ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  ltmul1 Unicode version

Theorem ltmul1 8667
Description: Multiplication of both sides of 'less than' by a positive number. Theorem I.19 of [Apostol] p. 20. Part of Definition 11.2.7(vi) of [HoTT], p. (varies). (Contributed by NM, 13-Feb-2005.) (Revised by Mario Carneiro, 27-May-2016.)
Assertion
Ref Expression
ltmul1  |-  ( ( A  e.  RR  /\  B  e.  RR  /\  ( C  e.  RR  /\  0  <  C ) )  -> 
( A  <  B  <->  ( A  x.  C )  <  ( B  x.  C ) ) )

Proof of Theorem ltmul1
Dummy variable  x is distinct from all other variables.
StepHypRef Expression
1 ltmul1a 8666 . . 3  |-  ( ( ( A  e.  RR  /\  B  e.  RR  /\  ( C  e.  RR  /\  0  <  C ) )  /\  A  < 
B )  ->  ( A  x.  C )  <  ( B  x.  C
) )
21ex 115 . 2  |-  ( ( A  e.  RR  /\  B  e.  RR  /\  ( C  e.  RR  /\  0  <  C ) )  -> 
( A  <  B  ->  ( A  x.  C
)  <  ( B  x.  C ) ) )
3 recexgt0 8655 . . . 4  |-  ( ( C  e.  RR  /\  0  <  C )  ->  E. x  e.  RR  ( 0  <  x  /\  ( C  x.  x
)  =  1 ) )
433ad2ant3 1023 . . 3  |-  ( ( A  e.  RR  /\  B  e.  RR  /\  ( C  e.  RR  /\  0  <  C ) )  ->  E. x  e.  RR  ( 0  <  x  /\  ( C  x.  x
)  =  1 ) )
5 simpl1 1003 . . . . . . . . . 10  |-  ( ( ( A  e.  RR  /\  B  e.  RR  /\  ( C  e.  RR  /\  0  <  C ) )  /\  ( x  e.  RR  /\  (
0  <  x  /\  ( C  x.  x
)  =  1 ) ) )  ->  A  e.  RR )
6 simpl3l 1055 . . . . . . . . . 10  |-  ( ( ( A  e.  RR  /\  B  e.  RR  /\  ( C  e.  RR  /\  0  <  C ) )  /\  ( x  e.  RR  /\  (
0  <  x  /\  ( C  x.  x
)  =  1 ) ) )  ->  C  e.  RR )
75, 6remulcld 8105 . . . . . . . . 9  |-  ( ( ( A  e.  RR  /\  B  e.  RR  /\  ( C  e.  RR  /\  0  <  C ) )  /\  ( x  e.  RR  /\  (
0  <  x  /\  ( C  x.  x
)  =  1 ) ) )  ->  ( A  x.  C )  e.  RR )
8 simpl2 1004 . . . . . . . . . 10  |-  ( ( ( A  e.  RR  /\  B  e.  RR  /\  ( C  e.  RR  /\  0  <  C ) )  /\  ( x  e.  RR  /\  (
0  <  x  /\  ( C  x.  x
)  =  1 ) ) )  ->  B  e.  RR )
98, 6remulcld 8105 . . . . . . . . 9  |-  ( ( ( A  e.  RR  /\  B  e.  RR  /\  ( C  e.  RR  /\  0  <  C ) )  /\  ( x  e.  RR  /\  (
0  <  x  /\  ( C  x.  x
)  =  1 ) ) )  ->  ( B  x.  C )  e.  RR )
10 simprl 529 . . . . . . . . . 10  |-  ( ( ( A  e.  RR  /\  B  e.  RR  /\  ( C  e.  RR  /\  0  <  C ) )  /\  ( x  e.  RR  /\  (
0  <  x  /\  ( C  x.  x
)  =  1 ) ) )  ->  x  e.  RR )
11 simprrl 539 . . . . . . . . . 10  |-  ( ( ( A  e.  RR  /\  B  e.  RR  /\  ( C  e.  RR  /\  0  <  C ) )  /\  ( x  e.  RR  /\  (
0  <  x  /\  ( C  x.  x
)  =  1 ) ) )  ->  0  <  x )
