ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  rexri GIF version

Theorem rexri 8103
Description: A standard real is an extended real (inference form.) (Contributed by David Moews, 28-Feb-2017.)
Hypothesis
Ref Expression
rexri.1 𝐴 ∈ ℝ
Assertion
Ref Expression
rexri 𝐴 ∈ ℝ*

Proof of Theorem rexri
StepHypRef Expression
1 rexri.1 . 2 𝐴 ∈ ℝ
2 rexr 8091 . 2 (𝐴 ∈ ℝ → 𝐴 ∈ ℝ*)
31, 2ax-mp 5 1 𝐴 ∈ ℝ*
Colors of variables: wff set class
Syntax hints:  wcel 2167  cr 7897  *cxr 8079
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 710  ax-5 1461  ax-7 1462  ax-gen 1463  ax-ie1 1507  ax-ie2 1508  ax-8 1518  ax-10 1519  ax-11 1520  ax-i12 1521  ax-bndl 1523  ax-4 1524  ax-17 1540  ax-i9 1544  ax-ial 1548  ax-i5r 1549  ax-ext 2178
This theorem depends on definitions:  df-bi 117  df-tru 1367  df-nf 1475  df-sb 1777  df-clab 2183  df-cleq 2189  df-clel 2192  df-nfc 2328  df-v 2765  df-un 3161  df-in 3163  df-ss 3170  df-xr 8084
This theorem is referenced by:  1xr  8104  cos12dec  11952  halfleoddlt  12078  reeff1oleme  15116  reeff1o  15117  sin0pilem2  15126  neghalfpirx  15138  sincosq1sgn  15170  sincosq2sgn  15171  sincosq4sgn  15173  sinq12gt0  15174  cosq14gt0  15176  cosq23lt0  15177  coseq0q4123  15178  coseq00topi  15179  coseq0negpitopi  15180  cosordlem  15193  cosq34lt1  15194  cos02pilt1  15195  cos0pilt1  15196  ioocosf1o  15198  negpitopissre  15199  iooref1o  15791  taupi  15830
  Copyright terms: Public domain W3C validator