| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > coseq0q4123 | Unicode version | ||
| Description: Location of the zeroes of
cosine in
|
| Ref | Expression |
|---|---|
| coseq0q4123 |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | 0re 8072 |
. . . . 5
| |
| 2 | 1 | ltnri 8165 |
. . . 4
|
| 3 | elioore 10034 |
. . . . . . 7
| |
| 4 | 3 | adantr 276 |
. . . . . 6
|
| 5 | halfpire 15264 |
. . . . . 6
| |
| 6 | reaplt 8661 |
. . . . . 6
| |
| 7 | 4, 5, 6 | sylancl 413 |
. . . . 5
|
| 8 | 3 | adantr 276 |
. . . . . . . . . . 11
|
| 9 | neghalfpirx 15266 |
. . . . . . . . . . . . . 14
| |
| 10 | 3re 9110 |
. . . . . . . . . . . . . . . 16
| |
| 11 | 10, 5 | remulcli 8086 |
. . . . . . . . . . . . . . 15
|
| 12 | 11 | rexri 8130 |
. . . . . . . . . . . . . 14
|
| 13 | elioo2 10043 |
. . . . . . . . . . . . . 14
| |
| 14 | 9, 12, 13 | mp2an 426 |
. . . . . . . . . . . . 13
|
| 15 | 14 | simp2bi 1016 |
. . . . . . . . . . . 12
|
| 16 | 15 | adantr 276 |
. . . . . . . . . . 11
|
| 17 | simpr 110 |
. . . . . . . . . . 11
| |
| 18 | 9 | a1i 9 |
. . . . . . . . . . . 12
|
| 19 | 5 | rexri 8130 |
. . . . . . . . . . . 12
|
| 20 | elioo2 10043 |
. . . . . . . . . . . 12
| |
| 21 | 18, 19, 20 | sylancl 413 |
. . . . . . . . . . 11
|
| 22 | 8, 16, 17, 21 | mpbir3and 1183 |
. . . . . . . . . 10
|
| 23 | cosq14gt0 15304 |
. . . . . . . . . 10
| |
| 24 | 22, 23 | syl 14 |
. . . . . . . . 9
|
| 25 | 24 | adantlr 477 |
. . . . . . . 8
|
| 26 | simplr 528 |
. . . . . . . 8
| |
| 27 | 25, 26 | breqtrd 4070 |
. . . . . . 7
|
| 28 | 27 | ex 115 |
. . . . . 6
|
| 29 | simplr 528 |
. . . . . . . 8
| |
| 30 | 3 | adantr 276 |
. . . . . . . . . . 11
|
| 31 | simpr 110 |
. . . . . . . . . . 11
| |
| 32 | 14 | simp3bi 1017 |
. . . . . . . . . . . 12
|
| 33 | 32 | adantr 276 |
. . . . . . . . . . 11
|
| 34 | elioo2 10043 |
. . . . . . . . . . . 12
| |
| 35 | 19, 12, 34 | mp2an 426 |
. . . . . . . . . . 11
|
| 36 | 30, 31, 33, 35 | syl3anbrc 1184 |
. . . . . . . . . 10
|
| 37 | cosq23lt0 15305 |
. . . . . . . . . 10
| |
| 38 | 36, 37 | syl 14 |
. . . . . . . . 9
|
| 39 | 38 | adantlr 477 |
. . . . . . . 8
|
| 40 | 29, 39 | eqbrtrrd 4068 |
. . . . . . 7
|
| 41 | 40 | ex 115 |
. . . . . 6
|
| 42 | 28, 41 | jaod 719 |
. . . . 5
|
| 43 | 7, 42 | sylbid 150 |
. . . 4
|
| 44 | 2, 43 | mtoi 666 |
. . 3
|
| 45 | 3 | recnd 8101 |
. . . 4
|
| 46 | picn 15259 |
. . . . 5
| |
| 47 | halfcl 9263 |
. . . . 5
| |
| 48 | 46, 47 | mp1i 10 |
. . . 4
|
| 49 | apti 8695 |
. . . 4
| |
| 50 | 45, 48, 49 | syl2an2r 595 |
. . 3
|
| 51 | 44, 50 | mpbird 167 |
. 2
|
| 52 | fveq2 5576 |
. . . 4
| |
| 53 | coshalfpi 15269 |
. . . 4
| |
| 54 | 52, 53 | eqtrdi 2254 |
. . 3
|
| 55 | 54 | adantl 277 |
. 2
|
