ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  coseq0q4123 Unicode version

Theorem coseq0q4123 15070
Description: Location of the zeroes of cosine in  ( -u (
pi  /  2 ) (,) ( 3  x.  ( pi  /  2
) ) ). (Contributed by Jim Kingdon, 14-Mar-2024.)
Assertion
Ref Expression
coseq0q4123  |-  ( A  e.  ( -u (
pi  /  2 ) (,) ( 3  x.  ( pi  /  2
) ) )  -> 
( ( cos `  A
)  =  0  <->  A  =  ( pi  / 
2 ) ) )

Proof of Theorem coseq0q4123
StepHypRef Expression
1 0re 8026 . . . . 5  |-  0  e.  RR
21ltnri 8119 . . . 4  |-  -.  0  <  0
3 elioore 9987 . . . . . . 7  |-  ( A  e.  ( -u (
pi  /  2 ) (,) ( 3  x.  ( pi  /  2
) ) )  ->  A  e.  RR )
43adantr 276 . . . . . 6  |-  ( ( A  e.  ( -u ( pi  /  2
) (,) ( 3  x.  ( pi  / 
2 ) ) )  /\  ( cos `  A
)  =  0 )  ->  A  e.  RR )
5 halfpire 15028 . . . . . 6  |-  ( pi 
/  2 )  e.  RR
6 reaplt 8615 . . . . . 6  |-  ( ( A  e.  RR  /\  ( pi  /  2
)  e.  RR )  ->  ( A #  (
pi  /  2 )  <-> 
( A  <  (
pi  /  2 )  \/  ( pi  / 
2 )  <  A
) ) )
74, 5, 6sylancl 413 . . . . 5  |-  ( ( A  e.  ( -u ( pi  /  2
) (,) ( 3  x.  ( pi  / 
2 ) ) )  /\  ( cos `  A
)  =  0 )  ->  ( A #  (
pi  /  2 )  <-> 
( A  <  (
pi  /  2 )  \/  ( pi  / 
2 )  <  A
) ) )
83adantr 276 . . . . . . . . . . 11  |-  ( ( A  e.  ( -u ( pi  /  2
) (,) ( 3  x.  ( pi  / 
2 ) ) )  /\  A  <  (
pi  /  2 ) )  ->  A  e.  RR )
9 neghalfpirx 15030 . . . . . . . . . . . . . 14  |-  -u (
pi  /  2 )  e.  RR*
10 3re 9064 . . . . . . . . . . . . . . . 16  |-  3  e.  RR
1110, 5remulcli 8040 . . . . . . . . . . . . . . 15  |-  ( 3  x.  ( pi  / 
2 ) )  e.  RR
1211rexri 8084 . . . . . . . . . . . . . 14  |-  ( 3  x.  ( pi  / 
2 ) )  e. 
RR*
13 elioo2 9996 . . . . . . . . . . . . . 14  |-  ( (
-u ( pi  / 
2 )  e.  RR*  /\  ( 3  x.  (
pi  /  2 ) )  e.  RR* )  ->  ( A  e.  (
-u ( pi  / 
2 ) (,) (
3  x.  ( pi 
/  2 ) ) )  <->  ( A  e.  RR  /\  -u (
pi  /  2 )  <  A  /\  A  <  ( 3  x.  (
pi  /  2 ) ) ) ) )
149, 12, 13mp2an 426 . . . . . . . . . . . . 13  |-  ( A  e.  ( -u (
pi  /  2 ) (,) ( 3  x.  ( pi  /  2
) ) )  <->  ( A  e.  RR  /\  -u (
pi  /  2 )  <  A  /\  A  <  ( 3  x.  (
pi  /  2 ) ) ) )
1514simp2bi 1015 . . . . . . . . . . . 12  |-  ( A  e.  ( -u (
pi  /  2 ) (,) ( 3  x.  ( pi  /  2
) ) )  ->  -u ( pi  /  2
)  <  A )
1615adantr 276 . . . . . . . . . . 11  |-  ( ( A  e.  ( -u ( pi  /  2
) (,) ( 3  x.  ( pi  / 
2 ) ) )  /\  A  <  (
pi  /  2 ) )  ->  -u ( pi 
/  2 )  < 
A )
17 simpr 110 . . . . . . . . . . 11  |-  ( ( A  e.  ( -u ( pi  /  2
) (,) ( 3  x.  ( pi  / 
2 ) ) )  /\  A  <  (
pi  /  2 ) )  ->  A  <  ( pi  /  2 ) )
189a1i 9 . . . . . . . . . . . 12  |-  ( ( A  e.  ( -u ( pi  /  2
) (,) ( 3  x.  ( pi  / 
2 ) ) )  /\  A  <  (
pi  /  2 ) )  ->  -u ( pi 
/  2 )  e. 
