ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  cosordlem Unicode version

Theorem cosordlem 13410
Description: Cosine is decreasing over the closed interval from  0 to  pi. (Contributed by Mario Carneiro, 10-May-2014.)
Hypotheses
Ref Expression
cosord.1  |-  ( ph  ->  A  e.  ( 0 [,] pi ) )
cosord.2  |-  ( ph  ->  B  e.  ( 0 [,] pi ) )
cosord.3  |-  ( ph  ->  A  <  B )
Assertion
Ref Expression
cosordlem  |-  ( ph  ->  ( cos `  B
)  <  ( cos `  A ) )

Proof of Theorem cosordlem
StepHypRef Expression
1 cosord.2 . . . . . . 7  |-  ( ph  ->  B  e.  ( 0 [,] pi ) )
2 0re 7899 . . . . . . . 8  |-  0  e.  RR
3 pire 13347 . . . . . . . 8  |-  pi  e.  RR
42, 3elicc2i 9875 . . . . . . 7  |-  ( B  e.  ( 0 [,] pi )  <->  ( B  e.  RR  /\  0  <_  B  /\  B  <_  pi ) )
51, 4sylib 121 . . . . . 6  |-  ( ph  ->  ( B  e.  RR  /\  0  <_  B  /\  B  <_  pi ) )
65simp1d 999 . . . . 5  |-  ( ph  ->  B  e.  RR )
76recnd 7927 . . . 4  |-  ( ph  ->  B  e.  CC )
8 cosord.1 . . . . . . 7  |-  ( ph  ->  A  e.  ( 0 [,] pi ) )
92, 3elicc2i 9875 . . . . . . 7  |-  ( A  e.  ( 0 [,] pi )  <->  ( A  e.  RR  /\  0  <_  A  /\  A  <_  pi ) )
108, 9sylib 121 . . . . . 6  |-  ( ph  ->  ( A  e.  RR  /\  0  <_  A  /\  A  <_  pi ) )
1110simp1d 999 . . . . 5  |-  ( ph  ->  A  e.  RR )
1211recnd 7927 . . . 4  |-  ( ph  ->  A  e.  CC )
13 subcos 11688 . . . 4  |-  ( ( B  e.  CC  /\  A  e.  CC )  ->  ( ( cos `  A
)  -  ( cos `  B ) )  =  ( 2  x.  (
( sin `  (
( B  +  A
)  /  2 ) )  x.  ( sin `  ( ( B  -  A )  /  2
) ) ) ) )
147, 12, 13syl2anc 409 . . 3  |-  ( ph  ->  ( ( cos `  A
)  -  ( cos `  B ) )  =  ( 2  x.  (
( sin `  (
( B  +  A
)  /  2 ) )  x.  ( sin `  ( ( B  -  A )  /  2
) ) ) ) )
15 2rp 9594 . . . 4  |-  2  e.  RR+
166, 11readdcld 7928 . . . . . . . 8  |-  ( ph  ->  ( B  +  A
)  e.  RR )
1716rehalfcld 9103 . . . . . . 7  |-  ( ph  ->  ( ( B  +  A )  /  2
)  e.  RR )
1817resincld 11664 . . . . . 6  |-  ( ph  ->  ( sin `  (
( B  +  A
)  /  2 ) )  e.  RR )
192a1i 9 . . . . . . . . . . 11  |-  ( ph  ->  0  e.  RR )
2010simp2d 1000 . . . . . . . . . . 11  |-  ( ph  ->  0  <_  A )
21 cosord.3 . . . . . . . . . . 11  |-  ( ph  ->  A  <  B )
2219, 11, 6, 20, 21lelttrd 8023 . . . . . . . . . 10  |-  ( ph  ->  0  <  B )
236, 11, 22, 20addgtge0d 8418 . . . . . . . . 9  |-  ( ph  ->  0  <  ( B  +  A ) )
24 2re 8927 . . . . . . . . . 10  |-  2  e.  RR
25 2pos 8948 . . . . . . . . . 10  |-  0  <  2
