ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  ltmul1 Unicode version

Theorem ltmul1 8611
Description: Multiplication of both sides of 'less than' by a positive number. Theorem I.19 of [Apostol] p. 20. Part of Definition 11.2.7(vi) of [HoTT], p. (varies). (Contributed by NM, 13-Feb-2005.) (Revised by Mario Carneiro, 27-May-2016.)
Assertion
Ref Expression
ltmul1  |-  ( ( A  e.  RR  /\  B  e.  RR  /\  ( C  e.  RR  /\  0  <  C ) )  -> 
( A  <  B  <->  ( A  x.  C )  <  ( B  x.  C ) ) )

Proof of Theorem ltmul1
Dummy variable  x is distinct from all other variables.
StepHypRef Expression
1 ltmul1a 8610 . . 3  |-  ( ( ( A  e.  RR  /\  B  e.  RR  /\  ( C  e.  RR  /\  0  <  C ) )  /\  A  < 
B )  ->  ( A  x.  C )  <  ( B  x.  C
) )
21ex 115 . 2  |-  ( ( A  e.  RR  /\  B  e.  RR  /\  ( C  e.  RR  /\  0  <  C ) )  -> 
( A  <  B  ->  ( A  x.  C
)  <  ( B  x.  C ) ) )
3 recexgt0 8599 . . . 4  |-  ( ( C  e.  RR  /\  0  <  C )  ->  E. x  e.  RR  ( 0  <  x  /\  ( C  x.  x
)  =  1 ) )
433ad2ant3 1022 . . 3  |-  ( ( A  e.  RR  /\  B  e.  RR  /\  ( C  e.  RR  /\  0  <  C ) )  ->  E. x  e.  RR  ( 0  <  x  /\  ( C  x.  x
)  =  1 ) )
5 simpl1 1002 . . . . . . . . . 10  |-  ( ( ( A  e.  RR  /\  B  e.  RR  /\  ( C  e.  RR  /\  0  <  C ) )  /\  ( x  e.  RR  /\  (
0  <  x  /\  ( C  x.  x
)  =  1 ) ) )  ->  A  e.  RR )
6 simpl3l 1054 . . . . . . . . . 10  |-  ( ( ( A  e.  RR  /\  B  e.  RR  /\  ( C  e.  RR  /\  0  <  C ) )  /\  ( x  e.  RR  /\  (
0  <  x  /\  ( C  x.  x
)  =  1 ) ) )  ->  C  e.  RR )
75, 6remulcld 8050 . . . . . . . . 9  |-  ( ( ( A  e.  RR  /\  B  e.  RR  /\  ( C  e.  RR  /\  0  <  C ) )  /\  ( x  e.  RR  /\  (
0  <  x  /\  ( C  x.  x
)  =  1 ) ) )  ->  ( A  x.  C )  e.  RR )
8 simpl2 1003 . . . . . . . . . 10  |-  ( ( ( A  e.  RR  /\  B  e.  RR  /\  ( C  e.  RR  /\  0  <  C ) )  /\  ( x  e.  RR  /\  (
0  <  x  /\  ( C  x.  x
)  =  1 ) ) )  ->  B  e.  RR )
98, 6remulcld 8050 . . . . . . . . 9  |-  ( ( ( A  e.  RR  /\  B  e.  RR  /\  ( C  e.  RR  /\  0  <  C ) )  /\  ( x  e.  RR  /\  (
0  <  x  /\  ( C  x.  x
)  =  1 ) ) )  ->  ( B  x.  C )  e.  RR )
10 simprl 529 . . . . . . . . . 10  |-  ( ( ( A  e.  RR  /\  B  e.  RR  /\  ( C  e.  RR  /\  0  <  C ) )  /\  ( x  e.  RR  /\  (
0  <  x  /\  ( C  x.  x
)  =  1 ) ) )  ->  x  e.  RR )
11 simprrl 539 . . . . . . . . . 10  |-  ( ( ( A  e.  RR  /\  B  e.  RR  /\  ( C  e.  RR  /\  0  <  C ) )  /\  ( x  e.  RR  /\  (
0  <  x  /\  ( C  x.  x
)  =  1 ) ) )  ->  0  <  x )
