ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  cosordlem Unicode version

Theorem cosordlem 15354
Description: Cosine is decreasing over the closed interval from  0 to  pi. (Contributed by Mario Carneiro, 10-May-2014.)
Hypotheses
Ref Expression
cosord.1  |-  ( ph  ->  A  e.  ( 0 [,] pi ) )
cosord.2  |-  ( ph  ->  B  e.  ( 0 [,] pi ) )
cosord.3  |-  ( ph  ->  A  <  B )
Assertion
Ref Expression
cosordlem  |-  ( ph  ->  ( cos `  B
)  <  ( cos `  A ) )

Proof of Theorem cosordlem
StepHypRef Expression
1 cosord.2 . . . . . . 7  |-  ( ph  ->  B  e.  ( 0 [,] pi ) )
2 0re 8074 . . . . . . . 8  |-  0  e.  RR
3 pire 15291 . . . . . . . 8  |-  pi  e.  RR
42, 3elicc2i 10063 . . . . . . 7  |-  ( B  e.  ( 0 [,] pi )  <->  ( B  e.  RR  /\  0  <_  B  /\  B  <_  pi ) )
51, 4sylib 122 . . . . . 6  |-  ( ph  ->  ( B  e.  RR  /\  0  <_  B  /\  B  <_  pi ) )
65simp1d 1012 . . . . 5  |-  ( ph  ->  B  e.  RR )
76recnd 8103 . . . 4  |-  ( ph  ->  B  e.  CC )
8 cosord.1 . . . . . . 7  |-  ( ph  ->  A  e.  ( 0 [,] pi ) )
92, 3elicc2i 10063 . . . . . . 7  |-  ( A  e.  ( 0 [,] pi )  <->  ( A  e.  RR  /\  0  <_  A  /\  A  <_  pi ) )
108, 9sylib 122 . . . . . 6  |-  ( ph  ->  ( A  e.  RR  /\  0  <_  A  /\  A  <_  pi ) )
1110simp1d 1012 . . . . 5  |-  ( ph  ->  A  e.  RR )
1211recnd 8103 . . . 4  |-  ( ph  ->  A  e.  CC )
13 subcos 12091 . . . 4  |-  ( ( B  e.  CC  /\  A  e.  CC )  ->  ( ( cos `  A
)  -  ( cos `  B ) )  =  ( 2  x.  (
( sin `  (
( B  +  A
)  /  2 ) )  x.  ( sin `  ( ( B  -  A )  /  2
) ) ) ) )
147, 12, 13syl2anc 411 . . 3  |-  ( ph  ->  ( ( cos `  A
)  -  ( cos `  B ) )  =  ( 2  x.  (
( sin `  (
( B  +  A
)  /  2 ) )  x.  ( sin `  ( ( B  -  A )  /  2
) ) ) ) )
15 2rp 9782 . . . 4  |-  2  e.  RR+
166, 11readdcld 8104 . . . . . . . 8  |-  ( ph  ->  ( B  +  A
)  e.  RR )
1716rehalfcld 9286 . . . . . . 7  |-  ( ph  ->  ( ( B  +  A )  /  2
)  e.  RR )
1817resincld 12067 . . . . . 6  |-  ( ph  ->  ( sin `  (
( B  +  A
)  /  2 ) )  e.  RR )
192a1i 9 . . . . . . . . . . 11  |-  ( ph  ->  0  e.  RR )
2010simp2d 1013 . . . . . . . . . . 11  |-  ( ph  ->  0  <_  A )
21 cosord.3 . . . . . . . . . . 11  |-  ( ph  ->  A  <  B )
2219, 11, 6, 20, 21lelttrd 8199 . . . . . . . . . 10  |-  ( ph  ->  0  <  B )
236, 11, 22, 20addgtge0d 8595 . . . . . . . . 9  |-  ( ph  ->  0  <  ( B  +  A ) )
24 2re 9108 . . . . . . . . . 10  |-  2  e.  RR
25 2pos 9129 . . . . . . . . . 10  |-  0  <  2