RR* )
195rexri 8084 . . . . . . . . . . . 12  |-  ( pi 
/  2 )  e. 
RR*
20 elioo2 9996 . . . . . . . . . . . 12  |-  ( (
-u ( pi  / 
2 )  e.  RR*  /\  ( pi  /  2
)  e.  RR* )  ->  ( A  e.  (
-u ( pi  / 
2 ) (,) (
pi  /  2 ) )  <->  ( A  e.  RR  /\  -u (
pi  /  2 )  <  A  /\  A  <  ( pi  /  2
) ) ) )
2118, 19, 20sylancl 413 . . . . . . . . . . 11  |-  ( ( A  e.  ( -u ( pi  /  2
) (,) ( 3  x.  ( pi  / 
2 ) ) )  /\  A  <  (
pi  /  2 ) )  ->  ( A  e.  ( -u ( pi 
/  2 ) (,) ( pi  /  2
) )  <->  ( A  e.  RR  /\  -u (
pi  /  2 )  <  A  /\  A  <  ( pi  /  2
) ) ) )
228, 16, 17, 21mpbir3and 1182 . . . . . . . . . 10  |-  ( ( A  e.  ( -u ( pi  /  2
) (,) ( 3  x.  ( pi  / 
2 ) ) )  /\  A  <  (
pi  /  2 ) )  ->  A  e.  ( -u ( pi  / 
2 ) (,) (
pi  /  2 ) ) )
23 cosq14gt0 15068 . . . . . . . . . 10  |-  ( A  e.  ( -u (
pi  /  2 ) (,) ( pi  / 
2 ) )  -> 
0  <  ( cos `  A ) )
2422, 23syl 14 . . . . . . . . 9  |-  ( ( A  e.  ( -u ( pi  /  2
) (,) ( 3  x.  ( pi  / 
2 ) ) )  /\  A  <  (
pi  /  2 ) )  ->  0  <  ( cos `  A ) )
2524adantlr 477 . . . . . . . 8  |-  ( ( ( A  e.  (
-u ( pi  / 
2 ) (,) (
3  x.  ( pi 
/  2 ) ) )  /\  ( cos `  A )  =  0 )  /\  A  < 
( pi  /  2
) )  ->  0  <  ( cos `  A
) )
26 simplr 528 . . . . . . . 8  |-  ( ( ( A  e.  (
-u ( pi  / 
2 ) (,) (
3  x.  ( pi 
/  2 ) ) )  /\  ( cos `  A )  =  0 )  /\  A  < 
( pi  /  2
) )  ->  ( cos `  A )  =  0 )
2725, 26breqtrd 4059 . . . . . . 7  |-  ( ( ( A  e.  (
-u ( pi  / 
2 ) (,) (
3  x.  ( pi 
/  2 ) ) )  /\  ( cos `  A )  =  0 )  /\  A  < 
( pi  /  2
) )  ->  0  <  0 )
2827ex 115 . . . . . 6  |-  ( ( A  e.  ( -u ( pi  /  2
) (,) ( 3  x.  ( pi  / 
2 ) ) )  /\  ( cos `  A
)  =  0 )  ->  ( A  < 
( pi  /  2
)  ->  0  <  0 ) )
29 simplr 528 . . . . . . . 8  |-  ( ( ( A  e.  (
-u ( pi  / 
2 ) (,) (
3  x.  ( pi 
/  2 ) ) )  /\  ( cos `  A )  =  0 )  /\  ( pi 
/  2 )  < 
A )  ->  ( cos `  A )  =  0 )
303adantr 276 . . . . . . . . . . 11  |-  ( ( A  e.  ( -u ( pi  /  2
) (,) ( 3  x.  ( pi  / 
2 ) ) )  /\  ( pi  / 
2 )  <  A
)  ->  A  e.  RR )
31 simpr 110 . . . . . . . . . . 11  |-  ( ( A  e.  ( -u ( pi  /  2
) (,) ( 3  x.  ( pi  / 
2 ) ) )  /\  ( pi  / 
2 )  <  A
)  ->  ( pi  /  2 )  <  A
)
3214simp3bi 1016 . . . . . . . . . . . 12  |-  ( A  e.  ( -u (
pi  /  2 ) (,) ( 3  x.  ( pi  /  2
) ) )  ->  A  <  ( 3  x.  ( pi  /  2
