| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > cosordlem | Unicode version | ||
| Description: Cosine is decreasing over
the closed interval from |
| Ref | Expression |
|---|---|
| cosord.1 |
|
| cosord.2 |
|
| cosord.3 |
|
| Ref | Expression |
|---|---|
| cosordlem |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | cosord.2 |
. . . . . . 7
| |
| 2 | 0re 8043 |
. . . . . . . 8
| |
| 3 | pire 15106 |
. . . . . . . 8
| |
| 4 | 2, 3 | elicc2i 10031 |
. . . . . . 7
|
| 5 | 1, 4 | sylib 122 |
. . . . . 6
|
| 6 | 5 | simp1d 1011 |
. . . . 5
|
| 7 | 6 | recnd 8072 |
. . . 4
|
| 8 | cosord.1 |
. . . . . . 7
| |
| 9 | 2, 3 | elicc2i 10031 |
. . . . . . 7
|
| 10 | 8, 9 | sylib 122 |
. . . . . 6
|
| 11 | 10 | simp1d 1011 |
. . . . 5
|
| 12 | 11 | recnd 8072 |
. . . 4
|
| 13 | subcos 11929 |
. . . 4
| |
| 14 | 7, 12, 13 | syl2anc 411 |
. . 3
|
| 15 | 2rp 9750 |
. . . 4
| |
| 16 | 6, 11 | readdcld 8073 |
. . . . . . . 8
|
| 17 | 16 | rehalfcld 9255 |
. . . . . . 7
|
| 18 | 17 | resincld 11905 |
. . . . . 6
|
| 19 | 2 | a1i 9 |
. . . . . . . . . . 11
|
| 20 | 10 | simp2d 1012 |
. . . . . . . . . . 11
|
| 21 | cosord.3 |
. . . . . . . . . . 11
| |
| 22 | 19, 11, 6, 20, 21 | lelttrd 8168 |
. . . . . . . . . 10
|
| 23 | 6, 11, 22, 20 | addgtge0d 8564 |
. . . . . . . . 9
|
| 24 | 2re 9077 |
. . . . . . . . . 10
| |
| 25 | 2pos 9098 |
. . . . . . . . . 10
| |
| 26 | divgt0 8916 |
. . . . . . . . . 10
| |
| 27 | 24, 25, 26 | mpanr12 439 |
. . . . . . . . 9
|
| 28 | 16, 23, 27 | syl2anc 411 |
. . . . . . . 8
|
| 29 | 3 | a1i 9 |
. . . . . . . . 9
|
| 30 | 11, 6, 6, 21 | ltadd2dd 8466 |
. . . . . . . . . . 11
|
| 31 | 7 | 2timesd 9251 |
. . . . . . . . . . 11
|
| 32 | 30, 31 | breqtrrd 4062 |
. . . . . . . . . 10
|
| 33 | 24 | a1i 9 |
. . . . . . . . . . 11
|
| 34 | 25 | a1i 9 |
. . . . . . . . . . 11
|
| 35 | ltdivmul 8920 |
. . . . . . . . . . 11
| |
| 36 | 16, 6, 33, 34, 35 | syl112anc 1253 |
. . . . . . . . . 10
|
| 37 | 32, 36 | mpbird 167 |
. . . . . . . . 9
|
| 38 | 5 | simp3d 1013 |
. . . . . . . . 9
|
| 39 | 17, 6, 29, 37, 38 | ltletrd 8467 |
. . . . . . . 8
|
| 40 | 0xr 8090 |
. . . . . . . . 9
| |
| 41 | 3 | rexri 8101 |
. . . . . . . . 9
|
| 42 | elioo2 10013 |
. . . . . . . . 9
| |
| 43 | 40, 41, 42 | mp2an 426 |
. . . . . . . 8
|
| 44 | 17, 28, 39, 43 | syl3anbrc 1183 |
. . . . . . 7
|
