ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  coseq0q4123 Unicode version

Theorem coseq0q4123 13470
Description: Location of the zeroes of cosine in  ( -u (
pi  /  2 ) (,) ( 3  x.  ( pi  /  2
) ) ). (Contributed by Jim Kingdon, 14-Mar-2024.)
Assertion
Ref Expression
coseq0q4123  |-  ( A  e.  ( -u (
pi  /  2 ) (,) ( 3  x.  ( pi  /  2
) ) )  -> 
( ( cos `  A
)  =  0  <->  A  =  ( pi  / 
2 ) ) )

Proof of Theorem coseq0q4123
StepHypRef Expression
1 0re 7907 . . . . 5  |-  0  e.  RR
21ltnri 7999 . . . 4  |-  -.  0  <  0
3 elioore 9856 . . . . . . 7  |-  ( A  e.  ( -u (
pi  /  2 ) (,) ( 3  x.  ( pi  /  2
) ) )  ->  A  e.  RR )
43adantr 274 . . . . . 6  |-  ( ( A  e.  ( -u ( pi  /  2
) (,) ( 3  x.  ( pi  / 
2 ) ) )  /\  ( cos `  A
)  =  0 )  ->  A  e.  RR )
5 halfpire 13428 . . . . . 6  |-  ( pi 
/  2 )  e.  RR
6 reaplt 8494 . . . . . 6  |-  ( ( A  e.  RR  /\  ( pi  /  2
)  e.  RR )  ->  ( A #  (
pi  /  2 )  <-> 
( A  <  (
pi  /  2 )  \/  ( pi  / 
2 )  <  A
) ) )
74, 5, 6sylancl 411 . . . . 5  |-  ( ( A  e.  ( -u ( pi  /  2
) (,) ( 3  x.  ( pi  / 
2 ) ) )  /\  ( cos `  A
)  =  0 )  ->  ( A #  (
pi  /  2 )  <-> 
( A  <  (
pi  /  2 )  \/  ( pi  / 
2 )  <  A
) ) )
83adantr 274 . . . . . . . . . . 11  |-  ( ( A  e.  ( -u ( pi  /  2
) (,) ( 3  x.  ( pi  / 
2 ) ) )  /\  A  <  (
pi  /  2 ) )  ->  A  e.  RR )
9 neghalfpirx 13430 . . . . . . . . . . . . . 14  |-  -u (
pi  /  2 )  e.  RR*
10 3re 8939 . . . . . . . . . . . . . . . 16  |-  3  e.  RR
1110, 5remulcli 7921 . . . . . . . . . . . . . . 15  |-  ( 3  x.  ( pi  / 
2 ) )  e.  RR
1211rexri 7964 . . . . . . . . . . . . . 14  |-  ( 3  x.  ( pi  / 
2 ) )  e. 
RR*
13 elioo2 9865 . . . . . . . . . . . . . 14  |-  ( (
-u ( pi  / 
2 )  e.  RR*  /\  ( 3  x.  (
pi  /  2 ) )  e.  RR* )  ->  ( A  e.  (
-u ( pi  / 
2 ) (,) (
3  x.  ( pi 
/  2 ) ) )  <->  ( A  e.  RR  /\  -u (
pi  /  2 )  <  A  /\  A  <  ( 3  x.  (
pi  /  2 ) ) ) ) )
149, 12, 13mp2an 424 . . . . . . . . . . . . 13  |-  ( A  e.  ( -u (
pi  /  2 ) (,) ( 3  x.  ( pi  /  2
) ) )  <->  ( A  e.  RR  /\  -u (
pi  /  2 )  <  A  /\  A  <  ( 3  x.  (
pi  /  2 ) ) ) )
1514simp2bi 1008 . . . . . . . . . . . 12  |-  ( A  e.  ( -u (
pi  /  2 ) (,) ( 3  x.  ( pi  /  2
) ) )  ->  -u ( pi  /  2
)  <  A )
1615adantr 274 . . . . . . . . . . 11  |-  ( ( A  e.  ( -u ( pi  /  2
) (,) ( 3  x.  ( pi  / 
2 ) ) )  /\  A  <  (
pi  /  2 ) )  ->  -u ( pi 
/  2 )  < 
A )
17 simpr 109 . . . . . . . . . . 11  |-  ( ( A  e.  ( -u ( pi  /  2
) (,) ( 3  x.  ( pi  / 
2 ) ) )  /\  A  <  (
pi  /  2 ) )  ->  A  <  ( pi  /  2 ) )
189a1i 9 . . . . . . . . . . . 12  |-  ( ( A  e.  ( -u ( pi  /  2
) (,) ( 3  x.  ( pi  / 
2 ) ) )  /\  A  <  (
pi  /  2 ) )  ->  -u ( pi 
/  2 )  e. 
