| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > cosordlem | Unicode version | ||
| Description: Cosine is decreasing over
the closed interval from |
| Ref | Expression |
|---|---|
| cosord.1 |
|
| cosord.2 |
|
| cosord.3 |
|
| Ref | Expression |
|---|---|
| cosordlem |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | cosord.2 |
. . . . . . 7
| |
| 2 | 0re 8107 |
. . . . . . . 8
| |
| 3 | pire 15373 |
. . . . . . . 8
| |
| 4 | 2, 3 | elicc2i 10096 |
. . . . . . 7
|
| 5 | 1, 4 | sylib 122 |
. . . . . 6
|
| 6 | 5 | simp1d 1012 |
. . . . 5
|
| 7 | 6 | recnd 8136 |
. . . 4
|
| 8 | cosord.1 |
. . . . . . 7
| |
| 9 | 2, 3 | elicc2i 10096 |
. . . . . . 7
|
| 10 | 8, 9 | sylib 122 |
. . . . . 6
|
| 11 | 10 | simp1d 1012 |
. . . . 5
|
| 12 | 11 | recnd 8136 |
. . . 4
|
| 13 | subcos 12173 |
. . . 4
| |
| 14 | 7, 12, 13 | syl2anc 411 |
. . 3
|
| 15 | 2rp 9815 |
. . . 4
| |
| 16 | 6, 11 | readdcld 8137 |
. . . . . . . 8
|
| 17 | 16 | rehalfcld 9319 |
. . . . . . 7
|
| 18 | 17 | resincld 12149 |
. . . . . 6
|
| 19 | 2 | a1i 9 |
. . . . . . . . . . 11
|
| 20 | 10 | simp2d 1013 |
. . . . . . . . . . 11
|
| 21 | cosord.3 |
. . . . . . . . . . 11
| |
| 22 | 19, 11, 6, 20, 21 | lelttrd 8232 |
. . . . . . . . . 10
|
| 23 | 6, 11, 22, 20 | addgtge0d 8628 |
. . . . . . . . 9
|
| 24 | 2re 9141 |
. . . . . . . . . 10
| |
| 25 | 2pos 9162 |
. . . . . . . . . 10
| |
| 26 | divgt0 8980 |
. . . . . . . . . 10
| |
| 27 | 24, 25, 26 | mpanr12 439 |
. . . . . . . . 9
|
| 28 | 16, 23, 27 | syl2anc 411 |
. . . . . . . 8
|
| 29 | 3 | a1i 9 |
. . . . . . . . 9
|
| 30 | 11, 6, 6, 21 | ltadd2dd 8530 |
. . . . . . . . . . 11
|
| 31 | 7 | 2timesd 9315 |
. . . . . . . . . . 11
|
| 32 | 30, 31 | breqtrrd 4087 |
. . . . . . . . . 10
|
| 33 | 24 | a1i 9 |
. . . . . . . . . . 11
|
| 34 | 25 | a1i 9 |
. . . . . . . . . . 11
|
| 35 | ltdivmul 8984 |
. . . . . . . . . . 11
| |
| 36 | 16, 6, 33, 34, 35 | syl112anc 1254 |
. . . . . . . . . 10
|
| 37 | 32, 36 | mpbird 167 |
. . . . . . . . 9
|
| 38 | 5 | simp3d 1014 |
. . . . . . . . 9
|
| 39 | 17, 6, 29, 37, 38 | ltletrd 8531 |
. . . . . . . 8
|
| 40 | 0xr 8154 |
. . . . . . . . 9
| |
| 41 | 3 | rexri 8165 |
. . . . . . . . 9
|
| 42 | elioo2 10078 |
. . . . . . . . 9
| |
| 43 | 40, 41, 42 | mp2an 426 |
. . . . . . . 8
|
| 44 | 17, 28, 39, 43 | syl3anbrc 1184 |
. . . . . . 7
|