) ) )
3332adantr 276 . . . . . . . . . . 11  |-  ( ( A  e.  ( -u ( pi  /  2
) (,) ( 3  x.  ( pi  / 
2 ) ) )  /\  ( pi  / 
2 )  <  A
)  ->  A  <  ( 3  x.  ( pi 
/  2 ) ) )
34 elioo2 9996 . . . . . . . . . . . 12  |-  ( ( ( pi  /  2
)  e.  RR*  /\  (
3  x.  ( pi 
/  2 ) )  e.  RR* )  ->  ( A  e.  ( (
pi  /  2 ) (,) ( 3  x.  ( pi  /  2
) ) )  <->  ( A  e.  RR  /\  ( pi 
/  2 )  < 
A  /\  A  <  ( 3  x.  ( pi 
/  2 ) ) ) ) )
3519, 12, 34mp2an 426 . . . . . . . . . . 11  |-  ( A  e.  ( ( pi 
/  2 ) (,) ( 3  x.  (
pi  /  2 ) ) )  <->  ( A  e.  RR  /\  ( pi 
/  2 )  < 
A  /\  A  <  ( 3  x.  ( pi 
/  2 ) ) ) )
3630, 31, 33, 35syl3anbrc 1183 . . . . . . . . . 10  |-  ( ( A  e.  ( -u ( pi  /  2
) (,) ( 3  x.  ( pi  / 
2 ) ) )  /\  ( pi  / 
2 )  <  A
)  ->  A  e.  ( ( pi  / 
2 ) (,) (
3  x.  ( pi 
/  2 ) ) ) )
37 cosq23lt0 15069 . . . . . . . . . 10  |-  ( A  e.  ( ( pi 
/  2 ) (,) ( 3  x.  (
pi  /  2 ) ) )  ->  ( cos `  A )  <  0 )
3836, 37syl 14 . . . . . . . . 9  |-  ( ( A  e.  ( -u ( pi  /  2
) (,) ( 3  x.  ( pi  / 
2 ) ) )  /\  ( pi  / 
2 )  <  A
)  ->  ( cos `  A )  <  0
)
3938adantlr 477 . . . . . . . 8  |-  ( ( ( A  e.  (
-u ( pi  / 
2 ) (,) (
3  x.  ( pi 
/  2 ) ) )  /\  ( cos `  A )  =  0 )  /\  ( pi 
/  2 )  < 
A )  ->  ( cos `  A )  <  0 )
4029, 39eqbrtrrd 4057 . . . . . . 7  |-  ( ( ( A  e.  (
-u ( pi  / 
2 ) (,) (
3  x.  ( pi 
/  2 ) ) )  /\  ( cos `  A )  =  0 )  /\  ( pi 
/  2 )  < 
A )  ->  0  <  0 )
4140ex 115 . . . . . 6  |-  ( ( A  e.  ( -u ( pi  /  2
) (,) ( 3  x.  ( pi  / 
2 ) ) )  /\  ( cos `  A
)  =  0 )  ->  ( ( pi 
/  2 )  < 
A  ->  0  <  0 ) )
4228, 41jaod 718 . . . . 5  |-  ( ( A  e.  ( -u ( pi  /  2
) (,) ( 3  x.  ( pi  / 
2 ) ) )  /\  ( cos `  A
)  =  0 )  ->  ( ( A  <  ( pi  / 
2 )  \/  (
pi  /  2 )  <  A )  -> 
0  <  0 ) )
437, 42sylbid 150 . . . 4  |-  ( ( A  e.  ( -u ( pi  /  2
) (,) ( 3  x.  ( pi  / 
2 ) ) )  /\  ( cos `  A
)  =  0 )  ->  ( A #  (
pi  /  2 )  ->  0  <  0
) )
442, 43mtoi 665 . . 3  |-  ( ( A  e.  ( -u ( pi  /  2
) (,) ( 3  x.  ( pi  / 
2 ) ) )  /\  ( cos `  A
)  =  0 )  ->  -.  A #  (
pi  /  2 ) )
453recnd 8055 . . . 4  |-  ( A  e.  ( -u (
pi  /  2 ) (,) ( 3  x.  ( pi  /  2
) ) )  ->  A  e.  CC )
46 picn 15023 . . . . 5  |-  pi  e.  CC
47 halfcl 9217 . . . . 5  |-  ( pi  e.  CC  ->  (
pi  /  2 )  e.  CC )
