| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > ltmul1 | Unicode version | ||
| Description: Multiplication of both sides of 'less than' by a positive number. Theorem I.19 of [Apostol] p. 20. Part of Definition 11.2.7(vi) of [HoTT], p. (varies). (Contributed by NM, 13-Feb-2005.) (Revised by Mario Carneiro, 27-May-2016.) |
| Ref | Expression |
|---|---|
| ltmul1 |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ltmul1a 8664 |
. . 3
| |
| 2 | 1 | ex 115 |
. 2
|
| 3 | recexgt0 8653 |
. . . 4
| |
| 4 | 3 | 3ad2ant3 1023 |
. . 3
|
| 5 | simpl1 1003 |
. . . . . . . . . 10
| |
| 6 | simpl3l 1055 |
. . . . . . . . . 10
| |
| 7 | 5, 6 | remulcld 8103 |
. . . . . . . . 9
|
| 8 | simpl2 1004 |
. . . . . . . . . 10
| |
| 9 | 8, 6 | remulcld 8103 |
. . . . . . . . 9
|
| 10 | simprl 529 |
. . . . . . . . . 10
| |
| 11 | simprrl 539 |
. . . . . . . . . 10
| |
| 12 | 10, 11 | jca 306 |
. . . . . . . . 9
|
| 13 | 7, 9, 12 | 3jca 1180 |
. . . . . . . 8
|
| 14 | ltmul1a 8664 |
. . . . . . . 8
| |
| 15 | 13, 14 | sylan 283 |
. . . . . . 7
|
| 16 | 5 | recnd 8101 |
. . . . . . . . 9
|
| 17 | 16 | adantr 276 |
. . . . . . . 8
|
| 18 | 6 | recnd 8101 |
. . . . . . . . 9
|
| 19 | 18 | adantr 276 |
. . . . . . . 8
|
| 20 | 10 | recnd 8101 |
. . . . . . . . 9
|
| 21 | 20 | adantr 276 |
. . . . . . . 8
|
| 22 | 17, 19, 21 | mulassd 8096 |
. . . . . . 7
|
| 23 | 8 | recnd 8101 |
. . . . . . . . 9
|
| 24 | 23 | adantr 276 |
. . . . . . . 8
|
| 25 | 24, 19, 21 | mulassd 8096 |
. . . . . . 7
|
| 26 | 15, 22, 25 | 3brtr3d 4075 |
. . . . . 6
|
| 27 | simprrr 540 |
. . . . . . . 8
| |
| 28 | 27 | adantr 276 |
. . . . . . 7
|
| 29 | 28 | oveq2d 5960 |
. . . . . 6
|
| 30 | 28 | oveq2d 5960 |
. . . . . 6
|
| 31 | 26, 29, 30 | 3brtr3d 4075 |
. . . . 5
|
| 32 | 17 | mulridd 8089 |
. . . . 5
|
| 33 | 24 | mulridd 8089 |
. . . . 5
|
| 34 | 31, 32, 33 | 3brtr3d 4075 |
. . . 4
|
| 35 | 34 | ex 115 |
. . 3
|
| 36 | 4, 35 | rexlimddv 2628 |
. 2
|
| 37 | 2, 36 | impbid 129 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 615 ax-in2 616 ax-io 711 ax-5 1470 ax-7 1471 ax-gen 1472 ax-ie1 1516 ax-ie2 1517 ax-8 1527 ax-10 1528 ax-11 1529 ax-i12 1530 ax-bndl 1532 ax-4 1533 ax-17 1549 ax-i9 1553 ax-ial 1557 ax-i5r 1558 ax-13 2178 ax-14 2179 ax-ext 2187 ax-sep 4162 ax-pow 4218 ax-pr 4253 ax-un 4480 ax-setind 4585 ax-cnex 8016 ax-resscn 8017 ax-1cn 8018 ax-1re 8019 ax-icn 8020 ax-addcl 8021 ax-addrcl 8022 ax-mulcl 8023 ax-mulrcl 8024 ax-addcom 8025 ax-mulcom 8026 ax-addass 8027 ax-mulass 8028 ax-distr 8029 ax-i2m1 8030 ax-1rid 8032 ax-0id 8033 ax-rnegex 8034 ax-precex 8035 ax-cnre 8036 ax-pre-ltadd 8041 ax-pre-mulgt0 8042 |
| This theorem depends on definitions: df-bi 117 df-3an 983 df-tru 1376 df-fal 1379 df-nf 1484 df-sb 1786 df-eu 2057 df-mo 2058 df-clab 2192 df-cleq 2198 df-clel 2201 df-nfc 2337 df-ne 2377 df-nel 2472 df-ral 2489 df-rex 2490 df-reu 2491 df-rab 2493 df-v 2774 df-sbc 2999 df-dif 3168 df-un 3170 df-in 3172 df-ss 3179 df-pw 3618 df-sn 3639 df-pr 3640 df-op 3642 df-uni 3851 df-br 4045 df-opab 4106 df-id 4340 df-xp 4681 df-rel 4682 df-cnv 4683 df-co 4684 df-dm 4685 df-iota 5232 df-fun 5273 df-fv 5279 df-riota 5899 df-ov 5947 df-oprab 5948 df-mpo 5949 df-pnf 8109 df-mnf 8110 df-ltxr 8112 df-sub 8245 df-neg 8246 |
| This theorem is referenced by: lemul1 8666 reapmul1lem 8667 ltmul2 8929 ltdiv1 8941 ltdiv23 8965 recp1lt1 8972 ltmul1i 8993 ltmul1d 9860 mertenslemi1 11846 flodddiv4t2lthalf 12250 qnumgt0 12520 4sqlem12 12725 tangtx 15310 lgsquadlem1 15554 lgsquadlem2 15555 |
| Copyright terms: Public domain | W3C validator |