| 45 | sinq12gt0 15417 |
. . . . . . 7
| |
| 46 | 44, 45 | syl 14 |
. . . . . 6
|
| 47 | 18, 46 | elrpd 9850 |
. . . . 5
|
| 48 | 6, 11 | resubcld 8488 |
. . . . . . . 8
|
| 49 | 48 | rehalfcld 9319 |
. . . . . . 7
|
| 50 | 49 | resincld 12149 |
. . . . . 6
|
| 51 | 11, 6 | posdifd 8640 |
. . . . . . . . . 10
|
| 52 | 21, 51 | mpbid 147 |
. . . . . . . . 9
|
| 53 | divgt0 8980 |
. . . . . . . . . 10
| |
| 54 | 24, 25, 53 | mpanr12 439 |
. . . . . . . . 9
|
| 55 | 48, 52, 54 | syl2anc 411 |
. . . . . . . 8
|
| 56 | rehalfcl 9299 |
. . . . . . . . . 10
| |
| 57 | 3, 56 | mp1i 10 |
. . . . . . . . 9
|
| 58 | 6, 11 | subge02d 8645 |
. . . . . . . . . . . 12
|
| 59 | 20, 58 | mpbid 147 |
. . . . . . . . . . 11
|
| 60 | 48, 6, 29, 59, 38 | letrd 8231 |
. . . . . . . . . 10
|
| 61 | lediv1 8977 |
. . . . . . . . . . 11
| |
| 62 | 48, 29, 33, 34, 61 | syl112anc 1254 |
. . . . . . . . . 10
|
| 63 | 60, 62 | mpbid 147 |
. . . . . . . . 9
|
| 64 | pirp 15376 |
. . . . . . . . . 10
| |
| 65 | rphalflt 9840 |
. . . . . . . . . 10
| |
| 66 | 64, 65 | mp1i 10 |
. . . . . . . . 9
|
| 67 | 49, 57, 29, 63, 66 | lelttrd 8232 |
. . . . . . . 8
|
| 68 | elioo2 10078 |
. . . . . . . . 9
| |
| 69 | 40, 41, 68 | mp2an 426 |
. . . . . . . 8
|
| 70 | 49, 55, 67, 69 | syl3anbrc 1184 |
. . . . . . 7
|
| 71 | sinq12gt0 15417 |
. . . . . . 7
| |
| 72 | 70, 71 | syl 14 |
. . . . . 6
|
| 73 | 50, 72 | elrpd 9850 |
. . . . 5
|
| 74 | 47, 73 | rpmulcld 9870 |
. . . 4
|
| 75 | rpmulcl 9835 |
. . . 4
| |
| 76 | 15, 74, 75 | sylancr 414 |
. . 3
|
| 77 | 14, 76 | eqeltrd 2284 |
. 2
|
| 78 | 6 | recoscld 12150 |
. . 3
|
| 79 | 11 | recoscld 12150 |
. . 3
|
| 80 | difrp 9849 |
. . 3
| |
| 81 | 78, 79, 80 | syl2anc 411 |
. 2
|
| 82 | 77, 81 | mpbird 167 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 615 ax-in2 616 ax-io 711 ax-5 1471 ax-7 1472 ax-gen 1473 ax-ie1 1517 ax-ie2 1518 ax-8 1528 ax-10 1529 ax-11 1530 ax-i12 1531 ax-bndl 1533 ax-4 1534 ax-17 1550 ax-i9 1554 ax-ial 1558 ax-i5r 1559 ax-13 2180 ax-14 2181 ax-ext 2189 ax-coll 4175 ax-sep 4178 ax-nul 4186 ax-pow 4234 ax-pr 4269 ax-un 4498 ax-setind 4603 ax-iinf 4654 ax-cnex 8051 ax-resscn 8052 ax-1cn 8053 ax-1re 8054 ax-icn 8055 ax-addcl 8056 ax-addrcl 8057 ax-mulcl 8058 ax-mulrcl 8059 ax-addcom 8060 ax-mulcom 8061 ax-addass 8062 ax-mulass 8063 ax-distr 8064 ax-i2m1 8065 ax-0lt1 8066 ax-1rid 8067 ax-0id 8068 ax-rnegex 8069 ax-precex 8070 ax-cnre 8071 ax-pre-ltirr 8072 ax-pre-ltwlin 8073 ax-pre-lttrn 8074 ax-pre-apti 8075 ax-pre-ltadd 8076 ax-pre-mulgt0 8077 ax-pre-mulext 8078 ax-arch 8079 ax-caucvg 8080 ax-pre-suploc 8081 ax-addf 8082 ax-mulf 8083 |