26 divgt0 8767 . . . . . . . . . 10  |-  ( ( ( ( B  +  A )  e.  RR  /\  0  <  ( B  +  A ) )  /\  ( 2  e.  RR  /\  0  <  2 ) )  -> 
0  <  ( ( B  +  A )  /  2 ) )
2724, 25, 26mpanr12 436 . . . . . . . . 9  |-  ( ( ( B  +  A
)  e.  RR  /\  0  <  ( B  +  A ) )  -> 
0  <  ( ( B  +  A )  /  2 ) )
2816, 23, 27syl2anc 409 . . . . . . . 8  |-  ( ph  ->  0  <  ( ( B  +  A )  /  2 ) )
293a1i 9 . . . . . . . . 9  |-  ( ph  ->  pi  e.  RR )
3011, 6, 6, 21ltadd2dd 8320 . . . . . . . . . . 11  |-  ( ph  ->  ( B  +  A
)  <  ( B  +  B ) )
3172timesd 9099 . . . . . . . . . . 11  |-  ( ph  ->  ( 2  x.  B
)  =  ( B  +  B ) )
3230, 31breqtrrd 4010 . . . . . . . . . 10  |-  ( ph  ->  ( B  +  A
)  <  ( 2  x.  B ) )
3324a1i 9 . . . . . . . . . . 11  |-  ( ph  ->  2  e.  RR )
3425a1i 9 . . . . . . . . . . 11  |-  ( ph  ->  0  <  2 )
35 ltdivmul 8771 . . . . . . . . . . 11  |-  ( ( ( B  +  A
)  e.  RR  /\  B  e.  RR  /\  (
2  e.  RR  /\  0  <  2 ) )  ->  ( ( ( B  +  A )  /  2 )  < 
B  <->  ( B  +  A )  <  (
2  x.  B ) ) )
3616, 6, 33, 34, 35syl112anc 1232 . . . . . . . . . 10  |-  ( ph  ->  ( ( ( B  +  A )  / 
2 )  <  B  <->  ( B  +  A )  <  ( 2  x.  B ) ) )
3732, 36mpbird 166 . . . . . . . . 9  |-  ( ph  ->  ( ( B  +  A )  /  2
)  <  B )
385simp3d 1001 . . . . . . . . 9  |-  ( ph  ->  B  <_  pi )
3917, 6, 29, 37, 38ltletrd 8321 . . . . . . . 8  |-  ( ph  ->  ( ( B  +  A )  /  2
)  <  pi )
40 0xr 7945 . . . . . . . . 9  |-  0  e.  RR*
413rexri 7956 . . . . . . . . 9  |-  pi  e.  RR*
42 elioo2 9857 . . . . . . . . 9  |-  ( ( 0  e.  RR*  /\  pi  e.  RR* )  ->  (
( ( B  +  A )  /  2
)  e.  ( 0 (,) pi )  <->  ( (
( B  +  A
)  /  2 )  e.  RR  /\  0  <  ( ( B  +  A )  /  2
)  /\  ( ( B  +  A )  /  2 )  < 
pi ) ) )
4340, 41, 42mp2an 423 . . . . . . . 8  |-  ( ( ( B  +  A
)  /  2 )  e.  ( 0 (,) pi )  <->  ( (
( B  +  A
)  /  2 )  e.  RR  /\  0  <  ( ( B  +  A )  /  2
)  /\  ( ( B  +  A )  /  2 )  < 
pi ) )
4417, 28, 39, 43syl3anbrc 1171 . . . . . . 7  |-  ( ph  ->  ( ( B  +  A )  /  2
)  e.  ( 0 (,) pi ) )
45 sinq12gt0 13391 . . . . . . 7  |-  ( ( ( B  +  A
)  /  2 )  e.  ( 0 (,) pi )  ->  0  <  ( sin `  (
( B  +  A
)  /  2 ) ) )
4644, 45syl 14 . . . . . 6  |-  ( ph  ->  0  <  ( sin `  ( ( B  +  A )  /  2
) ) )
4718, 46elrpd 9629 . . . . 5  |-  ( ph  ->  ( sin `  (
( B  +  A
)  /  2 ) )  e.  RR+ )
486, 11resubcld 8279 . . . . . . . 8  |-  ( ph  ->  ( B  -  A
)  e.  RR )
4948rehalfcld 9103 . . . . . . 7  |-  ( ph  ->  ( ( B  -  A )  /  2
