Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > rexri | GIF version |
Description: A standard real is an extended real (inference form.) (Contributed by David Moews, 28-Feb-2017.) |
Ref | Expression |
---|---|
rexri.1 | ⊢ 𝐴 ∈ ℝ |
Ref | Expression |
---|---|
rexri | ⊢ 𝐴 ∈ ℝ* |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | rexri.1 | . 2 ⊢ 𝐴 ∈ ℝ | |
2 | rexr 7944 | . 2 ⊢ (𝐴 ∈ ℝ → 𝐴 ∈ ℝ*) | |
3 | 1, 2 | ax-mp 5 | 1 ⊢ 𝐴 ∈ ℝ* |
Colors of variables: wff set class |
Syntax hints: ∈ wcel 2136 ℝcr 7752 ℝ*cxr 7932 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-io 699 ax-5 1435 ax-7 1436 ax-gen 1437 ax-ie1 1481 ax-ie2 1482 ax-8 1492 ax-10 1493 ax-11 1494 ax-i12 1495 ax-bndl 1497 ax-4 1498 ax-17 1514 ax-i9 1518 ax-ial 1522 ax-i5r 1523 ax-ext 2147 |
This theorem depends on definitions: df-bi 116 df-tru 1346 df-nf 1449 df-sb 1751 df-clab 2152 df-cleq 2158 df-clel 2161 df-nfc 2297 df-v 2728 df-un 3120 df-in 3122 df-ss 3129 df-xr 7937 |
This theorem is referenced by: 1xr 7957 cos12dec 11708 halfleoddlt 11831 reeff1oleme 13333 reeff1o 13334 sin0pilem2 13343 neghalfpirx 13355 sincosq1sgn 13387 sincosq2sgn 13388 sincosq4sgn 13390 sinq12gt0 13391 cosq14gt0 13393 cosq23lt0 13394 coseq0q4123 13395 coseq00topi 13396 coseq0negpitopi 13397 cosordlem 13410 cosq34lt1 13411 cos02pilt1 13412 cos0pilt1 13413 ioocosf1o 13415 negpitopissre 13416 iooref1o 13913 taupi 13949 |
Copyright terms: Public domain | W3C validator |