| This theorem depends on definitions: df-bi 117 df-stab 833 df-dc 837 df-3or 982 df-3an 983 df-tru 1376 df-fal 1379 df-nf 1485 df-sb 1787 df-eu 2058 df-mo 2059 df-clab 2194 df-cleq 2200 df-clel 2203 df-nfc 2339 df-ne 2379 df-nel 2474 df-ral 2491 df-rex 2492 df-reu 2493 df-rmo 2494 df-rab 2495 df-v 2778 df-sbc 3006 df-csb 3102 df-dif 3176 df-un 3178 df-in 3180 df-ss 3187 df-nul 3469 df-if 3580 df-pw 3628 df-sn 3649 df-pr 3650 df-op 3652 df-uni 3865 df-int 3900 df-iun 3943 df-disj 4036 df-br 4060 df-opab 4122 df-mpt 4123 df-tr 4159 df-id 4358 df-po 4361 df-iso 4362 df-iord 4431 df-on 4433 df-ilim 4434 df-suc 4436 df-iom 4657 df-xp 4699 df-rel 4700 df-cnv 4701 df-co 4702 df-dm 4703 df-rn 4704 df-res 4705 df-ima 4706 df-iota 5251 df-fun 5292 df-fn 5293 df-f 5294 df-f1 5295 df-fo 5296 df-f1o 5297 df-fv 5298 df-isom 5299 df-riota 5922 df-ov 5970 df-oprab 5971 df-mpo 5972 df-of 6181 df-1st 6249 df-2nd 6250 df-recs 6414 df-irdg 6479 df-frec 6500 df-1o 6525 df-oadd 6529 df-er 6643 df-map 6760 df-pm 6761 df-en 6851 df-dom 6852 df-fin 6853 df-sup 7112 df-inf 7113 df-pnf 8144 df-mnf 8145 df-xr 8146 df-ltxr 8147 df-le 8148 df-sub 8280 df-neg 8281 df-reap 8683 df-ap 8690 df-div 8781 df-inn 9072 df-2 9130 df-3 9131 df-4 9132 df-5 9133 df-6 9134 df-7 9135 df-8 9136 df-9 9137 df-n0 9331 df-z 9408 df-uz 9684 df-q 9776 df-rp 9811 df-xneg 9929 df-xadd 9930 df-ioo 10049 df-ioc 10050 df-ico 10051 df-icc 10052 df-fz 10166 df-fzo 10300 df-seqfrec 10630 df-exp 10721 df-fac 10908 df-bc 10930 df-ihash 10958 df-shft 11241 df-cj 11268 df-re 11269 df-im 11270 df-rsqrt 11424 df-abs 11425 df-clim 11705 df-sumdc 11780 df-ef 12074 df-sin 12076 df-cos 12077 df-pi 12079 df-rest 13188 df-topgen 13207 df-psmet 14420 df-xmet 14421 df-met 14422 df-bl 14423 df-mopn 14424 df-top 14585 df-topon 14598 df-bases 14630 df-ntr 14683 df-cn 14775 df-cnp 14776 df-tx 14840 df-cncf 15158 df-limced 15243 df-dvap 15244 |
| This theorem is referenced by: cosq34lt1 15437 cos02pilt1 15438 cos0pilt1 15439 cos11 15440 ioocosf1o 15441 |
| Copyright terms: Public domain | W3C validator |