ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  rngmgp Unicode version

Theorem rngmgp 13315
Description: A non-unital ring is a semigroup under multiplication. (Contributed by AV, 17-Feb-2020.)
Hypothesis
Ref Expression
rngmgp.g  |-  G  =  (mulGrp `  R )
Assertion
Ref Expression
rngmgp  |-  ( R  e. Rng  ->  G  e. Smgrp )

Proof of Theorem rngmgp
Dummy variables  x  y  z are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 eqid 2189 . . 3  |-  ( Base `  R )  =  (
Base `  R )
2 rngmgp.g . . 3  |-  G  =  (mulGrp `  R )
3 eqid 2189 . . 3  |-  ( +g  `  R )  =  ( +g  `  R )
4 eqid 2189 . . 3  |-  ( .r
`  R )  =  ( .r `  R
)
51, 2, 3, 4isrng 13313 . 2  |-  ( R  e. Rng 
<->  ( R  e.  Abel  /\  G  e. Smgrp  /\  A. x  e.  ( Base `  R
) A. y  e.  ( Base `  R
) A. z  e.  ( Base `  R
) ( ( x ( .r `  R
) ( y ( +g  `  R ) z ) )  =  ( ( x ( .r `  R ) y ) ( +g  `  R ) ( x ( .r `  R
) z ) )  /\  ( ( x ( +g  `  R
) y ) ( .r `  R ) z )  =  ( ( x ( .r
`  R ) z ) ( +g  `  R
) ( y ( .r `  R ) z ) ) ) ) )
65simp2bi 1015 1  |-  ( R  e. Rng  ->  G  e. Smgrp )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 104    = wceq 1364    e. wcel 2160   A.wral 2468   ` cfv 5238  (class class class)co 5900   Basecbs 12523   +g cplusg 12600   .rcmulr 12601  Smgrpcsgrp 12887   Abelcabl 13249  mulGrpcmgp 13299  Rngcrng 13311
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 710  ax-5 1458  ax-7 1459  ax-gen 1460  ax-ie1 1504  ax-ie2 1505  ax-8 1515  ax-10 1516  ax-11 1517  ax-i12 1518  ax-bndl 1520  ax-4 1521  ax-17 1537  ax-i9 1541  ax-ial 1545  ax-i5r 1546  ax-13 2162  ax-14 2163  ax-ext 2171  ax-sep 4139  ax-pow 4195  ax-pr 4230  ax-un 4454  ax-cnex 7937  ax-resscn 7938  ax-1re 7940  ax-addrcl 7943
This theorem depends on definitions:  df-bi 117  df-3an 982  df-tru 1367  df-nf 1472  df-sb 1774  df-eu 2041  df-mo 2042  df-clab 2176  df-cleq 2182  df-clel 2185  df-nfc 2321  df-ral 2473  df-rex 2474  df-rab 2477  df-v 2754  df-sbc 2978  df-un 3148  df-in 3150  df-ss 3157  df-pw 3595  df-sn 3616  df-pr 3617  df-op 3619  df-uni 3828  df-int 3863  df-br 4022  df-opab 4083  df-mpt 4084  df-id 4314  df-xp 4653  df-rel 4654  df-cnv 4655  df-co 4656  df-dm 4657  df-rn 4658  df-res 4659  df-iota 5199  df-fun 5240  df-fn 5241  df-fv 5246  df-ov 5903  df-inn 8955  df-2 9013  df-3 9014  df-ndx 12526  df-slot 12527  df-base 12529  df-plusg 12613  df-mulr 12614  df-rng 13312
This theorem is referenced by:  rngmgpf  13316  rngass  13318  rngcl  13323  rnglidlmsgrp  13838
  Copyright terms: Public domain W3C validator