1210, 11jca 306 . . . . . . . . 9  |-  ( ( ( A  e.  RR  /\  B  e.  RR  /\  ( C  e.  RR  /\  0  <  C ) )  /\  ( x  e.  RR  /\  (
0  <  x  /\  ( C  x.  x
)  =  1 ) ) )  ->  (
x  e.  RR  /\  0  <  x ) )
137, 9, 123jca 1179 . . . . . . . 8  |-  ( ( ( A  e.  RR  /\  B  e.  RR  /\  ( C  e.  RR  /\  0  <  C ) )  /\  ( x  e.  RR  /\  (
0  <  x  /\  ( C  x.  x
)  =  1 ) ) )  ->  (
( A  x.  C
)  e.  RR  /\  ( B  x.  C
)  e.  RR  /\  ( x  e.  RR  /\  0  <  x ) ) )
14 ltmul1a 8610 . . . . . . . 8  |-  ( ( ( ( A  x.  C )  e.  RR  /\  ( B  x.  C
)  e.  RR  /\  ( x  e.  RR  /\  0  <  x ) )  /\  ( A  x.  C )  < 
( B  x.  C
) )  ->  (
( A  x.  C
)  x.  x )  <  ( ( B  x.  C )  x.  x ) )
1513, 14sylan 283 . . . . . . 7  |-  ( ( ( ( A  e.  RR  /\  B  e.  RR  /\  ( C  e.  RR  /\  0  <  C ) )  /\  ( x  e.  RR  /\  ( 0  <  x  /\  ( C  x.  x
)  =  1 ) ) )  /\  ( A  x.  C )  <  ( B  x.  C
) )  ->  (
( A  x.  C
)  x.  x )  <  ( ( B  x.  C )  x.  x ) )
165recnd 8048 . . . . . . . . 9  |-  ( ( ( A  e.  RR  /\  B  e.  RR  /\  ( C  e.  RR  /\  0  <  C ) )  /\  ( x  e.  RR  /\  (
0  <  x  /\  ( C  x.  x
)  =  1 ) ) )  ->  A  e.  CC )
1716adantr 276 . . . . . . . 8  |-  ( ( ( ( A  e.  RR  /\  B  e.  RR  /\  ( C  e.  RR  /\  0  <  C ) )  /\  ( x  e.  RR  /\  ( 0  <  x  /\  ( C  x.  x
)  =  1 ) ) )  /\  ( A  x.  C )  <  ( B  x.  C
) )  ->  A  e.  CC )
186recnd 8048 . . . . . . . . 9  |-  ( ( ( A  e.  RR  /\  B  e.  RR  /\  ( C  e.  RR  /\  0  <  C ) )  /\  ( x  e.  RR  /\  (
0  <  x  /\  ( C  x.  x
)  =  1 ) ) )  ->  C  e.  CC )
1918adantr 276 . . . . . . . 8  |-  ( ( ( ( A  e.  RR  /\  B  e.  RR  /\  ( C  e.  RR  /\  0  <  C ) )  /\  ( x  e.  RR  /\  ( 0  <  x  /\  ( C  x.  x
)  =  1 ) ) )  /\  ( A  x.  C )  <  ( B  x.  C
) )  ->  C  e.  CC )
2010recnd 8048 . . . . . . . . 9  |-  ( ( ( A  e.  RR  /\  B  e.  RR  /\  ( C  e.  RR  /\  0  <  C ) )  /\  ( x  e.  RR  /\  (
0  <  x  /\  ( C  x.  x
)  =  1 ) ) )  ->  x  e.  CC )
2120adantr 276 . . . . . . . 8  |-  ( ( ( ( A  e.  RR  /\  B  e.  RR  /\  ( C  e.  RR  /\  0  <  C ) )  /\  ( x  e.  RR  /\  ( 0  <  x  /\  ( C  x.  x
)  =  1 ) ) )  /\  ( A  x.  C )  <  ( B  x.  C
) )  ->  x  e.  CC )
2217, 19, 21mulassd 8043 . . . . . . 7  |-  ( ( ( ( A  e.  RR  /\  B  e.  RR  /\  ( C  e.  RR  /\  0  <  C ) )  /\  ( x  e.  RR  /\  ( 0  <  x  /\  ( C  x.  x
)  =  1 ) ) )  /\  ( A  x.  C )  <  ( B  x.  C
) )  ->  (
( A  x.  C
)  x.  x )  =  ( A  x.  ( C  x.  x
) ) )
238recnd 8048 . . . . . . . . 9  |-  ( ( ( A  e.  RR  /\  B  e.  RR  /\  ( C  e.  RR  /\  0  <  C ) )  /\  ( x  e.  RR  /\  (
0  <  x  /\  ( C  x.  x