| 45 | sinq12gt0 15150 |
. . . . . . 7
| |
| 46 | 44, 45 | syl 14 |
. . . . . 6
|
| 47 | 18, 46 | elrpd 9785 |
. . . . 5
|
| 48 | 6, 11 | resubcld 8424 |
. . . . . . . 8
|
| 49 | 48 | rehalfcld 9255 |
. . . . . . 7
|
| 50 | 49 | resincld 11905 |
. . . . . 6
|
| 51 | 11, 6 | posdifd 8576 |
. . . . . . . . . 10
|
| 52 | 21, 51 | mpbid 147 |
. . . . . . . . 9
|
| 53 | divgt0 8916 |
. . . . . . . . . 10
| |
| 54 | 24, 25, 53 | mpanr12 439 |
. . . . . . . . 9
|
| 55 | 48, 52, 54 | syl2anc 411 |
. . . . . . . 8
|
| 56 | rehalfcl 9235 |
. . . . . . . . . 10
| |
| 57 | 3, 56 | mp1i 10 |
. . . . . . . . 9
|
| 58 | 6, 11 | subge02d 8581 |
. . . . . . . . . . . 12
|
| 59 | 20, 58 | mpbid 147 |
. . . . . . . . . . 11
|
| 60 | 48, 6, 29, 59, 38 | letrd 8167 |
. . . . . . . . . 10
|
| 61 | lediv1 8913 |
. . . . . . . . . . 11
| |
| 62 | 48, 29, 33, 34, 61 | syl112anc 1253 |
. . . . . . . . . 10
|
| 63 | 60, 62 | mpbid 147 |
. . . . . . . . 9
|
| 64 | pirp 15109 |
. . . . . . . . . 10
| |
| 65 | rphalflt 9775 |
. . . . . . . . . 10
| |
| 66 | 64, 65 | mp1i 10 |
. . . . . . . . 9
|
| 67 | 49, 57, 29, 63, 66 | lelttrd 8168 |
. . . . . . . 8
|
| 68 | elioo2 10013 |
. . . . . . . . 9
| |
| 69 | 40, 41, 68 | mp2an 426 |
. . . . . . . 8
|
| 70 | 49, 55, 67, 69 | syl3anbrc 1183 |
. . . . . . 7
|
| 71 | sinq12gt0 15150 |
. . . . . . 7
| |
| 72 | 70, 71 | syl 14 |
. . . . . 6
|
| 73 | 50, 72 | elrpd 9785 |
. . . . 5
|
| 74 | 47, 73 | rpmulcld 9805 |
. . . 4
|
| 75 | rpmulcl 9770 |
. . . 4
| |
| 76 | 15, 74, 75 | sylancr 414 |
. . 3
|
| 77 | 14, 76 | eqeltrd 2273 |
. 2
|
| 78 | 6 | recoscld 11906 |
. . 3
|
| 79 | 11 | recoscld 11906 |
. . 3
|
| 80 | difrp 9784 |
. . 3
| |
| 81 | 78, 79, 80 | syl2anc 411 |
. 2
|
| 82 | 77, 81 | mpbird 167 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 615 ax-in2 616 ax-io 710 ax-5 1461 ax-7 1462 ax-gen 1463 ax-ie1 1507 ax-ie2 1508 ax-8 1518 ax-10 1519 ax-11 1520 ax-i12 1521 ax-bndl 1523 ax-4 1524 ax-17 1540 ax-i9 1544 ax-ial 1548 ax-i5r 1549 ax-13 2169 ax-14 2170 ax-ext 2178 ax-coll 4149 ax-sep 4152 ax-nul 4160 ax-pow 4208 ax-pr 4243 ax-un 4469 ax-setind 4574 ax-iinf 4625 ax-cnex 7987 ax-resscn 7988 ax-1cn 7989 ax-1re 7990 ax-icn 7991 ax-addcl 7992 ax-addrcl 7993 ax-mulcl 7994 ax-mulrcl 7995 ax-addcom 7996 ax-mulcom 7997 ax-addass 7998 ax-mulass 7999 ax-distr 8000 ax-i2m1 8001 ax-0lt1 8002 ax-1rid 8003 ax-0id 8004 ax-rnegex 8005 ax-precex 8006 ax-cnre 8007 ax-pre-ltirr 8008 ax-pre-ltwlin 8009 ax-pre-lttrn 8010 ax-pre-apti 8011 ax-pre-ltadd 8012 ax-pre-mulgt0 8013 ax-pre-mulext 8014 ax-arch 8015 ax-caucvg 8016 ax-pre-suploc 8017 ax-addf 8018 ax-mulf 8019 |
