| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > cosordlem | Unicode version | ||
| Description: Cosine is decreasing over
the closed interval from |
| Ref | Expression |
|---|---|
| cosord.1 |
|
| cosord.2 |
|
| cosord.3 |
|
| Ref | Expression |
|---|---|
| cosordlem |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | cosord.2 |
. . . . . . 7
| |
| 2 | 0re 8146 |
. . . . . . . 8
| |
| 3 | pire 15460 |
. . . . . . . 8
| |
| 4 | 2, 3 | elicc2i 10135 |
. . . . . . 7
|
| 5 | 1, 4 | sylib 122 |
. . . . . 6
|
| 6 | 5 | simp1d 1033 |
. . . . 5
|
| 7 | 6 | recnd 8175 |
. . . 4
|
| 8 | cosord.1 |
. . . . . . 7
| |
| 9 | 2, 3 | elicc2i 10135 |
. . . . . . 7
|
| 10 | 8, 9 | sylib 122 |
. . . . . 6
|
| 11 | 10 | simp1d 1033 |
. . . . 5
|
| 12 | 11 | recnd 8175 |
. . . 4
|
| 13 | subcos 12258 |
. . . 4
| |
| 14 | 7, 12, 13 | syl2anc 411 |
. . 3
|
| 15 | 2rp 9854 |
. . . 4
| |
| 16 | 6, 11 | readdcld 8176 |
. . . . . . . 8
|
| 17 | 16 | rehalfcld 9358 |
. . . . . . 7
|
| 18 | 17 | resincld 12234 |
. . . . . 6
|
| 19 | 2 | a1i 9 |
. . . . . . . . . . 11
|
| 20 | 10 | simp2d 1034 |
. . . . . . . . . . 11
|
| 21 | cosord.3 |
. . . . . . . . . . 11
| |
| 22 | 19, 11, 6, 20, 21 | lelttrd 8271 |
. . . . . . . . . 10
|
| 23 | 6, 11, 22, 20 | addgtge0d 8667 |
. . . . . . . . 9
|
| 24 | 2re 9180 |
. . . . . . . . . 10
| |
| 25 | 2pos 9201 |
. . . . . . . . . 10
| |
| 26 | divgt0 9019 |
. . . . . . . . . 10
| |
| 27 | 24, 25, 26 | mpanr12 439 |
. . . . . . . . 9
|
| 28 | 16, 23, 27 | syl2anc 411 |
. . . . . . . 8
|
| 29 | 3 | a1i 9 |
. . . . . . . . 9
|
| 30 | 11, 6, 6, 21 | ltadd2dd 8569 |
. . . . . . . . . . 11
|
| 31 | 7 | 2timesd 9354 |
. . . . . . . . . . 11
|
| 32 | 30, 31 | breqtrrd 4111 |
. . . . . . . . . 10
|
| 33 | 24 | a1i 9 |
. . . . . . . . . . 11
|
| 34 | 25 | a1i 9 |
. . . . . . . . . . 11
|
| 35 | ltdivmul 9023 |
. . . . . . . . . . 11
| |
| 36 | 16, 6, 33, 34, 35 | syl112anc 1275 |
. . . . . . . . . 10
|
| 37 | 32, 36 | mpbird 167 |
. . . . . . . . 9
|
| 38 | 5 | simp3d 1035 |
. . . . . . . . 9
|
| 39 | 17, 6, 29, 37, 38 | ltletrd 8570 |
. . . . . . . 8
|
| 40 | 0xr 8193 |
. . . . . . . . 9
| |
| 41 | 3 | rexri 8204 |
. . . . . . . . 9
|
| 42 | elioo2 10117 |
. . . . . . . . 9
| |
| 43 | 40, 41, 42 | mp2an 426 |
. . . . . . . 8
|
| 44 | 17, 28, 39, 43 | syl3anbrc 1205 |
. . . . . . 7
|
