ) )
3126, 29, 303brtr3d 4075 . . . . 5  |-  ( ( ( ( A  e.  RR  /\  B  e.  RR  /\  ( C  e.  RR  /\  0  <  C ) )  /\  ( x  e.  RR  /\  ( 0  <  x  /\  ( C  x.  x
)  =  1 ) ) )  /\  ( A  x.  C )  <  ( B  x.  C
) )  ->  ( A  x.  1 )  <  ( B  x.  1 ) )
3217mulridd 8089 . . . . 5  |-  ( ( ( ( A  e.  RR  /\  B  e.  RR  /\  ( C  e.  RR  /\  0  <  C ) )  /\  ( x  e.  RR  /\  ( 0  <  x  /\  ( C  x.  x
)  =  1 ) ) )  /\  ( A  x.  C )  <  ( B  x.  C
) )  ->  ( A  x.  1 )  =  A )
3324mulridd 8089 . . . . 5  |-  ( ( ( ( A  e.  RR  /\  B  e.  RR  /\  ( C  e.  RR  /\  0  <  C ) )  /\  ( x  e.  RR  /\  ( 0  <  x  /\  ( C  x.  x
)  =  1 ) ) )  /\  ( A  x.  C )  <  ( B  x.  C
) )  ->  ( B  x.  1 )  =  B )
3431, 32, 333brtr3d 4075 . . . 4  |-  ( ( ( ( A  e.  RR  /\  B  e.  RR  /\  ( C  e.  RR  /\  0  <  C ) )  /\  ( x  e.  RR  /\  ( 0  <  x  /\  ( C  x.  x
)  =  1 ) ) )  /\  ( A  x.  C )  <  ( B  x.  C
) )  ->  A  <  B )
3534ex 115 . . 3  |-  ( ( ( A  e.  RR  /\  B  e.  RR  /\  ( C  e.  RR  /\  0  <  C ) )  /\  ( x  e.  RR  /\  (
0  <  x  /\  ( C  x.  x
)  =  1 ) ) )  ->  (
( A  x.  C
)  <  ( B  x.  C )  ->  A  <  B ) )
364, 35rexlimddv 2628 . 2  |-  ( ( A  e.  RR  /\  B  e.  RR  /\  ( C  e.  RR  /\  0  <  C ) )  -> 
( ( A  x.  C )  <  ( B  x.  C )  ->  A  <  B ) )
372, 36impbid 129 1  |-  ( ( A  e.  RR  /\  B  e.  RR  /\  ( C  e.  RR  /\  0  <  C ) )  -> 
( A  <  B  <->  ( A  x.  C )  <  ( B  x.  C ) ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 104    <-> wb 105    /\ w3a 981    = wceq 1373    e. wcel 2176   E.wrex 2485   class class class wbr 4044  (class class class)co 5944   CCcc 7923   RRcr 7924   0cc0 7925   1c1 7926    x. cmul 7930    < clt 8107
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 711  ax-5 1470  ax-7 1471  ax-gen 1472  ax-ie1 1516  ax-ie2 1517  ax-8 1527  ax-10 1528  ax-11 1529  ax-i12 1530  ax-bndl 1532  ax-4 1533  ax-17 1549  ax-i9 1553  ax-ial 1557  ax-i5r 1558  ax-13 2178  ax-14 2179  ax-ext 2187  ax-sep 4162  ax-pow 4218  ax-pr 4253  ax-un 4480  ax-setind 4585  ax-cnex 8016  ax-resscn 8017  ax-1cn 8018  ax-1re 8019  ax-icn 8020  ax-addcl 8021  ax-addrcl 8022  ax-mulcl 8023  ax-mulrcl 8024  ax-addcom 8025  ax-mulcom 8026  ax-addass 8027  ax-mulass 8028  ax-distr 8029  ax-i2m1 8030  ax-1rid 8032  ax-0id 8033  ax-rnegex 8034  ax-precex 8035  ax-cnre 8036  ax-pre-ltadd 8041  ax-pre-mulgt0 8042
This theorem depends on definitions:  df-bi 117  df-3an 983  df-tru 1376  df-fal 1379  df-nf 1484  df-sb 1786  df-eu 2057  df-mo 2058  df-clab 2192  df-cleq 2198  df-clel 2201  df-nfc 2337  df-ne 2377  df-nel 2472  df-ral 2489  df-rex 2490  df-reu 2491  df-rab 2493  df-v 2774  df-sbc 2999  df-dif 3168  df-un 3170  df-in 3172  df-ss 3179  df-pw 3618  df-sn 3639  df-pr 3640  df-op 3642  df-uni 3851  df-br 4045  df-opab 4106  df-id 4340  df-xp 4681  df-rel 4682  df-cnv 4683  df-co 4684  df-dm 4685  df-iota 5232  df-fun 5273  df-fv 5279  df-riota 5899  df-ov 5947  df-oprab 5948  df-mpo 5949  df-pnf 8109  df-mnf 8110  df-ltxr 8112  df-sub 8245  df-neg 8246
This theorem is referenced by:  lemul1  8666  reapmul1lem  8667  ltmul2  8929  ltdiv1  8941  ltdiv23  8965  recp1lt1  8972  ltmul1i  8993  ltmul1d  9860  mertenslemi1  11846  flodddiv4t2lthalf  12250  qnumgt0  12520  4sqlem12  12725  tangtx  15310  lgsquadlem1  15554  lgsquadlem2  15555
  Copyright terms: Public domain W3C validator