26 divgt0 8947 . . . . . . . . . 10  |-  ( ( ( ( B  +  A )  e.  RR  /\  0  <  ( B  +  A ) )  /\  ( 2  e.  RR  /\  0  <  2 ) )  -> 
0  <  ( ( B  +  A )  /  2 ) )
2724, 25, 26mpanr12 439 . . . . . . . . 9  |-  ( ( ( B  +  A
)  e.  RR  /\  0  <  ( B  +  A ) )  -> 
0  <  ( ( B  +  A )  /  2 ) )
2816, 23, 27syl2anc 411 . . . . . . . 8  |-  ( ph  ->  0  <  ( ( B  +  A )  /  2 ) )
293a1i 9 . . . . . . . . 9  |-  ( ph  ->  pi  e.  RR )
3011, 6, 6, 21ltadd2dd 8497 . . . . . . . . . . 11  |-  ( ph  ->  ( B  +  A
)  <  ( B  +  B ) )
3172timesd 9282 . . . . . . . . . . 11  |-  ( ph  ->  ( 2  x.  B
)  =  ( B  +  B ) )
3230, 31breqtrrd 4073 . . . . . . . . . 10  |-  ( ph  ->  ( B  +  A
)  <  ( 2  x.  B ) )
3324a1i 9 . . . . . . . . . . 11  |-  ( ph  ->  2  e.  RR )
3425a1i 9 . . . . . . . . . . 11  |-  ( ph  ->  0  <  2 )
35 ltdivmul 8951 . . . . . . . . . . 11  |-  ( ( ( B  +  A
)  e.  RR  /\  B  e.  RR  /\  (
2  e.  RR  /\  0  <  2 ) )  ->  ( ( ( B  +  A )  /  2 )  < 
B  <->  ( B  +  A )  <  (
2  x.  B ) ) )
3616, 6, 33, 34, 35syl112anc 1254 . . . . . . . . . 10  |-  ( ph  ->  ( ( ( B  +  A )  / 
2 )  <  B  <->  ( B  +  A )  <  ( 2  x.  B ) ) )
3732, 36mpbird 167 . . . . . . . . 9  |-  ( ph  ->  ( ( B  +  A )  /  2
)  <  B )
385simp3d 1014 . . . . . . . . 9  |-  ( ph  ->  B  <_  pi )
3917, 6, 29, 37, 38ltletrd 8498 . . . . . . . 8  |-  ( ph  ->  ( ( B  +  A )  /  2
)  <  pi )
40 0xr 8121 . . . . . . . . 9  |-  0  e.  RR*
413rexri 8132 . . . . . . . . 9  |-  pi  e.  RR*
42 elioo2 10045 . . . . . . . . 9  |-  ( ( 0  e.  RR*  /\  pi  e.  RR* )  ->  (
( ( B  +  A )  /  2
)  e.  ( 0 (,) pi )  <->  ( (
( B  +  A
)  /  2 )  e.  RR  /\  0  <  ( ( B  +  A )  /  2
)  /\  ( ( B  +  A )  /  2 )  < 
pi ) ) )
4340, 41, 42mp2an 426 . . . . . . . 8  |-  ( ( ( B  +  A
)  /  2 )  e.  ( 0 (,) pi )  <->  ( (
( B  +  A
)  /  2 )  e.  RR  /\  0  <  ( ( B  +  A )  /  2
)  /\  ( ( B  +  A )  /  2 )  < 
pi ) )
4417, 28, 39, 43syl3anbrc 1184 . . . . . . 7  |-  ( ph  ->  ( ( B  +  A )  /  2
)  e.  ( 0 (,) pi ) )
45 sinq12gt0 15335 . . . . . . 7  |-  ( ( ( B  +  A
)  /  2 )  e.  ( 0 (,) pi )  ->  0  <  ( sin `  (
( B  +  A
)  /  2 ) ) )
4644, 45syl 14 . . . . . 6  |-  ( ph  ->  0  <  ( sin `  ( ( B  +  A )  /  2
) ) )
4718, 46elrpd 9817 . . . . 5  |-  ( ph  ->  ( sin `  (
( B  +  A
)  /  2 ) )  e.  RR+ )
486, 11resubcld 8455 . . . . . . . 8  |-  ( ph  ->  ( B  -  A
)  e.  RR )
4948rehalfcld 9286 . . . . . . 7  |-  ( ph  ->  ( ( B  -  A )  /  2