| 45 | sinq12gt0 15504 |
. . . . . . 7
| |
| 46 | 44, 45 | syl 14 |
. . . . . 6
|
| 47 | 18, 46 | elrpd 9889 |
. . . . 5
|
| 48 | 6, 11 | resubcld 8527 |
. . . . . . . 8
|
| 49 | 48 | rehalfcld 9358 |
. . . . . . 7
|
| 50 | 49 | resincld 12234 |
. . . . . 6
|
| 51 | 11, 6 | posdifd 8679 |
. . . . . . . . . 10
|
| 52 | 21, 51 | mpbid 147 |
. . . . . . . . 9
|
| 53 | divgt0 9019 |
. . . . . . . . . 10
| |
| 54 | 24, 25, 53 | mpanr12 439 |
. . . . . . . . 9
|
| 55 | 48, 52, 54 | syl2anc 411 |
. . . . . . . 8
|
| 56 | rehalfcl 9338 |
. . . . . . . . . 10
| |
| 57 | 3, 56 | mp1i 10 |
. . . . . . . . 9
|
| 58 | 6, 11 | subge02d 8684 |
. . . . . . . . . . . 12
|
| 59 | 20, 58 | mpbid 147 |
. . . . . . . . . . 11
|
| 60 | 48, 6, 29, 59, 38 | letrd 8270 |
. . . . . . . . . 10
|
| 61 | lediv1 9016 |
. . . . . . . . . . 11
| |
| 62 | 48, 29, 33, 34, 61 | syl112anc 1275 |
. . . . . . . . . 10
|
| 63 | 60, 62 | mpbid 147 |
. . . . . . . . 9
|
| 64 | pirp 15463 |
. . . . . . . . . 10
| |
| 65 | rphalflt 9879 |
. . . . . . . . . 10
| |
| 66 | 64, 65 | mp1i 10 |
. . . . . . . . 9
|
| 67 | 49, 57, 29, 63, 66 | lelttrd 8271 |
. . . . . . . 8
|
| 68 | elioo2 10117 |
. . . . . . . . 9
| |
| 69 | 40, 41, 68 | mp2an 426 |
. . . . . . . 8
|
| 70 | 49, 55, 67, 69 | syl3anbrc 1205 |
. . . . . . 7
|
| 71 | sinq12gt0 15504 |
. . . . . . 7
| |
| 72 | 70, 71 | syl 14 |
. . . . . 6
|
| 73 | 50, 72 | elrpd 9889 |
. . . . 5
|
| 74 | 47, 73 | rpmulcld 9909 |
. . . 4
|
| 75 | rpmulcl 9874 |
. . . 4
| |
| 76 | 15, 74, 75 | sylancr 414 |
. . 3
|
| 77 | 14, 76 | eqeltrd 2306 |
. 2
|
| 78 | 6 | recoscld 12235 |
. . 3
|
| 79 | 11 | recoscld 12235 |
. . 3
|
| 80 | difrp 9888 |
. . 3
| |
| 81 | 78, 79, 80 | syl2anc 411 |
. 2
|
| 82 | 77, 81 | mpbird 167 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 617 ax-in2 618 ax-io 714 ax-5 1493 ax-7 1494 ax-gen 1495 ax-ie1 1539 ax-ie2 1540 ax-8 1550 ax-10 1551 ax-11 1552 ax-i12 1553 ax-bndl 1555 ax-4 1556 ax-17 1572 ax-i9 1576 ax-ial 1580 ax-i5r 1581 ax-13 2202 ax-14 2203 ax-ext 2211 ax-coll 4199 ax-sep 4202 ax-nul 4210 ax-pow 4258 ax-pr 4293 ax-un 4524 ax-setind 4629 ax-iinf 4680 ax-cnex 8090 ax-resscn 8091 ax-1cn 8092 ax-1re 8093 ax-icn 8094 ax-addcl 8095 ax-addrcl 8096 ax-mulcl 8097 ax-mulrcl 8098 ax-addcom 8099 ax-mulcom 8100 ax-addass 8101 ax-mulass 8102 ax-distr 8103 ax-i2m1 8104 ax-0lt1 8105 ax-1rid 8106 ax-0id 8107 ax-rnegex 8108 ax-precex 8109 ax-cnre 8110 ax-pre-ltirr 8111 ax-pre-ltwlin 8112 ax-pre-lttrn 8113 ax-pre-apti 8114 ax-pre-ltadd 8115 ax-pre-mulgt0 8116 ax-pre-mulext 8117 ax-arch 8118 ax-caucvg 8119 ax-pre-suploc 8120 ax-addf 8121 ax-mulf 8122 |