| This theorem depends on definitions: df-bi 117 df-stab 832 df-dc 836 df-3or 981 df-3an 982 df-tru 1367 df-fal 1370 df-nf 1475 df-sb 1777 df-eu 2048 df-mo 2049 df-clab 2183 df-cleq 2189 df-clel 2192 df-nfc 2328 df-ne 2368 df-nel 2463 df-ral 2480 df-rex 2481 df-reu 2482 df-rmo 2483 df-rab 2484 df-v 2765 df-sbc 2990 df-csb 3085 df-dif 3159 df-un 3161 df-in 3163 df-ss 3170 df-nul 3452 df-if 3563 df-pw 3608 df-sn 3629 df-pr 3630 df-op 3632 df-uni 3841 df-int 3876 df-iun 3919 df-disj 4012 df-br 4035 df-opab 4096 df-mpt 4097 df-tr 4133 df-id 4329 df-po 4332 df-iso 4333 df-iord 4402 df-on 4404 df-ilim 4405 df-suc 4407 df-iom 4628 df-xp 4670 df-rel 4671 df-cnv 4672 df-co 4673 df-dm 4674 df-rn 4675 df-res 4676 df-ima 4677 df-iota 5220 df-fun 5261 df-fn 5262 df-f 5263 df-f1 5264 df-fo 5265 df-f1o 5266 df-fv 5267 df-isom 5268 df-riota 5880 df-ov 5928 df-oprab 5929 df-mpo 5930 df-of 6139 df-1st 6207 df-2nd 6208 df-recs 6372 df-irdg 6437 df-frec 6458 df-1o 6483 df-oadd 6487 df-er 6601 df-map 6718 df-pm 6719 df-en 6809 df-dom 6810 df-fin 6811 df-sup 7059 df-inf 7060 df-pnf 8080 df-mnf 8081 df-xr 8082 df-ltxr 8083 df-le 8084 df-sub 8216 df-neg 8217 df-reap 8619 df-ap 8626 df-div 8717 df-inn 9008 df-2 9066 df-3 9067 df-4 9068 df-5 9069 df-6 9070 df-7 9071 df-8 9072 df-9 9073 df-n0 9267 df-z 9344 df-uz 9619 df-q 9711 df-rp 9746 df-xneg 9864 df-xadd 9865 df-ioo 9984 df-ioc 9985 df-ico 9986 df-icc 9987 df-fz 10101 df-fzo 10235 df-seqfrec 10557 df-exp 10648 df-fac 10835 df-bc 10857 df-ihash 10885 df-shft 10997 df-cj 11024 df-re 11025 df-im 11026 df-rsqrt 11180 df-abs 11181 df-clim 11461 df-sumdc 11536 df-ef 11830 df-sin 11832 df-cos 11833 df-pi 11835 df-rest 12943 df-topgen 12962 df-psmet 14175 df-xmet 14176 df-met 14177 df-bl 14178 df-mopn 14179 df-top 14318 df-topon 14331 df-bases 14363 df-ntr 14416 df-cn 14508 df-cnp 14509 df-tx 14573 df-cncf 14891 df-limced 14976 df-dvap 14977 |
| This theorem is referenced by: cosq34lt1 15170 cos02pilt1 15171 cos0pilt1 15172 cos11 15173 ioocosf1o 15174 |
| Copyright terms: Public domain | W3C validator |