![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > rexri | GIF version |
Description: A standard real is an extended real (inference form.) (Contributed by David Moews, 28-Feb-2017.) |
Ref | Expression |
---|---|
rexri.1 | ⊢ 𝐴 ∈ ℝ |
Ref | Expression |
---|---|
rexri | ⊢ 𝐴 ∈ ℝ* |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | rexri.1 | . 2 ⊢ 𝐴 ∈ ℝ | |
2 | rexr 8065 | . 2 ⊢ (𝐴 ∈ ℝ → 𝐴 ∈ ℝ*) | |
3 | 1, 2 | ax-mp 5 | 1 ⊢ 𝐴 ∈ ℝ* |
Colors of variables: wff set class |
Syntax hints: ∈ wcel 2164 ℝcr 7871 ℝ*cxr 8053 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 710 ax-5 1458 ax-7 1459 ax-gen 1460 ax-ie1 1504 ax-ie2 1505 ax-8 1515 ax-10 1516 ax-11 1517 ax-i12 1518 ax-bndl 1520 ax-4 1521 ax-17 1537 ax-i9 1541 ax-ial 1545 ax-i5r 1546 ax-ext 2175 |
This theorem depends on definitions: df-bi 117 df-tru 1367 df-nf 1472 df-sb 1774 df-clab 2180 df-cleq 2186 df-clel 2189 df-nfc 2325 df-v 2762 df-un 3157 df-in 3159 df-ss 3166 df-xr 8058 |
This theorem is referenced by: 1xr 8078 cos12dec 11911 halfleoddlt 12035 reeff1oleme 14907 reeff1o 14908 sin0pilem2 14917 neghalfpirx 14929 sincosq1sgn 14961 sincosq2sgn 14962 sincosq4sgn 14964 sinq12gt0 14965 cosq14gt0 14967 cosq23lt0 14968 coseq0q4123 14969 coseq00topi 14970 coseq0negpitopi 14971 cosordlem 14984 cosq34lt1 14985 cos02pilt1 14986 cos0pilt1 14987 ioocosf1o 14989 negpitopissre 14990 iooref1o 15524 taupi 15563 |
Copyright terms: Public domain | W3C validator |