| This theorem depends on definitions: df-bi 117 df-stab 836 df-dc 840 df-3or 1003 df-3an 1004 df-tru 1398 df-fal 1401 df-nf 1507 df-sb 1809 df-eu 2080 df-mo 2081 df-clab 2216 df-cleq 2222 df-clel 2225 df-nfc 2361 df-ne 2401 df-nel 2496 df-ral 2513 df-rex 2514 df-reu 2515 df-rmo 2516 df-rab 2517 df-v 2801 df-sbc 3029 df-csb 3125 df-dif 3199 df-un 3201 df-in 3203 df-ss 3210 df-nul 3492 df-if 3603 df-pw 3651 df-sn 3672 df-pr 3673 df-op 3675 df-uni 3889 df-int 3924 df-iun 3967 df-disj 4060 df-br 4084 df-opab 4146 df-mpt 4147 df-tr 4183 df-id 4384 df-po 4387 df-iso 4388 df-iord 4457 df-on 4459 df-ilim 4460 df-suc 4462 df-iom 4683 df-xp 4725 df-rel 4726 df-cnv 4727 df-co 4728 df-dm 4729 df-rn 4730 df-res 4731 df-ima 4732 df-iota 5278 df-fun 5320 df-fn 5321 df-f 5322 df-f1 5323 df-fo 5324 df-f1o 5325 df-fv 5326 df-isom 5327 df-riota 5954 df-ov 6004 df-oprab 6005 df-mpo 6006 df-of 6218 df-1st 6286 df-2nd 6287 df-recs 6451 df-irdg 6516 df-frec 6537 df-1o 6562 df-oadd 6566 df-er 6680 df-map 6797 df-pm 6798 df-en 6888 df-dom 6889 df-fin 6890 df-sup 7151 df-inf 7152 df-pnf 8183 df-mnf 8184 df-xr 8185 df-ltxr 8186 df-le 8187 df-sub 8319 df-neg 8320 df-reap 8722 df-ap 8729 df-div 8820 df-inn 9111 df-2 9169 df-3 9170 df-4 9171 df-5 9172 df-6 9173 df-7 9174 df-8 9175 df-9 9176 df-n0 9370 df-z 9447 df-uz 9723 df-q 9815 df-rp 9850 df-xneg 9968 df-xadd 9969 df-ioo 10088 df-ioc 10089 df-ico 10090 df-icc 10091 df-fz 10205 df-fzo 10339 df-seqfrec 10670 df-exp 10761 df-fac 10948 df-bc 10970 df-ihash 10998 df-shft 11326 df-cj 11353 df-re 11354 df-im 11355 df-rsqrt 11509 df-abs 11510 df-clim 11790 df-sumdc 11865 df-ef 12159 df-sin 12161 df-cos 12162 df-pi 12164 df-rest 13274 df-topgen 13293 df-psmet 14507 df-xmet 14508 df-met 14509 df-bl 14510 df-mopn 14511 df-top 14672 df-topon 14685 df-bases 14717 df-ntr 14770 df-cn 14862 df-cnp 14863 df-tx 14927 df-cncf 15245 df-limced 15330 df-dvap 15331 |
| This theorem is referenced by: cosq34lt1 15524 cos02pilt1 15525 cos0pilt1 15526 cos11 15527 ioocosf1o 15528 |
| Copyright terms: Public domain | W3C validator |