)  e.  RR )
5049resincld 12067 . . . . . 6  |-  ( ph  ->  ( sin `  (
( B  -  A
)  /  2 ) )  e.  RR )
5111, 6posdifd 8607 . . . . . . . . . 10  |-  ( ph  ->  ( A  <  B  <->  0  <  ( B  -  A ) ) )
5221, 51mpbid 147 . . . . . . . . 9  |-  ( ph  ->  0  <  ( B  -  A ) )
53 divgt0 8947 . . . . . . . . . 10  |-  ( ( ( ( B  -  A )  e.  RR  /\  0  <  ( B  -  A ) )  /\  ( 2  e.  RR  /\  0  <  2 ) )  -> 
0  <  ( ( B  -  A )  /  2 ) )
5424, 25, 53mpanr12 439 . . . . . . . . 9  |-  ( ( ( B  -  A
)  e.  RR  /\  0  <  ( B  -  A ) )  -> 
0  <  ( ( B  -  A )  /  2 ) )
5548, 52, 54syl2anc 411 . . . . . . . 8  |-  ( ph  ->  0  <  ( ( B  -  A )  /  2 ) )
56 rehalfcl 9266 . . . . . . . . . 10  |-  ( pi  e.  RR  ->  (
pi  /  2 )  e.  RR )
573, 56mp1i 10 . . . . . . . . 9  |-  ( ph  ->  ( pi  /  2
)  e.  RR )
586, 11subge02d 8612 . . . . . . . . . . . 12  |-  ( ph  ->  ( 0  <_  A  <->  ( B  -  A )  <_  B ) )
5920, 58mpbid 147 . . . . . . . . . . 11  |-  ( ph  ->  ( B  -  A
)  <_  B )
6048, 6, 29, 59, 38letrd 8198 . . . . . . . . . 10  |-  ( ph  ->  ( B  -  A
)  <_  pi )
61 lediv1 8944 . . . . . . . . . . 11  |-  ( ( ( B  -  A
)  e.  RR  /\  pi  e.  RR  /\  (
2  e.  RR  /\  0  <  2 ) )  ->  ( ( B  -  A )  <_  pi 
<->  ( ( B  -  A )  /  2
)  <_  ( pi  /  2 ) ) )
6248, 29, 33, 34, 61syl112anc 1254 . . . . . . . . . 10  |-  ( ph  ->  ( ( B  -  A )  <_  pi  <->  ( ( B  -  A
)  /  2 )  <_  ( pi  / 
2 ) ) )
6360, 62mpbid 147 . . . . . . . . 9  |-  ( ph  ->  ( ( B  -  A )  /  2
)  <_  ( pi  /  2 ) )
64 pirp 15294 . . . . . . . . . 10  |-  pi  e.  RR+
65 rphalflt 9807 . . . . . . . . . 10  |-  ( pi  e.  RR+  ->  ( pi 
/  2 )  < 
pi )
6664, 65mp1i 10 . . . . . . . . 9  |-  ( ph  ->  ( pi  /  2
)  <  pi )
6749, 57, 29, 63, 66lelttrd 8199 . . . . . . . 8  |-  ( ph  ->  ( ( B  -  A )  /  2
)  <  pi )
68 elioo2 10045 . . . . . . . . 9  |-  ( ( 0  e.  RR*  /\  pi  e.  RR* )  ->  (
( ( B  -  A )  /  2
)  e.  ( 0 (,) pi )  <->  ( (
( B  -  A
)  /  2 )  e.  RR  /\  0  <  ( ( B  -  A )  /  2
)  /\  ( ( B  -  A )  /  2 )  < 
pi ) ) )
6940, 41, 68mp2an 426 . . . . . . . 8  |-  ( ( ( B  -  A
)  /  2 )  e.  ( 0 (,) pi )  <->  ( (
( B  -  A
)  /  2 )  e.  RR  /\  0  <  ( ( B  -  A )  /  2
)  /\  ( ( B  -  A )  /  2 )  < 
pi ) )
7049, 55, 67, 69syl3anbrc 1184 . . . . . . 7  |-  ( ph  ->  ( ( B  -  A )  /  2
)  e.  ( 0 (,) pi ) )
71 sinq12gt0 15335 . . . . . . 7  |-  ( ( ( B  -  A
)  /  2 )  e.  ( 0 (,) pi )  ->  0  <  ( sin `  (
