ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  rngmgp Unicode version

Theorem rngmgp 13568
Description: A non-unital ring is a semigroup under multiplication. (Contributed by AV, 17-Feb-2020.)
Hypothesis
Ref Expression
rngmgp.g  |-  G  =  (mulGrp `  R )
Assertion
Ref Expression
rngmgp  |-  ( R  e. Rng  ->  G  e. Smgrp )

Proof of Theorem rngmgp
Dummy variables  x  y  z are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 eqid 2196 . . 3  |-  ( Base `  R )  =  (
Base `  R )
2 rngmgp.g . . 3  |-  G  =  (mulGrp `  R )
3 eqid 2196 . . 3  |-  ( +g  `  R )  =  ( +g  `  R )
4 eqid 2196 . . 3  |-  ( .r
`  R )  =  ( .r `  R
)
51, 2, 3, 4isrng 13566 . 2  |-  ( R  e. Rng 
<->  ( R  e.  Abel  /\  G  e. Smgrp  /\  A. x  e.  ( Base `  R
) A. y  e.  ( Base `  R
) A. z  e.  ( Base `  R
) ( ( x ( .r `  R
) ( y ( +g  `  R ) z ) )  =  ( ( x ( .r `  R ) y ) ( +g  `  R ) ( x ( .r `  R
) z ) )  /\  ( ( x ( +g  `  R
) y ) ( .r `  R ) z )  =  ( ( x ( .r
`  R ) z ) ( +g  `  R
) ( y ( .r `  R ) z ) ) ) ) )
65simp2bi 1015 1  |-  ( R  e. Rng  ->  G  e. Smgrp )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 104    = wceq 1364    e. wcel 2167   A.wral 2475   ` cfv 5259  (class class class)co 5925   Basecbs 12703   +g cplusg 12780   .rcmulr 12781  Smgrpcsgrp 13103   Abelcabl 13491  mulGrpcmgp 13552  Rngcrng 13564
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 710  ax-5 1461  ax-7 1462  ax-gen 1463  ax-ie1 1507  ax-ie2 1508  ax-8 1518  ax-10 1519  ax-11 1520  ax-i12 1521  ax-bndl 1523  ax-4 1524  ax-17 1540  ax-i9 1544  ax-ial 1548  ax-i5r 1549  ax-13 2169  ax-14 2170  ax-ext 2178  ax-sep 4152  ax-pow 4208  ax-pr 4243  ax-un 4469  ax-cnex 7987  ax-resscn 7988  ax-1re 7990  ax-addrcl 7993
This theorem depends on definitions:  df-bi 117  df-3an 982  df-tru 1367  df-nf 1475  df-sb 1777  df-eu 2048  df-mo 2049  df-clab 2183  df-cleq 2189  df-clel 2192  df-nfc 2328  df-ral 2480  df-rex 2481  df-rab 2484  df-v 2765  df-sbc 2990  df-un 3161  df-in 3163  df-ss 3170  df-pw 3608  df-sn 3629  df-pr 3630  df-op 3632  df-uni 3841  df-int 3876  df-br 4035  df-opab 4096  df-mpt 4097  df-id 4329  df-xp 4670  df-rel 4671  df-cnv 4672  df-co 4673  df-dm 4674  df-rn 4675  df-res 4676  df-iota 5220  df-fun 5261  df-fn 5262  df-fv 5267  df-ov 5928  df-inn 9008  df-2 9066  df-3 9067  df-ndx 12706  df-slot 12707  df-base 12709  df-plusg 12793  df-mulr 12794  df-rng 13565
This theorem is referenced by:  rngmgpf  13569  rngass  13571  rngcl  13576  rnglidlmsgrp  14129
  Copyright terms: Public domain W3C validator