| 56 | 51, 55 | impbida 596 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 615 ax-in2 616 ax-io 711 ax-5 1470 ax-7 1471 ax-gen 1472 ax-ie1 1516 ax-ie2 1517 ax-8 1527 ax-10 1528 ax-11 1529 ax-i12 1530 ax-bndl 1532 ax-4 1533 ax-17 1549 ax-i9 1553 ax-ial 1557 ax-i5r 1558 ax-13 2178 ax-14 2179 ax-ext 2187 ax-coll 4159 ax-sep 4162 ax-nul 4170 ax-pow 4218 ax-pr 4253 ax-un 4480 ax-setind 4585 ax-iinf 4636 ax-cnex 8016 ax-resscn 8017 ax-1cn 8018 ax-1re 8019 ax-icn 8020 ax-addcl 8021 ax-addrcl 8022 ax-mulcl 8023 ax-mulrcl 8024 ax-addcom 8025 ax-mulcom 8026 ax-addass 8027 ax-mulass 8028 ax-distr 8029 ax-i2m1 8030 ax-0lt1 8031 ax-1rid 8032 ax-0id 8033 ax-rnegex 8034 ax-precex 8035 ax-cnre 8036 ax-pre-ltirr 8037 ax-pre-ltwlin 8038 ax-pre-lttrn 8039 ax-pre-apti 8040 ax-pre-ltadd 8041 ax-pre-mulgt0 8042 ax-pre-mulext 8043 ax-arch 8044 ax-caucvg 8045 ax-pre-suploc 8046 ax-addf 8047 ax-mulf 8048 |
| This theorem depends on definitions: df-bi 117 df-stab 833 df-dc 837 df-3or 982 df-3an 983 df-tru 1376 df-fal 1379 df-nf 1484 df-sb 1786 df-eu 2057 df-mo 2058 df-clab 2192 df-cleq 2198 df-clel 2201 df-nfc 2337 df-ne 2377 df-nel 2472 df-ral 2489 df-rex 2490 df-reu 2491 df-rmo 2492 df-rab 2493 df-v 2774 df-sbc 2999 df-csb 3094 df-dif 3168 df-un 3170 df-in 3172 df-ss 3179 df-nul 3461 df-if 3572 df-pw 3618 df-sn 3639 df-pr 3640 df-op 3642 df-uni 3851 df-int 3886 df-iun 3929 df-disj 4022 df-br 4045 df-opab 4106 df-mpt 4107 df-tr 4143 df-id 4340 df-po 4343 df-iso 4344 df-iord 4413 df-on 4415 df-ilim 4416 df-suc 4418 df-iom 4639 df-xp 4681 df-rel 4682 df-cnv 4683 df-co 4684 df-dm 4685 df-rn 4686 df-res 4687 df-ima 4688 df-iota 5232 df-fun 5273 df-fn 5274 df-f 5275 df-f1 5276 df-fo 5277 df-f1o 5278 df-fv 5279 df-isom 5280 df-riota 5899 df-ov 5947 df-oprab 5948 df-mpo 5949 df-of 6158 df-1st 6226 df-2nd 6227 df-recs 6391 df-irdg 6456 df-frec 6477 df-1o 6502 df-oadd 6506 df-er 6620 df-map 6737 df-pm 6738 df-en 6828 df-dom 6829 df-fin 6830 df-sup 7086 df-inf 7087 df-pnf 8109 df-mnf 8110 df-xr 8111 df-ltxr 8112 df-le 8113 df-sub 8245 df-neg 8246 df-reap 8648 df-ap 8655 df-div 8746 df-inn 9037 df-2 9095 df-3 9096 df-4 9097 df-5 9098 df-6 9099 df-7 9100 df-8 9101 df-9 9102 df-n0 9296 df-z 9373 df-uz 9649 df-q 9741 df-rp 9776 df-xneg 9894 df-xadd 9895 df-ioo 10014 df-ioc 10015 df-ico 10016 df-icc 10017 df-fz 10131 df-fzo 10265 df-seqfrec 10593 df-exp 10684 df-fac 10871 df-bc 10893 df-ihash 10921 df-shft 11126 df-cj 11153 df-re 11154 df-im 11155 df-rsqrt 11309 df-abs 11310 df-clim 11590 df-sumdc 11665 df-ef 11959 df-sin 11961 df-cos 11962 df-pi 11964 df-rest 13073 df-topgen 13092 df-psmet 14305 df-xmet 14306 df-met 14307 df-bl 14308 df-mopn 14309 df-top 14470 df-topon 14483 df-bases 14515 df-ntr 14568 df-cn 14660 df-cnp 14661 df-tx 14725 df-cncf 15043 df-limced 15128 df-dvap 15129 |
| This theorem is referenced by: coseq00topi 15307 coseq0negpitopi 15308 |
| Copyright terms: Public domain | W3C validator |