ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  rexri GIF version

Theorem rexri 8015
Description: A standard real is an extended real (inference form.) (Contributed by David Moews, 28-Feb-2017.)
Hypothesis
Ref Expression
rexri.1 𝐴 ∈ ℝ
Assertion
Ref Expression
rexri 𝐴 ∈ ℝ*

Proof of Theorem rexri
StepHypRef Expression
1 rexri.1 . 2 𝐴 ∈ ℝ
2 rexr 8003 . 2 (𝐴 ∈ ℝ → 𝐴 ∈ ℝ*)
31, 2ax-mp 5 1 𝐴 ∈ ℝ*
Colors of variables: wff set class
Syntax hints:  wcel 2148  cr 7810  *cxr 7991
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 709  ax-5 1447  ax-7 1448  ax-gen 1449  ax-ie1 1493  ax-ie2 1494  ax-8 1504  ax-10 1505  ax-11 1506  ax-i12 1507  ax-bndl 1509  ax-4 1510  ax-17 1526  ax-i9 1530  ax-ial 1534  ax-i5r 1535  ax-ext 2159
This theorem depends on definitions:  df-bi 117  df-tru 1356  df-nf 1461  df-sb 1763  df-clab 2164  df-cleq 2170  df-clel 2173  df-nfc 2308  df-v 2740  df-un 3134  df-in 3136  df-ss 3143  df-xr 7996
This theorem is referenced by:  1xr  8016  cos12dec  11775  halfleoddlt  11899  reeff1oleme  14196  reeff1o  14197  sin0pilem2  14206  neghalfpirx  14218  sincosq1sgn  14250  sincosq2sgn  14251  sincosq4sgn  14253  sinq12gt0  14254  cosq14gt0  14256  cosq23lt0  14257  coseq0q4123  14258  coseq00topi  14259  coseq0negpitopi  14260  cosordlem  14273  cosq34lt1  14274  cos02pilt1  14275  cos0pilt1  14276  ioocosf1o  14278  negpitopissre  14279  iooref1o  14785  taupi  14823
  Copyright terms: Public domain W3C validator