ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  relmptopab GIF version

Theorem relmptopab 6207
Description: Any function to sets of ordered pairs produces a relation on function value unconditionally. (Contributed by Mario Carneiro, 7-Aug-2014.) (Proof shortened by Mario Carneiro, 24-Dec-2016.)
Hypothesis
Ref Expression
relmptopab.1 𝐹 = (𝑥𝐴 ↦ {⟨𝑦, 𝑧⟩ ∣ 𝜑})
Assertion
Ref Expression
relmptopab Rel (𝐹𝐵)
Distinct variable group:   𝑥,𝐴
Allowed substitution hints:   𝜑(𝑥,𝑦,𝑧)   𝐴(𝑦,𝑧)   𝐵(𝑥,𝑦,𝑧)   𝐹(𝑥,𝑦,𝑧)

Proof of Theorem relmptopab
Dummy variable 𝑟 is distinct from all other variables.
StepHypRef Expression
1 relmptopab.1 . . . . . . . 8 𝐹 = (𝑥𝐴 ↦ {⟨𝑦, 𝑧⟩ ∣ 𝜑})
21funmpt2 5357 . . . . . . 7 Fun 𝐹
3 funrel 5335 . . . . . . 7 (Fun 𝐹 → Rel 𝐹)
42, 3ax-mp 5 . . . . . 6 Rel 𝐹
5 relelfvdm 5659 . . . . . 6 ((Rel 𝐹𝑟 ∈ (𝐹𝐵)) → 𝐵 ∈ dom 𝐹)
64, 5mpan 424 . . . . 5 (𝑟 ∈ (𝐹𝐵) → 𝐵 ∈ dom 𝐹)
7 relopab 4848 . . . . . . 7 Rel {⟨𝑦, 𝑧⟩ ∣ 𝜑}
8 df-rel 4726 . . . . . . 7 (Rel {⟨𝑦, 𝑧⟩ ∣ 𝜑} ↔ {⟨𝑦, 𝑧⟩ ∣ 𝜑} ⊆ (V × V))
97, 8mpbi 145 . . . . . 6 {⟨𝑦, 𝑧⟩ ∣ 𝜑} ⊆ (V × V)
109rgenw 2585 . . . . 5 𝑥𝐴 {⟨𝑦, 𝑧⟩ ∣ 𝜑} ⊆ (V × V)
111fvmptssdm 5719 . . . . 5 ((𝐵 ∈ dom 𝐹 ∧ ∀𝑥𝐴 {⟨𝑦, 𝑧⟩ ∣ 𝜑} ⊆ (V × V)) → (𝐹𝐵) ⊆ (V × V))
126, 10, 11sylancl 413 . . . 4 (𝑟 ∈ (𝐹𝐵) → (𝐹𝐵) ⊆ (V × V))
13 ssel 3218 . . . 4 ((𝐹𝐵) ⊆ (V × V) → (𝑟 ∈ (𝐹𝐵) → 𝑟 ∈ (V × V)))
1412, 13mpcom 36 . . 3 (𝑟 ∈ (𝐹𝐵) → 𝑟 ∈ (V × V))
1514ssriv 3228 . 2 (𝐹𝐵) ⊆ (V × V)
16 df-rel 4726 . 2 (Rel (𝐹𝐵) ↔ (𝐹𝐵) ⊆ (V × V))
1715, 16mpbir 146 1 Rel (𝐹𝐵)
Colors of variables: wff set class
Syntax hints:   = wceq 1395  wcel 2200  wral 2508  Vcvv 2799  wss 3197  {copab 4144  cmpt 4145   × cxp 4717  dom cdm 4719  Rel wrel 4724  Fun wfun 5312  cfv 5318
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 714  ax-5 1493  ax-7 1494  ax-gen 1495  ax-ie1 1539  ax-ie2 1540  ax-8 1550  ax-10 1551  ax-11 1552  ax-i12 1553  ax-bndl 1555  ax-4 1556  ax-17 1572  ax-i9 1576  ax-ial 1580  ax-i5r 1581  ax-14 2203  ax-ext 2211  ax-sep 4202  ax-pow 4258  ax-pr 4293
This theorem depends on definitions:  df-bi 117  df-3an 1004  df-tru 1398  df-nf 1507  df-sb 1809  df-eu 2080  df-mo 2081  df-clab 2216  df-cleq 2222  df-clel 2225  df-nfc 2361  df-ral 2513  df-rex 2514  df-rab 2517  df-v 2801  df-sbc 3029  df-csb 3125  df-un 3201  df-in 3203  df-ss 3210  df-pw 3651  df-sn 3672  df-pr 3673  df-op 3675  df-uni 3889  df-br 4084  df-opab 4146  df-mpt 4147  df-id 4384  df-xp 4725  df-rel 4726  df-cnv 4727  df-co 4728  df-dm 4729  df-rn 4730  df-res 4731  df-ima 4732  df-iota 5278  df-fun 5320  df-fv 5326
This theorem is referenced by:  reldvdsr  14055  lmrel  14865  relwlk  16058
  Copyright terms: Public domain W3C validator