4846, 47mp1i 10 . . . 4  |-  ( ( A  e.  ( -u ( pi  /  2
) (,) ( 3  x.  ( pi  / 
2 ) ) )  /\  ( cos `  A
)  =  0 )  ->  ( pi  / 
2 )  e.  CC )
49 apti 8649 . . . 4  |-  ( ( A  e.  CC  /\  ( pi  /  2
)  e.  CC )  ->  ( A  =  ( pi  /  2
)  <->  -.  A #  (
pi  /  2 ) ) )
5045, 48, 49syl2an2r 595 . . 3  |-  ( ( A  e.  ( -u ( pi  /  2
) (,) ( 3  x.  ( pi  / 
2 ) ) )  /\  ( cos `  A
)  =  0 )  ->  ( A  =  ( pi  /  2
)  <->  -.  A #  (
pi  /  2 ) ) )
5144, 50mpbird 167 . 2  |-  ( ( A  e.  ( -u ( pi  /  2
) (,) ( 3  x.  ( pi  / 
2 ) ) )  /\  ( cos `  A
)  =  0 )  ->  A  =  ( pi  /  2 ) )
52 fveq2 5558 . . . 4  |-  ( A  =  ( pi  / 
2 )  ->  ( cos `  A )  =  ( cos `  (
pi  /  2 ) ) )
53 coshalfpi 15033 . . . 4  |-  ( cos `  ( pi  /  2
) )  =  0
5452, 53eqtrdi 2245 . . 3  |-  ( A  =  ( pi  / 
2 )  ->  ( cos `  A )  =  0 )
5554adantl 277 . 2  |-  ( ( A  e.  ( -u ( pi  /  2
) (,) ( 3  x.  ( pi  / 
2 ) ) )  /\  A  =  ( pi  /  2 ) )  ->  ( cos `  A )  =  0 )
5651, 55impbida 596 1  |-  ( A  e.  ( -u (
pi  /  2 ) (,) ( 3  x.  ( pi  /  2
) ) )  -> 
( ( cos `  A
)  =  0  <->  A  =  ( pi  / 
2 ) ) )
Colors of variables: wff set class
Syntax hints:   -. wn 3    -> wi 4    /\ wa 104    <-> wb 105    \/ wo 709    /\ w3a 980    = wceq 1364    e. wcel 2167   class class class wbr 4033   ` cfv 5258  (class class class)co 5922   CCcc 7877   RRcr 7878   0cc0 7879    x. cmul 7884   RR*cxr 8060    < clt 8061   -ucneg 8198   # cap 8608    / cdiv 8699   2c2 9041   3c3 9042   (,)cioo 9963   cosccos 11810   picpi 11812
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 710  ax-5 1461  ax-7 1462  ax-gen 1463  ax-ie1 1507  ax-ie2 1508  ax-8 1518  ax-10 1519  ax-11 1520  ax-i12 1521  ax-bndl 1523  ax-4 1524  ax-17 1540  ax-i9 1544  ax-ial 1548  ax-i5r 1549  ax-13 2169  ax-14 2170  ax-ext 2178  ax-coll 4148  ax-sep 4151  ax-nul 4159  ax-pow 4207  ax-pr 4242  ax-un 4468  ax-setind 4573  ax-iinf 4624  ax-cnex 7970  ax-resscn 7971  ax-1cn 7972  ax-1re 7973  ax-icn 7974  ax-addcl 7975  ax-addrcl 7976  ax-mulcl 7977  ax-mulrcl 7978  ax-addcom 7979  ax-mulcom 7980  ax-addass 7981  ax-mulass 7982  ax-distr 7983  ax-i2m1 7984  ax-0lt1 7985  ax-1rid 7986  ax-0id 7987  ax-rnegex 7988  ax-precex 7989  ax-cnre 7990  ax-pre-ltirr 7991  ax-pre-ltwlin 7992  ax-pre-lttrn 7993  ax-pre-apti 7994  ax-pre-ltadd 7995  ax-pre-mulgt0 7996  ax-pre-mulext 7997  ax-arch 7998  ax-caucvg 7999  ax-pre-suploc 8000  ax-addf 8001  ax-mulf 8002
