| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > rexri | GIF version | ||
| Description: A standard real is an extended real (inference form.) (Contributed by David Moews, 28-Feb-2017.) |
| Ref | Expression |
|---|---|
| rexri.1 | ⊢ 𝐴 ∈ ℝ |
| Ref | Expression |
|---|---|
| rexri | ⊢ 𝐴 ∈ ℝ* |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | rexri.1 | . 2 ⊢ 𝐴 ∈ ℝ | |
| 2 | rexr 8091 | . 2 ⊢ (𝐴 ∈ ℝ → 𝐴 ∈ ℝ*) | |
| 3 | 1, 2 | ax-mp 5 | 1 ⊢ 𝐴 ∈ ℝ* |
| Colors of variables: wff set class |
| Syntax hints: ∈ wcel 2167 ℝcr 7897 ℝ*cxr 8079 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 710 ax-5 1461 ax-7 1462 ax-gen 1463 ax-ie1 1507 ax-ie2 1508 ax-8 1518 ax-10 1519 ax-11 1520 ax-i12 1521 ax-bndl 1523 ax-4 1524 ax-17 1540 ax-i9 1544 ax-ial 1548 ax-i5r 1549 ax-ext 2178 |
| This theorem depends on definitions: df-bi 117 df-tru 1367 df-nf 1475 df-sb 1777 df-clab 2183 df-cleq 2189 df-clel 2192 df-nfc 2328 df-v 2765 df-un 3161 df-in 3163 df-ss 3170 df-xr 8084 |
| This theorem is referenced by: 1xr 8104 cos12dec 11952 halfleoddlt 12078 reeff1oleme 15116 reeff1o 15117 sin0pilem2 15126 neghalfpirx 15138 sincosq1sgn 15170 sincosq2sgn 15171 sincosq4sgn 15173 sinq12gt0 15174 cosq14gt0 15176 cosq23lt0 15177 coseq0q4123 15178 coseq00topi 15179 coseq0negpitopi 15180 cosordlem 15193 cosq34lt1 15194 cos02pilt1 15195 cos0pilt1 15196 ioocosf1o 15198 negpitopissre 15199 iooref1o 15791 taupi 15830 |
| Copyright terms: Public domain | W3C validator |