| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > rexri | GIF version | ||
| Description: A standard real is an extended real (inference form.) (Contributed by David Moews, 28-Feb-2017.) |
| Ref | Expression |
|---|---|
| rexri.1 | ⊢ 𝐴 ∈ ℝ |
| Ref | Expression |
|---|---|
| rexri | ⊢ 𝐴 ∈ ℝ* |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | rexri.1 | . 2 ⊢ 𝐴 ∈ ℝ | |
| 2 | rexr 8131 | . 2 ⊢ (𝐴 ∈ ℝ → 𝐴 ∈ ℝ*) | |
| 3 | 1, 2 | ax-mp 5 | 1 ⊢ 𝐴 ∈ ℝ* |
| Colors of variables: wff set class |
| Syntax hints: ∈ wcel 2177 ℝcr 7937 ℝ*cxr 8119 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 711 ax-5 1471 ax-7 1472 ax-gen 1473 ax-ie1 1517 ax-ie2 1518 ax-8 1528 ax-10 1529 ax-11 1530 ax-i12 1531 ax-bndl 1533 ax-4 1534 ax-17 1550 ax-i9 1554 ax-ial 1558 ax-i5r 1559 ax-ext 2188 |
| This theorem depends on definitions: df-bi 117 df-tru 1376 df-nf 1485 df-sb 1787 df-clab 2193 df-cleq 2199 df-clel 2202 df-nfc 2338 df-v 2775 df-un 3172 df-in 3174 df-ss 3181 df-xr 8124 |
| This theorem is referenced by: 1xr 8144 cos12dec 12129 halfleoddlt 12255 reeff1oleme 15294 reeff1o 15295 sin0pilem2 15304 neghalfpirx 15316 sincosq1sgn 15348 sincosq2sgn 15349 sincosq4sgn 15351 sinq12gt0 15352 cosq14gt0 15354 cosq23lt0 15355 coseq0q4123 15356 coseq00topi 15357 coseq0negpitopi 15358 cosordlem 15371 cosq34lt1 15372 cos02pilt1 15373 cos0pilt1 15374 ioocosf1o 15376 negpitopissre 15377 iooref1o 16088 taupi 16127 |
| Copyright terms: Public domain | W3C validator |