ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  rexri GIF version

Theorem rexri 8079
Description: A standard real is an extended real (inference form.) (Contributed by David Moews, 28-Feb-2017.)
Hypothesis
Ref Expression
rexri.1 𝐴 ∈ ℝ
Assertion
Ref Expression
rexri 𝐴 ∈ ℝ*

Proof of Theorem rexri
StepHypRef Expression
1 rexri.1 . 2 𝐴 ∈ ℝ
2 rexr 8067 . 2 (𝐴 ∈ ℝ → 𝐴 ∈ ℝ*)
31, 2ax-mp 5 1 𝐴 ∈ ℝ*
Colors of variables: wff set class
Syntax hints:  wcel 2164  cr 7873  *cxr 8055
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 710  ax-5 1458  ax-7 1459  ax-gen 1460  ax-ie1 1504  ax-ie2 1505  ax-8 1515  ax-10 1516  ax-11 1517  ax-i12 1518  ax-bndl 1520  ax-4 1521  ax-17 1537  ax-i9 1541  ax-ial 1545  ax-i5r 1546  ax-ext 2175
This theorem depends on definitions:  df-bi 117  df-tru 1367  df-nf 1472  df-sb 1774  df-clab 2180  df-cleq 2186  df-clel 2189  df-nfc 2325  df-v 2762  df-un 3158  df-in 3160  df-ss 3167  df-xr 8060
This theorem is referenced by:  1xr  8080  cos12dec  11914  halfleoddlt  12038  reeff1oleme  14948  reeff1o  14949  sin0pilem2  14958  neghalfpirx  14970  sincosq1sgn  15002  sincosq2sgn  15003  sincosq4sgn  15005  sinq12gt0  15006  cosq14gt0  15008  cosq23lt0  15009  coseq0q4123  15010  coseq00topi  15011  coseq0negpitopi  15012  cosordlem  15025  cosq34lt1  15026  cos02pilt1  15027  cos0pilt1  15028  ioocosf1o  15030  negpitopissre  15031  iooref1o  15594  taupi  15633
  Copyright terms: Public domain W3C validator