| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > rexri | GIF version | ||
| Description: A standard real is an extended real (inference form.) (Contributed by David Moews, 28-Feb-2017.) |
| Ref | Expression |
|---|---|
| rexri.1 | ⊢ 𝐴 ∈ ℝ |
| Ref | Expression |
|---|---|
| rexri | ⊢ 𝐴 ∈ ℝ* |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | rexri.1 | . 2 ⊢ 𝐴 ∈ ℝ | |
| 2 | rexr 8072 | . 2 ⊢ (𝐴 ∈ ℝ → 𝐴 ∈ ℝ*) | |
| 3 | 1, 2 | ax-mp 5 | 1 ⊢ 𝐴 ∈ ℝ* |
| Colors of variables: wff set class |
| Syntax hints: ∈ wcel 2167 ℝcr 7878 ℝ*cxr 8060 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 710 ax-5 1461 ax-7 1462 ax-gen 1463 ax-ie1 1507 ax-ie2 1508 ax-8 1518 ax-10 1519 ax-11 1520 ax-i12 1521 ax-bndl 1523 ax-4 1524 ax-17 1540 ax-i9 1544 ax-ial 1548 ax-i5r 1549 ax-ext 2178 |
| This theorem depends on definitions: df-bi 117 df-tru 1367 df-nf 1475 df-sb 1777 df-clab 2183 df-cleq 2189 df-clel 2192 df-nfc 2328 df-v 2765 df-un 3161 df-in 3163 df-ss 3170 df-xr 8065 |
| This theorem is referenced by: 1xr 8085 cos12dec 11933 halfleoddlt 12059 reeff1oleme 15008 reeff1o 15009 sin0pilem2 15018 neghalfpirx 15030 sincosq1sgn 15062 sincosq2sgn 15063 sincosq4sgn 15065 sinq12gt0 15066 cosq14gt0 15068 cosq23lt0 15069 coseq0q4123 15070 coseq00topi 15071 coseq0negpitopi 15072 cosordlem 15085 cosq34lt1 15086 cos02pilt1 15087 cos0pilt1 15088 ioocosf1o 15090 negpitopissre 15091 iooref1o 15678 taupi 15717 |
| Copyright terms: Public domain | W3C validator |