)  e.  RR )
5049resincld 11664 . . . . . 6  |-  ( ph  ->  ( sin `  (
( B  -  A
)  /  2 ) )  e.  RR )
5111, 6posdifd 8430 . . . . . . . . . 10  |-  ( ph  ->  ( A  <  B  <->  0  <  ( B  -  A ) ) )
5221, 51mpbid 146 . . . . . . . . 9  |-  ( ph  ->  0  <  ( B  -  A ) )
53 divgt0 8767 . . . . . . . . . 10  |-  ( ( ( ( B  -  A )  e.  RR  /\  0  <  ( B  -  A ) )  /\  ( 2  e.  RR  /\  0  <  2 ) )  -> 
0  <  ( ( B  -  A )  /  2 ) )
5424, 25, 53mpanr12 436 . . . . . . . . 9  |-  ( ( ( B  -  A
)  e.  RR  /\  0  <  ( B  -  A ) )  -> 
0  <  ( ( B  -  A )  /  2 ) )
5548, 52, 54syl2anc 409 . . . . . . . 8  |-  ( ph  ->  0  <  ( ( B  -  A )  /  2 ) )
56 rehalfcl 9084 . . . . . . . . . 10  |-  ( pi  e.  RR  ->  (
pi  /  2 )  e.  RR )
573, 56mp1i 10 . . . . . . . . 9  |-  ( ph  ->  ( pi  /  2
)  e.  RR )
586, 11subge02d 8435 . . . . . . . . . . . 12  |-  ( ph  ->  ( 0  <_  A  <->  ( B  -  A )  <_  B ) )
5920, 58mpbid 146 . . . . . . . . . . 11  |-  ( ph  ->  ( B  -  A
)  <_  B )
6048, 6, 29, 59, 38letrd 8022 . . . . . . . . . 10  |-  ( ph  ->  ( B  -  A
)  <_  pi )
61 lediv1 8764 . . . . . . . . . . 11  |-  ( ( ( B  -  A
)  e.  RR  /\  pi  e.  RR  /\  (
2  e.  RR  /\  0  <  2 ) )  ->  ( ( B  -  A )  <_  pi 
<->  ( ( B  -  A )  /  2
)  <_  ( pi  /  2 ) ) )
6248, 29, 33, 34, 61syl112anc 1232 . . . . . . . . . 10  |-  ( ph  ->  ( ( B  -  A )  <_  pi  <->  ( ( B  -  A
)  /  2 )  <_  ( pi  / 
2 ) ) )
6360, 62mpbid 146 . . . . . . . . 9  |-  ( ph  ->  ( ( B  -  A )  /  2
)  <_  ( pi  /  2 ) )
64 pirp 13350 . . . . . . . . . 10  |-  pi  e.  RR+
65 rphalflt 9619 . . . . . . . . . 10  |-  ( pi  e.  RR+  ->  ( pi 
/  2 )  < 
pi )
6664, 65mp1i 10 . . . . . . . . 9  |-  ( ph  ->  ( pi  /  2
)  <  pi )
6749, 57, 29, 63, 66lelttrd 8023 . . . . . . . 8  |-  ( ph  ->  ( ( B  -  A )  /  2
)  <  pi )
68 elioo2 9857 . . . . . . . . 9  |-  ( ( 0  e.  RR*  /\  pi  e.  RR* )  ->  (
( ( B  -  A )  /  2
)  e.  ( 0 (,) pi )  <->  ( (
( B  -  A
)  /  2 )  e.  RR  /\  0  <  ( ( B  -  A )  /  2
)  /\  ( ( B  -  A )  /  2 )  < 
pi ) ) )
6940, 41, 68mp2an 423 . . . . . . . 8  |-  ( ( ( B  -  A
)  /  2 )  e.  ( 0 (,) pi )  <->  ( (
( B  -  A
)  /  2 )  e.  RR  /\  0  <  ( ( B  -  A )  /  2
)  /\  ( ( B  -  A )  /  2 )  < 
pi ) )
7049, 55, 67, 69syl3anbrc 1171 . . . . . . 7  |-  ( ph  ->  ( ( B  -  A )  /  2
)  e.  ( 0 (,) pi ) )
71 sinq12gt0 13391 . . . . . . 7  |-  ( ( ( B  -  A
)  /  2 )  e.  ( 0 (,) pi )  ->  0  <  ( sin `  (