)  =  1 ) ) )  ->  B  e.  CC )
2423adantr 276 . . . . . . . 8  |-  ( ( ( ( A  e.  RR  /\  B  e.  RR  /\  ( C  e.  RR  /\  0  <  C ) )  /\  ( x  e.  RR  /\  ( 0  <  x  /\  ( C  x.  x
)  =  1 ) ) )  /\  ( A  x.  C )  <  ( B  x.  C
) )  ->  B  e.  CC )
2524, 19, 21mulassd 8043 . . . . . . 7  |-  ( ( ( ( A  e.  RR  /\  B  e.  RR  /\  ( C  e.  RR  /\  0  <  C ) )  /\  ( x  e.  RR  /\  ( 0  <  x  /\  ( C  x.  x
)  =  1 ) ) )  /\  ( A  x.  C )  <  ( B  x.  C
) )  ->  (
( B  x.  C
)  x.  x )  =  ( B  x.  ( C  x.  x
) ) )
2615, 22, 253brtr3d 4060 . . . . . 6  |-  ( ( ( ( A  e.  RR  /\  B  e.  RR  /\  ( C  e.  RR  /\  0  <  C ) )  /\  ( x  e.  RR  /\  ( 0  <  x  /\  ( C  x.  x
)  =  1 ) ) )  /\  ( A  x.  C )  <  ( B  x.  C
) )  ->  ( A  x.  ( C  x.  x ) )  < 
( B  x.  ( C  x.  x )
) )
27 simprrr 540 . . . . . . . 8  |-  ( ( ( A  e.  RR  /\  B  e.  RR  /\  ( C  e.  RR  /\  0  <  C ) )  /\  ( x  e.  RR  /\  (
0  <  x  /\  ( C  x.  x
)  =  1 ) ) )  ->  ( C  x.  x )  =  1 )
2827adantr 276 . . . . . . 7  |-  ( ( ( ( A  e.  RR  /\  B  e.  RR  /\  ( C  e.  RR  /\  0  <  C ) )  /\  ( x  e.  RR  /\  ( 0  <  x  /\  ( C  x.  x
)  =  1 ) ) )  /\  ( A  x.  C )  <  ( B  x.  C
) )  ->  ( C  x.  x )  =  1 )
2928oveq2d 5934 . . . . . 6  |-  ( ( ( ( A  e.  RR  /\  B  e.  RR  /\  ( C  e.  RR  /\  0  <  C ) )  /\  ( x  e.  RR  /\  ( 0  <  x  /\  ( C  x.  x
)  =  1 ) ) )  /\  ( A  x.  C )  <  ( B  x.  C
) )  ->  ( A  x.  ( C  x.  x ) )  =  ( A  x.  1 ) )
3028oveq2d 5934 . . . . . 6  |-  ( ( ( ( A  e.  RR  /\  B  e.  RR  /\  ( C  e.  RR  /\  0  <  C ) )  /\  ( x  e.  RR  /\  ( 0  <  x  /\  ( C  x.  x
)  =  1 ) ) )  /\  ( A  x.  C )  <  ( B  x.  C
) )  ->  ( B  x.  ( C  x.  x ) )  =  ( B  x.  1 ) )
3126, 29, 303brtr3d 4060 . . . . 5  |-  ( ( ( ( A  e.  RR  /\  B  e.  RR  /\  ( C  e.  RR  /\  0  <  C ) )  /\  ( x  e.  RR  /\  ( 0  <  x  /\  ( C  x.  x
)  =  1 ) ) )  /\  ( A  x.  C )  <  ( B  x.  C
) )  ->  ( A  x.  1 )  <  ( B  x.  1 ) )
3217mulridd 8036 . . . . 5  |-  ( ( ( ( A  e.  RR  /\  B  e.  RR  /\  ( C  e.  RR  /\  0  <  C ) )  /\  ( x  e.  RR  /\  ( 0  <  x  /\  ( C  x.  x
)  =  1 ) ) )  /\  ( A  x.  C )  <  ( B  x.  C
) )  ->  ( A  x.  1 )  =  A )
3324mulridd 8036 . . . . 5  |-  ( ( ( ( A  e.  RR  /\  B  e.  RR  /\  ( C  e.  RR  /\  0  <  C ) )  /\  ( x  e.  RR  /\  ( 0  <  x  /\  ( C  x.  x
)  =  1 ) ) )  /\  ( A  x.  C )  <  ( B  x.  C
) )  ->  ( B  x.  1 )  =  B )
3431, 32, 333brtr3d 4060 . . . 4  |-  ( ( ( ( A  e.  RR  /\  B  e.  RR  /\  ( C  e.  RR  /\  0  <  C ) )  /\  ( x  e.  RR  /\  ( 0  <  x  /\  ( C  x.  x
