Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > rexri | GIF version |
Description: A standard real is an extended real (inference form.) (Contributed by David Moews, 28-Feb-2017.) |
Ref | Expression |
---|---|
rexri.1 | ⊢ 𝐴 ∈ ℝ |
Ref | Expression |
---|---|
rexri | ⊢ 𝐴 ∈ ℝ* |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | rexri.1 | . 2 ⊢ 𝐴 ∈ ℝ | |
2 | rexr 7965 | . 2 ⊢ (𝐴 ∈ ℝ → 𝐴 ∈ ℝ*) | |
3 | 1, 2 | ax-mp 5 | 1 ⊢ 𝐴 ∈ ℝ* |
Colors of variables: wff set class |
Syntax hints: ∈ wcel 2141 ℝcr 7773 ℝ*cxr 7953 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-io 704 ax-5 1440 ax-7 1441 ax-gen 1442 ax-ie1 1486 ax-ie2 1487 ax-8 1497 ax-10 1498 ax-11 1499 ax-i12 1500 ax-bndl 1502 ax-4 1503 ax-17 1519 ax-i9 1523 ax-ial 1527 ax-i5r 1528 ax-ext 2152 |
This theorem depends on definitions: df-bi 116 df-tru 1351 df-nf 1454 df-sb 1756 df-clab 2157 df-cleq 2163 df-clel 2166 df-nfc 2301 df-v 2732 df-un 3125 df-in 3127 df-ss 3134 df-xr 7958 |
This theorem is referenced by: 1xr 7978 cos12dec 11730 halfleoddlt 11853 reeff1oleme 13487 reeff1o 13488 sin0pilem2 13497 neghalfpirx 13509 sincosq1sgn 13541 sincosq2sgn 13542 sincosq4sgn 13544 sinq12gt0 13545 cosq14gt0 13547 cosq23lt0 13548 coseq0q4123 13549 coseq00topi 13550 coseq0negpitopi 13551 cosordlem 13564 cosq34lt1 13565 cos02pilt1 13566 cos0pilt1 13567 ioocosf1o 13569 negpitopissre 13570 iooref1o 14066 taupi 14102 |
Copyright terms: Public domain | W3C validator |