| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > rexri | GIF version | ||
| Description: A standard real is an extended real (inference form.) (Contributed by David Moews, 28-Feb-2017.) |
| Ref | Expression |
|---|---|
| rexri.1 | ⊢ 𝐴 ∈ ℝ |
| Ref | Expression |
|---|---|
| rexri | ⊢ 𝐴 ∈ ℝ* |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | rexri.1 | . 2 ⊢ 𝐴 ∈ ℝ | |
| 2 | rexr 8200 | . 2 ⊢ (𝐴 ∈ ℝ → 𝐴 ∈ ℝ*) | |
| 3 | 1, 2 | ax-mp 5 | 1 ⊢ 𝐴 ∈ ℝ* |
| Colors of variables: wff set class |
| Syntax hints: ∈ wcel 2200 ℝcr 8006 ℝ*cxr 8188 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 714 ax-5 1493 ax-7 1494 ax-gen 1495 ax-ie1 1539 ax-ie2 1540 ax-8 1550 ax-10 1551 ax-11 1552 ax-i12 1553 ax-bndl 1555 ax-4 1556 ax-17 1572 ax-i9 1576 ax-ial 1580 ax-i5r 1581 ax-ext 2211 |
| This theorem depends on definitions: df-bi 117 df-tru 1398 df-nf 1507 df-sb 1809 df-clab 2216 df-cleq 2222 df-clel 2225 df-nfc 2361 df-v 2801 df-un 3201 df-in 3203 df-ss 3210 df-xr 8193 |
| This theorem is referenced by: 1xr 8213 cos12dec 12287 halfleoddlt 12413 reeff1oleme 15454 reeff1o 15455 sin0pilem2 15464 neghalfpirx 15476 sincosq1sgn 15508 sincosq2sgn 15509 sincosq4sgn 15511 sinq12gt0 15512 cosq14gt0 15514 cosq23lt0 15515 coseq0q4123 15516 coseq00topi 15517 coseq0negpitopi 15518 cosordlem 15531 cosq34lt1 15532 cos02pilt1 15533 cos0pilt1 15534 ioocosf1o 15536 negpitopissre 15537 iooref1o 16432 taupi 16471 |
| Copyright terms: Public domain | W3C validator |