)  =  1 ) ) )  /\  ( A  x.  C )  <  ( B  x.  C
) )  ->  A  <  B )
3534ex 115 . . 3  |-  ( ( ( A  e.  RR  /\  B  e.  RR  /\  ( C  e.  RR  /\  0  <  C ) )  /\  ( x  e.  RR  /\  (
0  <  x  /\  ( C  x.  x
)  =  1 ) ) )  ->  (
( A  x.  C
)  <  ( B  x.  C )  ->  A  <  B ) )
364, 35rexlimddv 2616 . 2  |-  ( ( A  e.  RR  /\  B  e.  RR  /\  ( C  e.  RR  /\  0  <  C ) )  -> 
( ( A  x.  C )  <  ( B  x.  C )  ->  A  <  B ) )
372, 36impbid 129 1  |-  ( ( A  e.  RR  /\  B  e.  RR  /\  ( C  e.  RR  /\  0  <  C ) )  -> 
( A  <  B  <->  ( A  x.  C )  <  ( B  x.  C ) ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 104    <-> wb 105    /\ w3a 980    = wceq 1364    e. wcel 2164   E.wrex 2473   class class class wbr 4029  (class class class)co 5918   CCcc 7870   RRcr 7871   0cc0 7872   1c1 7873    x. cmul 7877    < clt 8054
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 710  ax-5 1458  ax-7 1459  ax-gen 1460  ax-ie1 1504  ax-ie2 1505  ax-8 1515  ax-10 1516  ax-11 1517  ax-i12 1518  ax-bndl 1520  ax-4 1521  ax-17 1537  ax-i9 1541  ax-ial 1545  ax-i5r 1546  ax-13 2166  ax-14 2167  ax-ext 2175  ax-sep 4147  ax-pow 4203  ax-pr 4238  ax-un 4464  ax-setind 4569  ax-cnex 7963  ax-resscn 7964  ax-1cn 7965  ax-1re 7966  ax-icn 7967  ax-addcl 7968  ax-addrcl 7969  ax-mulcl 7970  ax-mulrcl 7971  ax-addcom 7972  ax-mulcom 7973  ax-addass 7974  ax-mulass 7975  ax-distr 7976  ax-i2m1 7977  ax-1rid 7979  ax-0id 7980  ax-rnegex 7981  ax-precex 7982  ax-cnre 7983  ax-pre-ltadd 7988  ax-pre-mulgt0 7989
This theorem depends on definitions:  df-bi 117  df-3an 982  df-tru 1367  df-fal 1370  df-nf 1472  df-sb 1774  df-eu 2045  df-mo 2046  df-clab 2180  df-cleq 2186  df-clel 2189  df-nfc 2325  df-ne 2365  df-nel 2460  df-ral 2477  df-rex 2478  df-reu 2479  df-rab 2481  df-v 2762  df-sbc 2986  df-dif 3155  df-un 3157  df-in 3159  df-ss 3166  df-pw 3603  df-sn 3624  df-pr 3625  df-op 3627  df-uni 3836  df-br 4030  df-opab 4091  df-id 4324  df-xp 4665  df-rel 4666  df-cnv 4667  df-co 4668  df-dm 4669  df-iota 5215  df-fun 5256  df-fv 5262  df-riota 5873  df-ov 5921  df-oprab 5922  df-mpo 5923  df-pnf 8056  df-mnf 8057  df-ltxr 8059  df-sub 8192  df-neg 8193
This theorem is referenced by:  lemul1  8612  reapmul1lem  8613  ltmul2  8875  ltdiv1  8887  ltdiv23  8911  recp1lt1  8918  ltmul1i  8939  ltmul1d  9804  mertenslemi1  11678  flodddiv4t2lthalf  12078  qnumgt0  12336  4sqlem12  12540  tangtx  14973  lgsquadlem1  15191
  Copyright terms: Public domain W3C validator