( B  -  A
)  /  2 ) ) )
7270, 71syl 14 . . . . . 6  |-  ( ph  ->  0  <  ( sin `  ( ( B  -  A )  /  2
) ) )
7350, 72elrpd 9817 . . . . 5  |-  ( ph  ->  ( sin `  (
( B  -  A
)  /  2 ) )  e.  RR+ )
7447, 73rpmulcld 9837 . . . 4  |-  ( ph  ->  ( ( sin `  (
( B  +  A
)  /  2 ) )  x.  ( sin `  ( ( B  -  A )  /  2
) ) )  e.  RR+ )
75 rpmulcl 9802 . . . 4  |-  ( ( 2  e.  RR+  /\  (
( sin `  (
( B  +  A
)  /  2 ) )  x.  ( sin `  ( ( B  -  A )  /  2
) ) )  e.  RR+ )  ->  ( 2  x.  ( ( sin `  ( ( B  +  A )  /  2
) )  x.  ( sin `  ( ( B  -  A )  / 
2 ) ) ) )  e.  RR+ )
7615, 74, 75sylancr 414 . . 3  |-  ( ph  ->  ( 2  x.  (
( sin `  (
( B  +  A
)  /  2 ) )  x.  ( sin `  ( ( B  -  A )  /  2
) ) ) )  e.  RR+ )
7714, 76eqeltrd 2282 . 2  |-  ( ph  ->  ( ( cos `  A
)  -  ( cos `  B ) )  e.  RR+ )
786recoscld 12068 . . 3  |-  ( ph  ->  ( cos `  B
)  e.  RR )
7911recoscld 12068 . . 3  |-  ( ph  ->  ( cos `  A
)  e.  RR )
80 difrp 9816 . . 3  |-  ( ( ( cos `  B
)  e.  RR  /\  ( cos `  A )  e.  RR )  -> 
( ( cos `  B
)  <  ( cos `  A )  <->  ( ( cos `  A )  -  ( cos `  B ) )  e.  RR+ )
)
8178, 79, 80syl2anc 411 . 2  |-  ( ph  ->  ( ( cos `  B
)  <  ( cos `  A )  <->  ( ( cos `  A )  -  ( cos `  B ) )  e.  RR+ )
)
8277, 81mpbird 167 1  |-  ( ph  ->  ( cos `  B
)  <  ( cos `  A ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 104    <-> wb 105    /\ w3a 981    = wceq 1373    e. wcel 2176   class class class wbr 4045   ` cfv 5272  (class class class)co 5946   CCcc 7925   RRcr 7926   0cc0 7927    + caddc 7930    x. cmul 7932   RR*cxr 8108    < clt 8109    <_ cle 8110    - cmin 8245    / cdiv 8747   2c2 9089   RR+crp 9777   (,)cioo 10012   [,]cicc 10015   sincsin 11988   cosccos 11989   picpi 11991
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 711  ax-5 1470  ax-7 1471  ax-gen 1472  ax-ie1 1516  ax-ie2 1517  ax-8 1527  ax-10 1528  ax-11 1529  ax-i12 1530  ax-bndl 1532  ax-4 1533  ax-17 1549  ax-i9 1553  ax-ial 1557  ax-i5r 1558  ax-13 2178  ax-14 2179  ax-ext 2187  ax-coll 4160  ax-sep 4163  ax-nul 4171  ax-pow 4219  ax-pr 4254  ax-un 4481  ax-setind 4586  ax-iinf 4637  ax-cnex 8018  ax-resscn 8019  ax-1cn 8020  ax-1re 8021  ax-icn 8022  ax-addcl 8023  ax-addrcl 8024  ax-mulcl 8025  ax-mulrcl 8026  ax-addcom 8027  ax-mulcom 8028  ax-addass 8029  ax-mulass 8030  ax-distr 8031  ax-i2m1 8032  ax-0lt1 8033  ax-1rid 8034  ax-0id 8035  ax-rnegex 8036  ax-precex 8037  ax-cnre 8038  ax-pre-ltirr 8039  ax-pre-ltwlin 8040  ax-pre-lttrn 8041  ax-pre-apti 8042  ax-pre-ltadd 8043  ax-pre-mulgt0 8044  ax-pre-mulext 8045  ax-arch 8046  ax-caucvg 8047  ax-pre-suploc 8048  ax-addf 8049  ax-mulf 8050