RR* )
195rexri 7964 . . . . . . . . . . . 12  |-  ( pi 
/  2 )  e. 
RR*
20 elioo2 9865 . . . . . . . . . . . 12  |-  ( (
-u ( pi  / 
2 )  e.  RR*  /\  ( pi  /  2
)  e.  RR* )  ->  ( A  e.  (
-u ( pi  / 
2 ) (,) (
pi  /  2 ) )  <->  ( A  e.  RR  /\  -u (
pi  /  2 )  <  A  /\  A  <  ( pi  /  2
) ) ) )
2118, 19, 20sylancl 411 . . . . . . . . . . 11  |-  ( ( A  e.  ( -u ( pi  /  2
) (,) ( 3  x.  ( pi  / 
2 ) ) )  /\  A  <  (
pi  /  2 ) )  ->  ( A  e.  ( -u ( pi 
/  2 ) (,) ( pi  /  2
) )  <->  ( A  e.  RR  /\  -u (
pi  /  2 )  <  A  /\  A  <  ( pi  /  2
) ) ) )
228, 16, 17, 21mpbir3and 1175 . . . . . . . . . 10  |-  ( ( A  e.  ( -u ( pi  /  2
) (,) ( 3  x.  ( pi  / 
2 ) ) )  /\  A  <  (
pi  /  2 ) )  ->  A  e.  ( -u ( pi  / 
2 ) (,) (
pi  /  2 ) ) )
23 cosq14gt0 13468 . . . . . . . . . 10  |-  ( A  e.  ( -u (
pi  /  2 ) (,) ( pi  / 
2 ) )  -> 
0  <  ( cos `  A ) )
2422, 23syl 14 . . . . . . . . 9  |-  ( ( A  e.  ( -u ( pi  /  2
) (,) ( 3  x.  ( pi  / 
2 ) ) )  /\  A  <  (
pi  /  2 ) )  ->  0  <  ( cos `  A ) )
2524adantlr 474 . . . . . . . 8  |-  ( ( ( A  e.  (
-u ( pi  / 
2 ) (,) (
3  x.  ( pi 
/  2 ) ) )  /\  ( cos `  A )  =  0 )  /\  A  < 
( pi  /  2
) )  ->  0  <  ( cos `  A
) )
26 simplr 525 . . . . . . . 8  |-  ( ( ( A  e.  (
-u ( pi  / 
2 ) (,) (
3  x.  ( pi 
/  2 ) ) )  /\  ( cos `  A )  =  0 )  /\  A  < 
( pi  /  2
) )  ->  ( cos `  A )  =  0 )
2725, 26breqtrd 4013 . . . . . . 7  |-  ( ( ( A  e.  (
-u ( pi  / 
2 ) (,) (
3  x.  ( pi 
/  2 ) ) )  /\  ( cos `  A )  =  0 )  /\  A  < 
( pi  /  2
) )  ->  0  <  0 )
2827ex 114 . . . . . 6  |-  ( ( A  e.  ( -u ( pi  /  2
) (,) ( 3  x.  ( pi  / 
2 ) ) )  /\  ( cos `  A
)  =  0 )  ->  ( A  < 
( pi  /  2
)  ->  0  <  0 ) )
29 simplr 525 . . . . . . . 8  |-  ( ( ( A  e.  (
-u ( pi  / 
2 ) (,) (
3  x.  ( pi 
/  2 ) ) )  /\  ( cos `  A )  =  0 )  /\  ( pi 
/  2 )  < 
A )  ->  ( cos `  A )  =  0 )
303adantr 274 . . . . . . . . . . 11  |-  ( ( A  e.  ( -u ( pi  /  2
) (,) ( 3  x.  ( pi  / 
2 ) ) )  /\  ( pi  / 
2 )  <  A
)  ->  A  e.  RR )
31 simpr 109 . . . . . . . . . . 11  |-  ( ( A  e.  ( -u ( pi  /  2
) (,) ( 3  x.  ( pi  / 
2 ) ) )  /\  ( pi  / 
2 )  <  A
)  ->  ( pi  /  2 )  <  A
)
3214simp3bi 1009 . . . . . . . . . . . 12  |-  ( A  e.  ( -u (
pi  /  2 ) (,) ( 3  x.  ( pi  /  2
) ) )  ->  A  <  ( 3  x.  ( pi  /  2