1210, 11jca 306 . . . . . . . . 9  |-  ( ( ( A  e.  RR  /\  B  e.  RR  /\  ( C  e.  RR  /\  0  <  C ) )  /\  ( x  e.  RR  /\  (
0  <  x  /\  ( C  x.  x
)  =  1 ) ) )  ->  (
x  e.  RR  /\  0  <  x ) )
137, 9, 123jca 1180 . . . . . . . 8  |-  ( ( ( A  e.  RR  /\  B  e.  RR  /\  ( C  e.  RR  /\  0  <  C ) )  /\  ( x  e.  RR  /\  (
0  <  x  /\  ( C  x.  x
)  =  1 ) ) )  ->  (
( A  x.  C
)  e.  RR  /\  ( B  x.  C
)  e.  RR  /\  ( x  e.  RR  /\  0  <  x ) ) )
14 ltmul1a 8666 . . . . . . . 8  |-  ( ( ( ( A  x.  C )  e.  RR  /\  ( B  x.  C
)  e.  RR  /\  ( x  e.  RR  /\  0  <  x ) )  /\  ( A  x.  C )  < 
( B  x.  C
) )  ->  (
( A  x.  C
)  x.  x )  <  ( ( B  x.  C )  x.  x ) )
1513, 14sylan 283 . . . . . . 7  |-  ( ( ( ( A  e.  RR  /\  B  e.  RR  /\  ( C  e.  RR  /\  0  <  C ) )  /\  ( x  e.  RR  /\  ( 0  <  x  /\  ( C  x.  x
)  =  1 ) ) )  /\  ( A  x.  C )  <  ( B  x.  C
) )  ->  (
( A  x.  C
)  x.  x )  <  ( ( B  x.  C )  x.  x ) )
165recnd 8103 . . . . . . . . 9  |-  ( ( ( A  e.  RR  /\  B  e.  RR  /\  ( C  e.  RR  /\  0  <  C ) )  /\  ( x  e.  RR  /\  (
0  <  x  /\  ( C  x.  x
)  =  1 ) ) )  ->  A  e.  CC )
1716adantr 276 . . . . . . . 8  |-  ( ( ( ( A  e.  RR  /\  B  e.  RR  /\  ( C  e.  RR  /\  0  <  C ) )  /\  ( x  e.  RR  /\  ( 0  <  x  /\  ( C  x.  x
)  =  1 ) ) )  /\  ( A  x.  C )  <  ( B  x.  C
) )  ->  A  e.  CC )
186recnd 8103 . . . . . . . . 9  |-  ( ( ( A  e.  RR  /\  B  e.  RR  /\  ( C  e.  RR  /\  0  <  C ) )  /\  ( x  e.  RR  /\  (
0  <  x  /\  ( C  x.  x
)  =  1 ) ) )  ->  C  e.  CC )
1918adantr 276 . . . . . . . 8  |-  ( ( ( ( A  e.  RR  /\  B  e.  RR  /\  ( C  e.  RR  /\  0  <  C ) )  /\  ( x  e.  RR  /\  ( 0  <  x  /\  ( C  x.  x
)  =  1 ) ) )  /\  ( A  x.  C )  <  ( B  x.  C
) )  ->  C  e.  CC )
2010recnd 8103 . . . . . . . . 9  |-  ( ( ( A  e.  RR  /\  B  e.  RR  /\  ( C  e.  RR  /\  0  <  C ) )  /\  ( x  e.  RR  /\  (
0  <  x  /\  ( C  x.  x
)  =  1 ) ) )  ->  x  e.  CC )
2120adantr 276 . . . . . . . 8  |-  ( ( ( ( A  e.  RR  /\  B  e.  RR  /\  ( C  e.  RR  /\  0  <  C ) )  /\  ( x  e.  RR  /\  ( 0  <  x  /\  ( C  x.  x
)  =  1 ) ) )  /\  ( A  x.  C )  <  ( B  x.  C
) )  ->  x  e.  CC )
2217, 19, 21mulassd 8098 . . . . . . 7  |-  ( ( ( ( A  e.  RR  /\  B  e.  RR  /\  ( C  e.  RR  /\  0  <  C ) )  /\  ( x  e.  RR  /\  ( 0  <  x  /\  ( C  x.  x
)  =  1 ) ) )  /\  ( A  x.  C )  <  ( B  x.  C
) )  ->  (
( A  x.  C
)  x.  x )  =  ( A  x.  ( C  x.  x
) ) )
238recnd 8103 . . . . . . . . 9  |-  ( ( ( A  e.  RR  /\  B  e.  RR  /\  ( C  e.  RR  /\  0  <  C ) )  /\  ( x  e.  RR  /\  (
0  <  x  /\  ( C  x.  x