( B  -  A
)  /  2 ) ) )
7270, 71syl 14 . . . . . 6  |-  ( ph  ->  0  <  ( sin `  ( ( B  -  A )  /  2
) ) )
7350, 72elrpd 9629 . . . . 5  |-  ( ph  ->  ( sin `  (
( B  -  A
)  /  2 ) )  e.  RR+ )
7447, 73rpmulcld 9649 . . . 4  |-  ( ph  ->  ( ( sin `  (
( B  +  A
)  /  2 ) )  x.  ( sin `  ( ( B  -  A )  /  2
) ) )  e.  RR+ )
75 rpmulcl 9614 . . . 4  |-  ( ( 2  e.  RR+  /\  (
( sin `  (
( B  +  A
)  /  2 ) )  x.  ( sin `  ( ( B  -  A )  /  2
) ) )  e.  RR+ )  ->  ( 2  x.  ( ( sin `  ( ( B  +  A )  /  2
) )  x.  ( sin `  ( ( B  -  A )  / 
2 ) ) ) )  e.  RR+ )
7615, 74, 75sylancr 411 . . 3  |-  ( ph  ->  ( 2  x.  (
( sin `  (
( B  +  A
)  /  2 ) )  x.  ( sin `  ( ( B  -  A )  /  2
) ) ) )  e.  RR+ )
7714, 76eqeltrd 2243 . 2  |-  ( ph  ->  ( ( cos `  A
)  -  ( cos `  B ) )  e.  RR+ )
786recoscld 11665 . . 3  |-  ( ph  ->  ( cos `  B
)  e.  RR )
7911recoscld 11665 . . 3  |-  ( ph  ->  ( cos `  A
)  e.  RR )
80 difrp 9628 . . 3  |-  ( ( ( cos `  B
)  e.  RR  /\  ( cos `  A )  e.  RR )  -> 
( ( cos `  B
)  <  ( cos `  A )  <->  ( ( cos `  A )  -  ( cos `  B ) )  e.  RR+ )
)
8178, 79, 80syl2anc 409 . 2  |-  ( ph  ->  ( ( cos `  B
)  <  ( cos `  A )  <->  ( ( cos `  A )  -  ( cos `  B ) )  e.  RR+ )
)
8277, 81mpbird 166 1  |-  ( ph  ->  ( cos `  B
)  <  ( cos `  A ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 103    <-> wb 104    /\ w3a 968    = wceq 1343    e. wcel 2136   class class class wbr 3982   ` cfv 5188  (class class class)co 5842   CCcc 7751   RRcr 7752   0cc0 7753    + caddc 7756    x. cmul 7758   RR*cxr 7932    < clt 7933    <_ cle 7934    - cmin 8069    / cdiv 8568   2c2 8908   RR+crp 9589   (,)cioo 9824   [,]cicc 9827   sincsin 11585   cosccos 11586   picpi 11588
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-in1 604  ax-in2 605  ax-io 699  ax-5 1435  ax-7 1436  ax-gen 1437  ax-ie1 1481  ax-ie2 1482  ax-8 1492  ax-10 1493  ax-11 1494  ax-i12 1495  ax-bndl 1497  ax-4 1498  ax-17 1514  ax-i9 1518  ax-ial 1522  ax-i5r 1523  ax-13 2138  ax-14 2139  ax-ext 2147  ax-coll 4097  ax-sep 4100  ax-nul 4108  ax-pow 4153  ax-pr 4187  ax-un 4411  ax-setind 4514  ax-iinf 4565  ax-cnex 7844  ax-resscn 7845  ax-1cn 7846  ax-1re 7847  ax-icn 7848  ax-addcl 7849  ax-addrcl 7850  ax-mulcl 7851  ax-mulrcl 7852  ax-addcom 7853  ax-mulcom 7854  ax-addass 7855  ax-mulass 7856  ax-distr 7857  ax-i2m1 7858  ax-0lt1 7859  ax-1rid 7860  ax-0id 7861  ax-rnegex 7862  ax-precex 7863  ax-cnre 7864  ax-pre-ltirr 7865  ax-pre-ltwlin 7866  ax-pre-lttrn 7867  ax-pre-apti 7868  ax-pre-ltadd 7869  ax-pre-mulgt0 7870  ax-pre-mulext 7871  ax-arch 7872  ax-caucvg 7873  ax-pre-suploc 7874  ax-addf 7875  ax-mulf 7876
