| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > relmptopab | GIF version | ||
| Description: Any function to sets of ordered pairs produces a relation on function value unconditionally. (Contributed by Mario Carneiro, 7-Aug-2014.) (Proof shortened by Mario Carneiro, 24-Dec-2016.) |
| Ref | Expression |
|---|---|
| relmptopab.1 | ⊢ 𝐹 = (𝑥 ∈ 𝐴 ↦ {〈𝑦, 𝑧〉 ∣ 𝜑}) |
| Ref | Expression |
|---|---|
| relmptopab | ⊢ Rel (𝐹‘𝐵) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | relmptopab.1 | . . . . . . . 8 ⊢ 𝐹 = (𝑥 ∈ 𝐴 ↦ {〈𝑦, 𝑧〉 ∣ 𝜑}) | |
| 2 | 1 | funmpt2 5357 | . . . . . . 7 ⊢ Fun 𝐹 |
| 3 | funrel 5335 | . . . . . . 7 ⊢ (Fun 𝐹 → Rel 𝐹) | |
| 4 | 2, 3 | ax-mp 5 | . . . . . 6 ⊢ Rel 𝐹 |
| 5 | relelfvdm 5659 | . . . . . 6 ⊢ ((Rel 𝐹 ∧ 𝑟 ∈ (𝐹‘𝐵)) → 𝐵 ∈ dom 𝐹) | |
| 6 | 4, 5 | mpan 424 | . . . . 5 ⊢ (𝑟 ∈ (𝐹‘𝐵) → 𝐵 ∈ dom 𝐹) |
| 7 | relopab 4848 | . . . . . . 7 ⊢ Rel {〈𝑦, 𝑧〉 ∣ 𝜑} | |
| 8 | df-rel 4726 | . . . . . . 7 ⊢ (Rel {〈𝑦, 𝑧〉 ∣ 𝜑} ↔ {〈𝑦, 𝑧〉 ∣ 𝜑} ⊆ (V × V)) | |
| 9 | 7, 8 | mpbi 145 | . . . . . 6 ⊢ {〈𝑦, 𝑧〉 ∣ 𝜑} ⊆ (V × V) |
| 10 | 9 | rgenw 2585 | . . . . 5 ⊢ ∀𝑥 ∈ 𝐴 {〈𝑦, 𝑧〉 ∣ 𝜑} ⊆ (V × V) |
| 11 | 1 | fvmptssdm 5719 | . . . . 5 ⊢ ((𝐵 ∈ dom 𝐹 ∧ ∀𝑥 ∈ 𝐴 {〈𝑦, 𝑧〉 ∣ 𝜑} ⊆ (V × V)) → (𝐹‘𝐵) ⊆ (V × V)) |
| 12 | 6, 10, 11 | sylancl 413 | . . . 4 ⊢ (𝑟 ∈ (𝐹‘𝐵) → (𝐹‘𝐵) ⊆ (V × V)) |
| 13 | ssel 3218 | . . . 4 ⊢ ((𝐹‘𝐵) ⊆ (V × V) → (𝑟 ∈ (𝐹‘𝐵) → 𝑟 ∈ (V × V))) | |
| 14 | 12, 13 | mpcom 36 | . . 3 ⊢ (𝑟 ∈ (𝐹‘𝐵) → 𝑟 ∈ (V × V)) |
| 15 | 14 | ssriv 3228 | . 2 ⊢ (𝐹‘𝐵) ⊆ (V × V) |
| 16 | df-rel 4726 | . 2 ⊢ (Rel (𝐹‘𝐵) ↔ (𝐹‘𝐵) ⊆ (V × V)) | |
| 17 | 15, 16 | mpbir 146 | 1 ⊢ Rel (𝐹‘𝐵) |
| Colors of variables: wff set class |
| Syntax hints: = wceq 1395 ∈ wcel 2200 ∀wral 2508 Vcvv 2799 ⊆ wss 3197 {copab 4144 ↦ cmpt 4145 × cxp 4717 dom cdm 4719 Rel wrel 4724 Fun wfun 5312 ‘cfv 5318 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 714 ax-5 1493 ax-7 1494 ax-gen 1495 ax-ie1 1539 ax-ie2 1540 ax-8 1550 ax-10 1551 ax-11 1552 ax-i12 1553 ax-bndl 1555 ax-4 1556 ax-17 1572 ax-i9 1576 ax-ial 1580 ax-i5r 1581 ax-14 2203 ax-ext 2211 ax-sep 4202 ax-pow 4258 ax-pr 4293 |
| This theorem depends on definitions: df-bi 117 df-3an 1004 df-tru 1398 df-nf 1507 df-sb 1809 df-eu 2080 df-mo 2081 df-clab 2216 df-cleq 2222 df-clel 2225 df-nfc 2361 df-ral 2513 df-rex 2514 df-rab 2517 df-v 2801 df-sbc 3029 df-csb 3125 df-un 3201 df-in 3203 df-ss 3210 df-pw 3651 df-sn 3672 df-pr 3673 df-op 3675 df-uni 3889 df-br 4084 df-opab 4146 df-mpt 4147 df-id 4384 df-xp 4725 df-rel 4726 df-cnv 4727 df-co 4728 df-dm 4729 df-rn 4730 df-res 4731 df-ima 4732 df-iota 5278 df-fun 5320 df-fv 5326 |
| This theorem is referenced by: reldvdsr 14055 lmrel 14865 relwlk 16058 |
| Copyright terms: Public domain | W3C validator |