)  =  1 ) ) )  ->  B  e.  CC )
2423adantr 276 . . . . . . . 8  |-  ( ( ( ( A  e.  RR  /\  B  e.  RR  /\  ( C  e.  RR  /\  0  <  C ) )  /\  ( x  e.  RR  /\  ( 0  <  x  /\  ( C  x.  x
)  =  1 ) ) )  /\  ( A  x.  C )  <  ( B  x.  C
) )  ->  B  e.  CC )
2524, 19, 21mulassd 8098 . . . . . . 7  |-  ( ( ( ( A  e.  RR  /\  B  e.  RR  /\  ( C  e.  RR  /\  0  <  C ) )  /\  ( x  e.  RR  /\  ( 0  <  x  /\  ( C  x.  x
)  =  1 ) ) )  /\  ( A  x.  C )  <  ( B  x.  C
) )  ->  (
( B  x.  C
)  x.  x )  =  ( B  x.  ( C  x.  x
) ) )
2615, 22, 253brtr3d 4076 . . . . . 6  |-  ( ( ( ( A  e.  RR  /\  B  e.  RR  /\  ( C  e.  RR  /\  0  <  C ) )  /\  ( x  e.  RR  /\  ( 0  <  x  /\  ( C  x.  x
)  =  1 ) ) )  /\  ( A  x.  C )  <  ( B  x.  C
) )  ->  ( A  x.  ( C  x.  x ) )  < 
( B  x.  ( C  x.  x )
) )
27 simprrr 540 . . . . . . . 8  |-  ( ( ( A  e.  RR  /\  B  e.  RR  /\  ( C  e.  RR  /\  0  <  C ) )  /\  ( x  e.  RR  /\  (
0  <  x  /\  ( C  x.  x
)  =  1 ) ) )  ->  ( C  x.  x )  =  1 )
2827adantr 276 . . . . . . 7  |-  ( ( ( ( A  e.  RR  /\  B  e.  RR  /\  ( C  e.  RR  /\  0  <  C ) )  /\  ( x  e.  RR  /\  ( 0  <  x  /\  ( C  x.  x
)  =  1 ) ) )  /\  ( A  x.  C )  <  ( B  x.  C
) )  ->  ( C  x.  x )  =  1 )
2928oveq2d 5962 . . . . . 6  |-  ( ( ( ( A  e.  RR  /\  B  e.  RR  /\  ( C  e.  RR  /\  0  <  C ) )  /\  ( x  e.  RR  /\  ( 0  <  x  /\  ( C  x.  x
)  =  1 ) ) )  /\  ( A  x.  C )  <  ( B  x.  C
) )  ->  ( A  x.  ( C  x.  x ) )  =  ( A  x.  1 ) )
3028oveq2d 5962 . . . . . 6  |-  ( ( ( ( A  e.  RR  /\  B  e.  RR  /\  ( C  e.  RR  /\  0  <  C ) )  /\  ( x  e.  RR  /\  ( 0  <  x  /\  ( C  x.  x
)  =  1 ) ) )  /\  ( A  x.  C )  <  ( B  x.  C
) )  ->  ( B  x.  ( C  x.  x ) )  =  ( B  x.  1 ) )
3126, 29, 303brtr3d 4076 . . . . 5  |-  ( ( ( ( A  e.  RR  /\  B  e.  RR  /\  ( C  e.  RR  /\  0  <  C ) )  /\  ( x  e.  RR  /\  ( 0  <  x  /\  ( C  x.  x
)  =  1 ) ) )  /\  ( A  x.  C )  <  ( B  x.  C
) )  ->  ( A  x.  1 )  <  ( B  x.  1 ) )
3217mulridd 8091 . . . . 5  |-  ( ( ( ( A  e.  RR  /\  B  e.  RR  /\  ( C  e.  RR  /\  0  <  C ) )  /\  ( x  e.  RR  /\  ( 0  <  x  /\  ( C  x.  x
)  =  1 ) ) )  /\  ( A  x.  C )  <  ( B  x.  C
) )  ->  ( A  x.  1 )  =  A )
3324mulridd 8091 . . . . 5  |-  ( ( ( ( A  e.  RR  /\  B  e.  RR  /\  ( C  e.  RR  /\  0  <  C ) )  /\  ( x  e.  RR  /\  ( 0  <  x  /\  ( C  x.  x
)  =  1 ) ) )  /\  ( A  x.  C )  <  ( B  x.  C
) )  ->  ( B  x.  1 )  =  B )
3431, 32, 333brtr3d 4076 . . . 4  |-  ( ( ( ( A  e.  RR  /\  B  e.  RR  /\  ( C  e.  RR  /\  0  <  C ) )  /\  ( x  e.  RR  /\  ( 0  <  x  /\  ( C  x.  x
