| Intuitionistic Logic Explorer | 
      
      
      < Previous  
      Next >
      
       Nearby theorems  | 
  ||
| Mirrors > Home > ILE Home > Th. List > ltmul1 | Unicode version | ||
| Description: Multiplication of both sides of 'less than' by a positive number. Theorem I.19 of [Apostol] p. 20. Part of Definition 11.2.7(vi) of [HoTT], p. (varies). (Contributed by NM, 13-Feb-2005.) (Revised by Mario Carneiro, 27-May-2016.) | 
| Ref | Expression | 
|---|---|
| ltmul1 | 
 | 
| Step | Hyp | Ref | Expression | 
|---|---|---|---|
| 1 | ltmul1a 8618 | 
. . 3
 | |
| 2 | 1 | ex 115 | 
. 2
 | 
| 3 | recexgt0 8607 | 
. . . 4
 | |
| 4 | 3 | 3ad2ant3 1022 | 
. . 3
 | 
| 5 | simpl1 1002 | 
. . . . . . . . . 10
 | |
| 6 | simpl3l 1054 | 
. . . . . . . . . 10
 | |
| 7 | 5, 6 | remulcld 8057 | 
. . . . . . . . 9
 | 
| 8 | simpl2 1003 | 
. . . . . . . . . 10
 | |
| 9 | 8, 6 | remulcld 8057 | 
. . . . . . . . 9
 | 
| 10 | simprl 529 | 
. . . . . . . . . 10
 | |
| 11 | simprrl 539 | 
. . . . . . . . . 10
 | |
| 12 | 10, 11 | jca 306 | 
. . . . . . . . 9
 | 
| 13 | 7, 9, 12 | 3jca 1179 | 
. . . . . . . 8
 | 
| 14 | ltmul1a 8618 | 
. . . . . . . 8
 | |
| 15 | 13, 14 | sylan 283 | 
. . . . . . 7
 | 
| 16 | 5 | recnd 8055 | 
. . . . . . . . 9
 | 
| 17 | 16 | adantr 276 | 
. . . . . . . 8
 | 
| 18 | 6 | recnd 8055 | 
. . . . . . . . 9
 | 
| 19 | 18 | adantr 276 | 
. . . . . . . 8
 | 
| 20 | 10 | recnd 8055 | 
. . . . . . . . 9
 | 
| 21 | 20 | adantr 276 | 
. . . . . . . 8
 | 
| 22 | 17, 19, 21 | mulassd 8050 | 
. . . . . . 7
 | 
| 23 | 8 | recnd 8055 | 
. . . . . . . . 9
 | 
| 24 | 23 | adantr 276 | 
. . . . . . . 8
 | 
| 25 | 24, 19, 21 | mulassd 8050 | 
. . . . . . 7
 | 
| 26 | 15, 22, 25 | 3brtr3d 4064 | 
. . . . . 6
 | 
| 27 | simprrr 540 | 
. . . . . . . 8
 | |
| 28 | 27 | adantr 276 | 
. . . . . . 7
 | 
| 29 | 28 | oveq2d 5938 | 
. . . . . 6
 | 
| 30 | 28 | oveq2d 5938 | 
. . . . . 6
 | 
| 31 | 26, 29, 30 | 3brtr3d 4064 | 
. . . . 5
 | 
| 32 | 17 | mulridd 8043 | 
. . . . 5
 | 
| 33 | 24 | mulridd 8043 | 
. . . . 5
 | 
| 34 | 31, 32, 33 | 3brtr3d 4064 | 
. . . 4
 | 
| 35 | 34 | ex 115 | 
. . 3
 | 
| 36 | 4, 35 | rexlimddv 2619 | 
. 2
 | 
| 37 | 2, 36 | impbid 129 | 
1
 | 
| Colors of variables: wff set class | 
| Syntax hints:     | 
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 615 ax-in2 616 ax-io 710 ax-5 1461 ax-7 1462 ax-gen 1463 ax-ie1 1507 ax-ie2 1508 ax-8 1518 ax-10 1519 ax-11 1520 ax-i12 1521 ax-bndl 1523 ax-4 1524 ax-17 1540 ax-i9 1544 ax-ial 1548 ax-i5r 1549 ax-13 2169 ax-14 2170 ax-ext 2178 ax-sep 4151 ax-pow 4207 ax-pr 4242 ax-un 4468 ax-setind 4573 ax-cnex 7970 ax-resscn 7971 ax-1cn 7972 ax-1re 7973 ax-icn 7974 ax-addcl 7975 ax-addrcl 7976 ax-mulcl 7977 ax-mulrcl 7978 ax-addcom 7979 ax-mulcom 7980 ax-addass 7981 ax-mulass 7982 ax-distr 7983 ax-i2m1 7984 ax-1rid 7986 ax-0id 7987 ax-rnegex 7988 ax-precex 7989 ax-cnre 7990 ax-pre-ltadd 7995 ax-pre-mulgt0 7996 | 
| This theorem depends on definitions: df-bi 117 df-3an 982 df-tru 1367 df-fal 1370 df-nf 1475 df-sb 1777 df-eu 2048 df-mo 2049 df-clab 2183 df-cleq 2189 df-clel 2192 df-nfc 2328 df-ne 2368 df-nel 2463 df-ral 2480 df-rex 2481 df-reu 2482 df-rab 2484 df-v 2765 df-sbc 2990 df-dif 3159 df-un 3161 df-in 3163 df-ss 3170 df-pw 3607 df-sn 3628 df-pr 3629 df-op 3631 df-uni 3840 df-br 4034 df-opab 4095 df-id 4328 df-xp 4669 df-rel 4670 df-cnv 4671 df-co 4672 df-dm 4673 df-iota 5219 df-fun 5260 df-fv 5266 df-riota 5877 df-ov 5925 df-oprab 5926 df-mpo 5927 df-pnf 8063 df-mnf 8064 df-ltxr 8066 df-sub 8199 df-neg 8200 | 
| This theorem is referenced by: lemul1 8620 reapmul1lem 8621 ltmul2 8883 ltdiv1 8895 ltdiv23 8919 recp1lt1 8926 ltmul1i 8947 ltmul1d 9813 mertenslemi1 11700 flodddiv4t2lthalf 12104 qnumgt0 12366 4sqlem12 12571 tangtx 15074 lgsquadlem1 15318 lgsquadlem2 15319 | 
| Copyright terms: Public domain | W3C validator |