ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  relmptopab Unicode version

Theorem relmptopab 6207
Description: Any function to sets of ordered pairs produces a relation on function value unconditionally. (Contributed by Mario Carneiro, 7-Aug-2014.) (Proof shortened by Mario Carneiro, 24-Dec-2016.)
Hypothesis
Ref Expression
relmptopab.1  |-  F  =  ( x  e.  A  |->  { <. y ,  z
>.  |  ph } )
Assertion
Ref Expression
relmptopab  |-  Rel  ( F `  B )
Distinct variable group:    x, A
Allowed substitution hints:    ph( x, y, z)    A( y, z)    B( x, y, z)    F( x, y, z)

Proof of Theorem relmptopab
Dummy variable  r is distinct from all other variables.
StepHypRef Expression
1 relmptopab.1 . . . . . . . 8  |-  F  =  ( x  e.  A  |->  { <. y ,  z
>.  |  ph } )
21funmpt2 5357 . . . . . . 7  |-  Fun  F
3 funrel 5335 . . . . . . 7  |-  ( Fun 
F  ->  Rel  F )
42, 3ax-mp 5 . . . . . 6  |-  Rel  F
5 relelfvdm 5659 . . . . . 6  |-  ( ( Rel  F  /\  r  e.  ( F `  B
) )  ->  B  e.  dom  F )
64, 5mpan 424 . . . . 5  |-  ( r  e.  ( F `  B )  ->  B  e.  dom  F )
7 relopab 4848 . . . . . . 7  |-  Rel  { <. y ,  z >.  |  ph }
8 df-rel 4726 . . . . . . 7  |-  ( Rel 
{ <. y ,  z
>.  |  ph }  <->  { <. y ,  z >.  |  ph }  C_  ( _V  X.  _V ) )
97, 8mpbi 145 . . . . . 6  |-  { <. y ,  z >.  |  ph }  C_  ( _V  X.  _V )
109rgenw 2585 . . . . 5  |-  A. x  e.  A  { <. y ,  z >.  |  ph }  C_  ( _V  X.  _V )
111fvmptssdm 5719 . . . . 5  |-  ( ( B  e.  dom  F  /\  A. x  e.  A  { <. y ,  z
>.  |  ph }  C_  ( _V  X.  _V )
)  ->  ( F `  B )  C_  ( _V  X.  _V ) )
126, 10, 11sylancl 413 . . . 4  |-  ( r  e.  ( F `  B )  ->  ( F `  B )  C_  ( _V  X.  _V ) )
13 ssel 3218 . . . 4  |-  ( ( F `  B ) 
C_  ( _V  X.  _V )  ->  ( r  e.  ( F `  B )  ->  r  e.  ( _V  X.  _V ) ) )
1412, 13mpcom 36 . . 3  |-  ( r  e.  ( F `  B )  ->  r  e.  ( _V  X.  _V ) )
1514ssriv 3228 . 2  |-  ( F `
 B )  C_  ( _V  X.  _V )
16 df-rel 4726 . 2  |-  ( Rel  ( F `  B
)  <->  ( F `  B )  C_  ( _V  X.  _V ) )
1715, 16mpbir 146 1  |-  Rel  ( F `  B )
Colors of variables: wff set class
Syntax hints:    = wceq 1395    e. wcel 2200   A.wral 2508   _Vcvv 2799    C_ wss 3197   {copab 4144    |-> cmpt 4145    X. cxp 4717   dom cdm 4719   Rel wrel 4724   Fun wfun 5312   ` cfv 5318
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 714  ax-5 1493  ax-7 1494  ax-gen 1495  ax-ie1 1539  ax-ie2 1540  ax-8 1550  ax-10 1551  ax-11 1552  ax-i12 1553  ax-bndl 1555  ax-4 1556  ax-17 1572  ax-i9 1576  ax-ial 1580  ax-i5r 1581  ax-14 2203  ax-ext 2211  ax-sep 4202  ax-pow 4258  ax-pr 4293
This theorem depends on definitions:  df-bi 117  df-3an 1004  df-tru 1398  df-nf 1507  df-sb 1809  df-eu 2080  df-mo 2081  df-clab 2216  df-cleq 2222  df-clel 2225  df-nfc 2361  df-ral 2513  df-rex 2514  df-rab 2517  df-v 2801  df-sbc 3029  df-csb 3125  df-un 3201  df-in 3203  df-ss 3210  df-pw 3651  df-sn 3672  df-pr 3673  df-op 3675  df-uni 3889  df-br 4084  df-opab 4146  df-mpt 4147  df-id 4384  df-xp 4725  df-rel 4726  df-cnv 4727  df-co 4728  df-dm 4729  df-rn 4730  df-res 4731  df-ima 4732  df-iota 5278  df-fun 5320  df-fv 5326
This theorem is referenced by:  reldvdsr  14055  lmrel  14865  relwlk  16058
  Copyright terms: Public domain W3C validator