) ) )
3332adantr 274 . . . . . . . . . . 11  |-  ( ( A  e.  ( -u ( pi  /  2
) (,) ( 3  x.  ( pi  / 
2 ) ) )  /\  ( pi  / 
2 )  <  A
)  ->  A  <  ( 3  x.  ( pi 
/  2 ) ) )
34 elioo2 9865 . . . . . . . . . . . 12  |-  ( ( ( pi  /  2
)  e.  RR*  /\  (
3  x.  ( pi 
/  2 ) )  e.  RR* )  ->  ( A  e.  ( (
pi  /  2 ) (,) ( 3  x.  ( pi  /  2
) ) )  <->  ( A  e.  RR  /\  ( pi 
/  2 )  < 
A  /\  A  <  ( 3  x.  ( pi 
/  2 ) ) ) ) )
3519, 12, 34mp2an 424 . . . . . . . . . . 11  |-  ( A  e.  ( ( pi 
/  2 ) (,) ( 3  x.  (
pi  /  2 ) ) )  <->  ( A  e.  RR  /\  ( pi 
/  2 )  < 
A  /\  A  <  ( 3  x.  ( pi 
/  2 ) ) ) )
3630, 31, 33, 35syl3anbrc 1176 . . . . . . . . . 10  |-  ( ( A  e.  ( -u ( pi  /  2
) (,) ( 3  x.  ( pi  / 
2 ) ) )  /\  ( pi  / 
2 )  <  A
)  ->  A  e.  ( ( pi  / 
2 ) (,) (
3  x.  ( pi 
/  2 ) ) ) )
37 cosq23lt0 13469 . . . . . . . . . 10  |-  ( A  e.  ( ( pi 
/  2 ) (,) ( 3  x.  (
pi  /  2 ) ) )  ->  ( cos `  A )  <  0 )
3836, 37syl 14 . . . . . . . . 9  |-  ( ( A  e.  ( -u ( pi  /  2
) (,) ( 3  x.  ( pi  / 
2 ) ) )  /\  ( pi  / 
2 )  <  A
)  ->  ( cos `  A )  <  0
)
3938adantlr 474 . . . . . . . 8  |-  ( ( ( A  e.  (
-u ( pi  / 
2 ) (,) (
3  x.  ( pi 
/  2 ) ) )  /\  ( cos `  A )  =  0 )  /\  ( pi 
/  2 )  < 
A )  ->  ( cos `  A )  <  0 )
4029, 39eqbrtrrd 4011 . . . . . . 7  |-  ( ( ( A  e.  (
-u ( pi  / 
2 ) (,) (
3  x.  ( pi 
/  2 ) ) )  /\  ( cos `  A )  =  0 )  /\  ( pi 
/  2 )  < 
A )  ->  0  <  0 )
4140ex 114 . . . . . 6  |-  ( ( A  e.  ( -u ( pi  /  2
) (,) ( 3  x.  ( pi  / 
2 ) ) )  /\  ( cos `  A
)  =  0 )  ->  ( ( pi 
/  2 )  < 
A  ->  0  <  0 ) )
4228, 41jaod 712 . . . . 5  |-  ( ( A  e.  ( -u ( pi  /  2
) (,) ( 3  x.  ( pi  / 
2 ) ) )  /\  ( cos `  A
)  =  0 )  ->  ( ( A  <  ( pi  / 
2 )  \/  (
pi  /  2 )  <  A )  -> 
0  <  0 ) )
437, 42sylbid 149 . . . 4  |-  ( ( A  e.  ( -u ( pi  /  2
) (,) ( 3  x.  ( pi  / 
2 ) ) )  /\  ( cos `  A
)  =  0 )  ->  ( A #  (
pi  /  2 )  ->  0  <  0
) )
442, 43mtoi 659 . . 3  |-  ( ( A  e.  ( -u ( pi  /  2
) (,) ( 3  x.  ( pi  / 
2 ) ) )  /\  ( cos `  A
)  =  0 )  ->  -.  A #  (
pi  /  2 ) )
453recnd 7935 . . . 4  |-  ( A  e.  ( -u (
pi  /  2 ) (,) ( 3  x.  ( pi  /  2
) ) )  ->  A  e.  CC )
46 picn 13423 . . . . 5  |-  pi  e.  CC
47 halfcl 9091 . . . . 5  |-  ( pi  e.  CC  ->  (
pi  /  2 )  e.  CC )