This theorem depends on definitions:  df-bi 116  df-stab 821  df-dc 825  df-3or 969  df-3an 970  df-tru 1346  df-fal 1349  df-nf 1449  df-sb 1751  df-eu 2017  df-mo 2018  df-clab 2152  df-cleq 2158  df-clel 2161  df-nfc 2297  df-ne 2337  df-nel 2432  df-ral 2449  df-rex 2450  df-reu 2451  df-rmo 2452  df-rab 2453  df-v 2728  df-sbc 2952  df-csb 3046  df-dif 3118  df-un 3120  df-in 3122  df-ss 3129  df-nul 3410  df-if 3521  df-pw 3561  df-sn 3582  df-pr 3583  df-op 3585  df-uni 3790  df-int 3825  df-iun 3868  df-disj 3960  df-br 3983  df-opab 4044  df-mpt 4045  df-tr 4081  df-id 4271  df-po 4274  df-iso 4275  df-iord 4344  df-on 4346  df-ilim 4347  df-suc 4349  df-iom 4568  df-xp 4610  df-rel 4611  df-cnv 4612  df-co 4613  df-dm 4614  df-rn 4615  df-res 4616  df-ima 4617  df-iota 5153  df-fun 5190  df-fn 5191  df-f 5192  df-f1 5193  df-fo 5194  df-f1o 5195  df-fv 5196  df-isom 5197  df-riota 5798  df-ov 5845  df-oprab 5846  df-mpo 5847  df-of 6050  df-1st 6108  df-2nd 6109  df-recs 6273  df-irdg 6338  df-frec 6359  df-1o 6384  df-oadd 6388  df-er 6501  df-map 6616  df-pm 6617  df-en 6707  df-dom 6708  df-fin 6709  df-sup 6949  df-inf 6950  df-pnf 7935  df-mnf 7936  df-xr 7937  df-ltxr 7938  df-le 7939  df-sub 8071  df-neg 8072  df-reap 8473  df-ap 8480  df-div 8569  df-inn 8858  df-2 8916  df-3 8917  df-4 8918  df-5 8919  df-6 8920  df-7 8921  df-8 8922  df-9 8923  df-n0 9115  df-z 9192  df-uz 9467  df-q 9558  df-rp 9590  df-xneg 9708  df-xadd 9709  df-ioo 9828  df-ioc 9829  df-ico 9830  df-icc 9831  df-fz 9945  df-fzo 10078  df-seqfrec 10381  df-exp 10455  df-fac 10639  df-bc 10661  df-ihash 10689  df-shft 10757  df-cj 10784  df-re 10785  df-im 10786  df-rsqrt 10940  df-abs 10941  df-clim 11220  df-sumdc 11295  df-ef 11589  df-sin 11591  df-cos 11592  df-pi 11594  df-rest 12558  df-topgen 12577  df-psmet 12627  df-xmet 12628  df-met 12629  df-bl 12630  df-mopn 12631  df-top 12636  df-topon 12649  df-bases 12681  df-ntr 12736  df-cn 12828  df-cnp 12829  df-tx 12893  df-cncf 13198  df-limced 13265  df-dvap 13266
This theorem is referenced by:  cosq34lt1  13411  cos02pilt1  13412  cos0pilt1  13413  cos11  13414  ioocosf1o  13415
  Copyright terms: Public domain W3C validator