![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > rexri | GIF version |
Description: A standard real is an extended real (inference form.) (Contributed by David Moews, 28-Feb-2017.) |
Ref | Expression |
---|---|
rexri.1 | ⊢ 𝐴 ∈ ℝ |
Ref | Expression |
---|---|
rexri | ⊢ 𝐴 ∈ ℝ* |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | rexri.1 | . 2 ⊢ 𝐴 ∈ ℝ | |
2 | rexr 8067 | . 2 ⊢ (𝐴 ∈ ℝ → 𝐴 ∈ ℝ*) | |
3 | 1, 2 | ax-mp 5 | 1 ⊢ 𝐴 ∈ ℝ* |
Colors of variables: wff set class |
Syntax hints: ∈ wcel 2164 ℝcr 7873 ℝ*cxr 8055 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 710 ax-5 1458 ax-7 1459 ax-gen 1460 ax-ie1 1504 ax-ie2 1505 ax-8 1515 ax-10 1516 ax-11 1517 ax-i12 1518 ax-bndl 1520 ax-4 1521 ax-17 1537 ax-i9 1541 ax-ial 1545 ax-i5r 1546 ax-ext 2175 |
This theorem depends on definitions: df-bi 117 df-tru 1367 df-nf 1472 df-sb 1774 df-clab 2180 df-cleq 2186 df-clel 2189 df-nfc 2325 df-v 2762 df-un 3158 df-in 3160 df-ss 3167 df-xr 8060 |
This theorem is referenced by: 1xr 8080 cos12dec 11914 halfleoddlt 12038 reeff1oleme 14948 reeff1o 14949 sin0pilem2 14958 neghalfpirx 14970 sincosq1sgn 15002 sincosq2sgn 15003 sincosq4sgn 15005 sinq12gt0 15006 cosq14gt0 15008 cosq23lt0 15009 coseq0q4123 15010 coseq00topi 15011 coseq0negpitopi 15012 cosordlem 15025 cosq34lt1 15026 cos02pilt1 15027 cos0pilt1 15028 ioocosf1o 15030 negpitopissre 15031 iooref1o 15594 taupi 15633 |
Copyright terms: Public domain | W3C validator |