![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > rexri | GIF version |
Description: A standard real is an extended real (inference form.) (Contributed by David Moews, 28-Feb-2017.) |
Ref | Expression |
---|---|
rexri.1 | ⊢ 𝐴 ∈ ℝ |
Ref | Expression |
---|---|
rexri | ⊢ 𝐴 ∈ ℝ* |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | rexri.1 | . 2 ⊢ 𝐴 ∈ ℝ | |
2 | rexr 8034 | . 2 ⊢ (𝐴 ∈ ℝ → 𝐴 ∈ ℝ*) | |
3 | 1, 2 | ax-mp 5 | 1 ⊢ 𝐴 ∈ ℝ* |
Colors of variables: wff set class |
Syntax hints: ∈ wcel 2160 ℝcr 7841 ℝ*cxr 8022 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 710 ax-5 1458 ax-7 1459 ax-gen 1460 ax-ie1 1504 ax-ie2 1505 ax-8 1515 ax-10 1516 ax-11 1517 ax-i12 1518 ax-bndl 1520 ax-4 1521 ax-17 1537 ax-i9 1541 ax-ial 1545 ax-i5r 1546 ax-ext 2171 |
This theorem depends on definitions: df-bi 117 df-tru 1367 df-nf 1472 df-sb 1774 df-clab 2176 df-cleq 2182 df-clel 2185 df-nfc 2321 df-v 2754 df-un 3148 df-in 3150 df-ss 3157 df-xr 8027 |
This theorem is referenced by: 1xr 8047 cos12dec 11810 halfleoddlt 11934 reeff1oleme 14670 reeff1o 14671 sin0pilem2 14680 neghalfpirx 14692 sincosq1sgn 14724 sincosq2sgn 14725 sincosq4sgn 14727 sinq12gt0 14728 cosq14gt0 14730 cosq23lt0 14731 coseq0q4123 14732 coseq00topi 14733 coseq0negpitopi 14734 cosordlem 14747 cosq34lt1 14748 cos02pilt1 14749 cos0pilt1 14750 ioocosf1o 14752 negpitopissre 14753 iooref1o 15261 taupi 15300 |
Copyright terms: Public domain | W3C validator |