This theorem depends on definitions:  df-bi 117  df-stab 833  df-dc 837  df-3or 982  df-3an 983  df-tru 1376  df-fal 1379  df-nf 1484  df-sb 1786  df-eu 2057  df-mo 2058  df-clab 2192  df-cleq 2198  df-clel 2201  df-nfc 2337  df-ne 2377  df-nel 2472  df-ral 2489  df-rex 2490  df-reu 2491  df-rmo 2492  df-rab 2493  df-v 2774  df-sbc 2999  df-csb 3094  df-dif 3168  df-un 3170  df-in 3172  df-ss 3179  df-nul 3461  df-if 3572  df-pw 3618  df-sn 3639  df-pr 3640  df-op 3642  df-uni 3851  df-int 3886  df-iun 3929  df-disj 4022  df-br 4046  df-opab 4107  df-mpt 4108  df-tr 4144  df-id 4341  df-po 4344  df-iso 4345  df-iord 4414  df-on 4416  df-ilim 4417  df-suc 4419  df-iom 4640  df-xp 4682  df-rel 4683  df-cnv 4684  df-co 4685  df-dm 4686  df-rn 4687  df-res 4688  df-ima 4689  df-iota 5233  df-fun 5274  df-fn 5275  df-f 5276  df-f1 5277  df-fo 5278  df-f1o 5279  df-fv 5280  df-isom 5281  df-riota 5901  df-ov 5949  df-oprab 5950  df-mpo 5951  df-of 6160  df-1st 6228  df-2nd 6229  df-recs 6393  df-irdg 6458  df-frec 6479  df-1o 6504  df-oadd 6508  df-er 6622  df-map 6739  df-pm 6740  df-en 6830  df-dom 6831  df-fin 6832  df-sup 7088  df-inf 7089  df-pnf 8111  df-mnf 8112  df-xr 8113  df-ltxr 8114  df-le 8115  df-sub 8247  df-neg 8248  df-reap 8650  df-ap 8657  df-div 8748  df-inn 9039  df-2 9097  df-3 9098  df-4 9099  df-5 9100  df-6 9101  df-7 9102  df-8 9103  df-9 9104  df-n0 9298  df-z 9375  df-uz 9651  df-q 9743  df-rp 9778  df-xneg 9896  df-xadd 9897  df-ioo 10016  df-ioc 10017  df-ico 10018  df-icc 10019  df-fz 10133  df-fzo 10267  df-seqfrec 10595  df-exp 10686  df-fac 10873  df-bc 10895  df-ihash 10923  df-shft 11159  df-cj 11186  df-re 11187  df-im 11188  df-rsqrt 11342  df-abs 11343  df-clim 11623  df-sumdc 11698  df-ef 11992  df-sin 11994  df-cos 11995  df-pi 11997  df-rest 13106  df-topgen 13125  df-psmet 14338  df-xmet 14339  df-met 14340  df-bl 14341  df-mopn 14342  df-top 14503  df-topon 14516  df-bases 14548  df-ntr 14601  df-cn 14693  df-cnp 14694  df-tx 14758  df-cncf 15076  df-limced 15161  df-dvap 15162
This theorem is referenced by:  cosq34lt1  15355  cos02pilt1  15356  cos0pilt1  15357  cos11  15358  ioocosf1o  15359
  Copyright terms: Public domain W3C validator