)  =  1 ) ) )  /\  ( A  x.  C )  <  ( B  x.  C
) )  ->  A  <  B )
3534ex 115 . . 3  |-  ( ( ( A  e.  RR  /\  B  e.  RR  /\  ( C  e.  RR  /\  0  <  C ) )  /\  ( x  e.  RR  /\  (
0  <  x  /\  ( C  x.  x
)  =  1 ) ) )  ->  (
( A  x.  C
)  <  ( B  x.  C )  ->  A  <  B ) )
364, 35rexlimddv 2628 . 2  |-  ( ( A  e.  RR  /\  B  e.  RR  /\  ( C  e.  RR  /\  0  <  C ) )  -> 
( ( A  x.  C )  <  ( B  x.  C )  ->  A  <  B ) )
372, 36impbid 129 1  |-  ( ( A  e.  RR  /\  B  e.  RR  /\  ( C  e.  RR  /\  0  <  C ) )  -> 
( A  <  B  <->  ( A  x.  C )  <  ( B  x.  C ) ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 104    <-> wb 105    /\ w3a 981    = wceq 1373    e. wcel 2176   E.wrex 2485   class class class wbr 4045  (class class class)co 5946   CCcc 7925   RRcr 7926   0cc0 7927   1c1 7928    x. cmul 7932    < clt 8109
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 711  ax-5 1470  ax-7 1471  ax-gen 1472  ax-ie1 1516  ax-ie2 1517  ax-8 1527  ax-10 1528  ax-11 1529  ax-i12 1530  ax-bndl 1532  ax-4 1533  ax-17 1549  ax-i9 1553  ax-ial 1557  ax-i5r 1558  ax-13 2178  ax-14 2179  ax-ext 2187  ax-sep 4163  ax-pow 4219  ax-pr 4254  ax-un 4481  ax-setind 4586  ax-cnex 8018  ax-resscn 8019  ax-1cn 8020  ax-1re 8021  ax-icn 8022  ax-addcl 8023  ax-addrcl 8024  ax-mulcl 8025  ax-mulrcl 8026  ax-addcom 8027  ax-mulcom 8028  ax-addass 8029  ax-mulass 8030  ax-distr 8031  ax-i2m1 8032  ax-1rid 8034  ax-0id 8035  ax-rnegex 8036  ax-precex 8037  ax-cnre 8038  ax-pre-ltadd 8043  ax-pre-mulgt0 8044
This theorem depends on definitions:  df-bi 117  df-3an 983  df-tru 1376  df-fal 1379  df-nf 1484  df-sb 1786  df-eu 2057  df-mo 2058  df-clab 2192  df-cleq 2198  df-clel 2201  df-nfc 2337  df-ne 2377  df-nel 2472  df-ral 2489  df-rex 2490  df-reu 2491  df-rab 2493  df-v 2774  df-sbc 2999  df-dif 3168  df-un 3170  df-in 3172  df-ss 3179  df-pw 3618  df-sn 3639  df-pr 3640  df-op 3642  df-uni 3851  df-br 4046  df-opab 4107  df-id 4341  df-xp 4682  df-rel 4683  df-cnv 4684  df-co 4685  df-dm 4686  df-iota 5233  df-fun 5274  df-fv 5280  df-riota 5901  df-ov 5949  df-oprab 5950  df-mpo 5951  df-pnf 8111  df-mnf 8112  df-ltxr 8114  df-sub 8247  df-neg 8248
This theorem is referenced by:  lemul1  8668  reapmul1lem  8669  ltmul2  8931  ltdiv1  8943  ltdiv23  8967  recp1lt1  8974  ltmul1i  8995  ltmul1d  9862  mertenslemi1  11879  flodddiv4t2lthalf  12283  qnumgt0  12553  4sqlem12  12758  tangtx  15343  lgsquadlem1  15587  lgsquadlem2  15588
  Copyright terms: Public domain W3C validator