This theorem depends on definitions:  df-bi 117  df-stab 832  df-dc 836  df-3or 981  df-3an 982  df-tru 1367  df-fal 1370  df-nf 1475  df-sb 1777  df-eu 2048  df-mo 2049  df-clab 2183  df-cleq 2189  df-clel 2192  df-nfc 2328  df-ne 2368  df-nel 2463  df-ral 2480  df-rex 2481  df-reu 2482  df-rmo 2483  df-rab 2484  df-v 2765  df-sbc 2990  df-csb 3085  df-dif 3159  df-un 3161  df-in 3163  df-ss 3170  df-nul 3451  df-if 3562  df-pw 3607  df-sn 3628  df-pr 3629  df-op 3631  df-uni 3840  df-int 3875  df-iun 3918  df-disj 4011  df-br 4034  df-opab 4095  df-mpt 4096  df-tr 4132  df-id 4328  df-po 4331  df-iso 4332  df-iord 4401  df-on 4403  df-ilim 4404  df-suc 4406  df-iom 4627  df-xp 4669  df-rel 4670  df-cnv 4671  df-co 4672  df-dm 4673  df-rn 4674  df-res 4675  df-ima 4676  df-iota 5219  df-fun 5260  df-fn 5261  df-f 5262  df-f1 5263  df-fo 5264  df-f1o 5265  df-fv 5266  df-isom 5267  df-riota 5877  df-ov 5925  df-oprab 5926  df-mpo 5927  df-of 6135  df-1st 6198  df-2nd 6199  df-recs 6363  df-irdg 6428  df-frec 6449  df-1o 6474  df-oadd 6478  df-er 6592  df-map 6709  df-pm 6710  df-en 6800  df-dom 6801  df-fin 6802  df-sup 7050  df-inf 7051  df-pnf 8063  df-mnf 8064  df-xr 8065  df-ltxr 8066  df-le 8067  df-sub 8199  df-neg 8200  df-reap 8602  df-ap 8609  df-div 8700  df-inn 8991  df-2 9049  df-3 9050  df-4 9051  df-5 9052  df-6 9053  df-7 9054  df-8 9055  df-9 9056  df-n0 9250  df-z 9327  df-uz 9602  df-q 9694  df-rp 9729  df-xneg 9847  df-xadd 9848  df-ioo 9967  df-ioc 9968  df-ico 9969  df-icc 9970  df-fz 10084  df-fzo 10218  df-seqfrec 10540  df-exp 10631  df-fac 10818  df-bc 10840  df-ihash 10868  df-shft 10980  df-cj 11007  df-re 11008  df-im 11009  df-rsqrt 11163  df-abs 11164  df-clim 11444  df-sumdc 11519  df-ef 11813  df-sin 11815  df-cos 11816  df-pi 11818  df-rest 12912  df-topgen 12931  df-psmet 14099  df-xmet 14100  df-met 14101  df-bl 14102  df-mopn 14103  df-top 14234  df-topon 14247  df-bases 14279  df-ntr 14332  df-cn 14424  df-cnp 14425  df-tx 14489  df-cncf 14807  df-limced 14892  df-dvap 14893
This theorem is referenced by:  coseq00topi  15071  coseq0negpitopi  15072
  Copyright terms: Public domain W3C validator