4846, 47mp1i 10 . . . 4  |-  ( ( A  e.  ( -u ( pi  /  2
) (,) ( 3  x.  ( pi  / 
2 ) ) )  /\  ( cos `  A
)  =  0 )  ->  ( pi  / 
2 )  e.  CC )
49 apti 8528 . . . 4  |-  ( ( A  e.  CC  /\  ( pi  /  2
)  e.  CC )  ->  ( A  =  ( pi  /  2
)  <->  -.  A #  (
pi  /  2 ) ) )
5045, 48, 49syl2an2r 590 . . 3  |-  ( ( A  e.  ( -u ( pi  /  2
) (,) ( 3  x.  ( pi  / 
2 ) ) )  /\  ( cos `  A
)  =  0 )  ->  ( A  =  ( pi  /  2
)  <->  -.  A #  (
pi  /  2 ) ) )
5144, 50mpbird 166 . 2  |-  ( ( A  e.  ( -u ( pi  /  2
) (,) ( 3  x.  ( pi  / 
2 ) ) )  /\  ( cos `  A
)  =  0 )  ->  A  =  ( pi  /  2 ) )
52 fveq2 5494 . . . 4  |-  ( A  =  ( pi  / 
2 )  ->  ( cos `  A )  =  ( cos `  (
pi  /  2 ) ) )
53 coshalfpi 13433 . . . 4  |-  ( cos `  ( pi  /  2
) )  =  0
5452, 53eqtrdi 2219 . . 3  |-  ( A  =  ( pi  / 
2 )  ->  ( cos `  A )  =  0 )
5554adantl 275 . 2  |-  ( ( A  e.  ( -u ( pi  /  2
) (,) ( 3  x.  ( pi  / 
2 ) ) )  /\  A  =  ( pi  /  2 ) )  ->  ( cos `  A )  =  0 )
5651, 55impbida 591 1  |-  ( A  e.  ( -u (
pi  /  2 ) (,) ( 3  x.  ( pi  /  2
) ) )  -> 
( ( cos `  A
)  =  0  <->  A  =  ( pi  / 
2 ) ) )
Colors of variables: wff set class
Syntax hints:   -. wn 3    -> wi 4    /\ wa 103    <-> wb 104    \/ wo 703    /\ w3a 973    = wceq 1348    e. wcel 2141   class class class wbr 3987   ` cfv 5196  (class class class)co 5850   CCcc 7759   RRcr 7760   0cc0 7761    x. cmul 7766   RR*cxr 7940    < clt 7941   -ucneg 8078   # cap 8487    / cdiv 8576   2c2 8916   3c3 8917   (,)cioo 9832   cosccos 11595   picpi 11597
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-in1 609  ax-in2 610  ax-io 704  ax-5 1440  ax-7 1441  ax-gen 1442  ax-ie1 1486  ax-ie2 1487  ax-8 1497  ax-10 1498  ax-11 1499  ax-i12 1500  ax-bndl 1502  ax-4 1503  ax-17 1519  ax-i9 1523  ax-ial 1527  ax-i5r 1528  ax-13 2143  ax-14 2144  ax-ext 2152  ax-coll 4102  ax-sep 4105  ax-nul 4113  ax-pow 4158  ax-pr 4192  ax-un 4416  ax-setind 4519  ax-iinf 4570  ax-cnex 7852  ax-resscn 7853  ax-1cn 7854  ax-1re 7855  ax-icn 7856  ax-addcl 7857  ax-addrcl 7858  ax-mulcl 7859  ax-mulrcl 7860  ax-addcom 7861  ax-mulcom 7862  ax-addass 7863  ax-mulass 7864  ax-distr 7865  ax-i2m1 7866  ax-0lt1 7867  ax-1rid 7868  ax-0id 7869  ax-rnegex 7870  ax-precex 7871  ax-cnre 7872  ax-pre-ltirr 7873  ax-pre-ltwlin 7874  ax-pre-lttrn 7875  ax-pre-apti 7876  ax-pre-ltadd 7877  ax-pre-mulgt0 7878  ax-pre-mulext 7879  ax-arch 7880  ax-caucvg 7881  ax-pre-suploc 7882  ax-addf 7883  ax-mulf 7884
