| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > rexri | GIF version | ||
| Description: A standard real is an extended real (inference form.) (Contributed by David Moews, 28-Feb-2017.) |
| Ref | Expression |
|---|---|
| rexri.1 | ⊢ 𝐴 ∈ ℝ |
| Ref | Expression |
|---|---|
| rexri | ⊢ 𝐴 ∈ ℝ* |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | rexri.1 | . 2 ⊢ 𝐴 ∈ ℝ | |
| 2 | rexr 8180 | . 2 ⊢ (𝐴 ∈ ℝ → 𝐴 ∈ ℝ*) | |
| 3 | 1, 2 | ax-mp 5 | 1 ⊢ 𝐴 ∈ ℝ* |
| Colors of variables: wff set class |
| Syntax hints: ∈ wcel 2200 ℝcr 7986 ℝ*cxr 8168 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 714 ax-5 1493 ax-7 1494 ax-gen 1495 ax-ie1 1539 ax-ie2 1540 ax-8 1550 ax-10 1551 ax-11 1552 ax-i12 1553 ax-bndl 1555 ax-4 1556 ax-17 1572 ax-i9 1576 ax-ial 1580 ax-i5r 1581 ax-ext 2211 |
| This theorem depends on definitions: df-bi 117 df-tru 1398 df-nf 1507 df-sb 1809 df-clab 2216 df-cleq 2222 df-clel 2225 df-nfc 2361 df-v 2801 df-un 3201 df-in 3203 df-ss 3210 df-xr 8173 |
| This theorem is referenced by: 1xr 8193 cos12dec 12265 halfleoddlt 12391 reeff1oleme 15431 reeff1o 15432 sin0pilem2 15441 neghalfpirx 15453 sincosq1sgn 15485 sincosq2sgn 15486 sincosq4sgn 15488 sinq12gt0 15489 cosq14gt0 15491 cosq23lt0 15492 coseq0q4123 15493 coseq00topi 15494 coseq0negpitopi 15495 cosordlem 15508 cosq34lt1 15509 cos02pilt1 15510 cos0pilt1 15511 ioocosf1o 15513 negpitopissre 15514 iooref1o 16333 taupi 16372 |
| Copyright terms: Public domain | W3C validator |