This theorem depends on definitions:  df-bi 116  df-stab 826  df-dc 830  df-3or 974  df-3an 975  df-tru 1351  df-fal 1354  df-nf 1454  df-sb 1756  df-eu 2022  df-mo 2023  df-clab 2157  df-cleq 2163  df-clel 2166  df-nfc 2301  df-ne 2341  df-nel 2436  df-ral 2453  df-rex 2454  df-reu 2455  df-rmo 2456  df-rab 2457  df-v 2732  df-sbc 2956  df-csb 3050  df-dif 3123  df-un 3125  df-in 3127  df-ss 3134  df-nul 3415  df-if 3526  df-pw 3566  df-sn 3587  df-pr 3588  df-op 3590  df-uni 3795  df-int 3830  df-iun 3873  df-disj 3965  df-br 3988  df-opab 4049  df-mpt 4050  df-tr 4086  df-id 4276  df-po 4279  df-iso 4280  df-iord 4349  df-on 4351  df-ilim 4352  df-suc 4354  df-iom 4573  df-xp 4615  df-rel 4616  df-cnv 4617  df-co 4618  df-dm 4619  df-rn 4620  df-res 4621  df-ima 4622  df-iota 5158  df-fun 5198  df-fn 5199  df-f 5200  df-f1 5201  df-fo 5202  df-f1o 5203  df-fv 5204  df-isom 5205  df-riota 5806  df-ov 5853  df-oprab 5854  df-mpo 5855  df-of 6058  df-1st 6116  df-2nd 6117  df-recs 6281  df-irdg 6346  df-frec 6367  df-1o 6392  df-oadd 6396  df-er 6509  df-map 6624  df-pm 6625  df-en 6715  df-dom 6716  df-fin 6717  df-sup 6957  df-inf 6958  df-pnf 7943  df-mnf 7944  df-xr 7945  df-ltxr 7946  df-le 7947  df-sub 8079  df-neg 8080  df-reap 8481  df-ap 8488  df-div 8577  df-inn 8866  df-2 8924  df-3 8925  df-4 8926  df-5 8927  df-6 8928  df-7 8929  df-8 8930  df-9 8931  df-n0 9123  df-z 9200  df-uz 9475  df-q 9566  df-rp 9598  df-xneg 9716  df-xadd 9717  df-ioo 9836  df-ioc 9837  df-ico 9838  df-icc 9839  df-fz 9953  df-fzo 10086  df-seqfrec 10389  df-exp 10463  df-fac 10647  df-bc 10669  df-ihash 10697  df-shft 10766  df-cj 10793  df-re 10794  df-im 10795  df-rsqrt 10949  df-abs 10950  df-clim 11229  df-sumdc 11304  df-ef 11598  df-sin 11600  df-cos 11601  df-pi 11603  df-rest 12567  df-topgen 12586  df-psmet 12702  df-xmet 12703  df-met 12704  df-bl 12705  df-mopn 12706  df-top 12711  df-topon 12724  df-bases 12756  df-ntr 12811  df-cn 12903  df-cnp 12904  df-tx 12968  df-cncf 13273  df-limced 13340  df-dvap 13341
This theorem is referenced by:  coseq00topi  13471  coseq0negpitopi  13472
  Copyright terms: Public domain W3C validator