ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  rngcl Unicode version

Theorem rngcl 13291
Description: Closure of the multiplication operation of a non-unital ring. (Contributed by AV, 17-Apr-2020.)
Hypotheses
Ref Expression
rngcl.b  |-  B  =  ( Base `  R
)
rngcl.t  |-  .x.  =  ( .r `  R )
Assertion
Ref Expression
rngcl  |-  ( ( R  e. Rng  /\  X  e.  B  /\  Y  e.  B )  ->  ( X  .x.  Y )  e.  B )

Proof of Theorem rngcl
StepHypRef Expression
1 eqid 2189 . . . . . 6  |-  (mulGrp `  R )  =  (mulGrp `  R )
21rngmgp 13283 . . . . 5  |-  ( R  e. Rng  ->  (mulGrp `  R )  e. Smgrp )
3 sgrpmgm 12863 . . . . 5  |-  ( (mulGrp `  R )  e. Smgrp  ->  (mulGrp `  R )  e. Mgm )
42, 3syl 14 . . . 4  |-  ( R  e. Rng  ->  (mulGrp `  R )  e. Mgm )
543ad2ant1 1020 . . 3  |-  ( ( R  e. Rng  /\  X  e.  B  /\  Y  e.  B )  ->  (mulGrp `  R )  e. Mgm )
6 simp2 1000 . . . 4  |-  ( ( R  e. Rng  /\  X  e.  B  /\  Y  e.  B )  ->  X  e.  B )
7 rngcl.b . . . . . 6  |-  B  =  ( Base `  R
)
81, 7mgpbasg 13273 . . . . 5  |-  ( R  e. Rng  ->  B  =  (
Base `  (mulGrp `  R
) ) )
983ad2ant1 1020 . . . 4  |-  ( ( R  e. Rng  /\  X  e.  B  /\  Y  e.  B )  ->  B  =  ( Base `  (mulGrp `  R ) ) )
106, 9eleqtrd 2268 . . 3  |-  ( ( R  e. Rng  /\  X  e.  B  /\  Y  e.  B )  ->  X  e.  ( Base `  (mulGrp `  R ) ) )
11 simp3 1001 . . . 4  |-  ( ( R  e. Rng  /\  X  e.  B  /\  Y  e.  B )  ->  Y  e.  B )
1211, 9eleqtrd 2268 . . 3  |-  ( ( R  e. Rng  /\  X  e.  B  /\  Y  e.  B )  ->  Y  e.  ( Base `  (mulGrp `  R ) ) )
13 eqid 2189 . . . 4  |-  ( Base `  (mulGrp `  R )
)  =  ( Base `  (mulGrp `  R )
)
14 eqid 2189 . . . 4  |-  ( +g  `  (mulGrp `  R )
)  =  ( +g  `  (mulGrp `  R )
)
1513, 14mgmcl 12828 . . 3  |-  ( ( (mulGrp `  R )  e. Mgm  /\  X  e.  (
Base `  (mulGrp `  R
) )  /\  Y  e.  ( Base `  (mulGrp `  R ) ) )  ->  ( X ( +g  `  (mulGrp `  R ) ) Y )  e.  ( Base `  (mulGrp `  R )
) )
165, 10, 12, 15syl3anc 1249 . 2  |-  ( ( R  e. Rng  /\  X  e.  B  /\  Y  e.  B )  ->  ( X ( +g  `  (mulGrp `  R ) ) Y )  e.  ( Base `  (mulGrp `  R )
) )
17 rngcl.t . . . . 5  |-  .x.  =  ( .r `  R )
181, 17mgpplusgg 13271 . . . 4  |-  ( R  e. Rng  ->  .x.  =  ( +g  `  (mulGrp `  R
) ) )
1918oveqd 5909 . . 3  |-  ( R  e. Rng  ->  ( X  .x.  Y )  =  ( X ( +g  `  (mulGrp `  R ) ) Y ) )
20193ad2ant1 1020 . 2  |-  ( ( R  e. Rng  /\  X  e.  B  /\  Y  e.  B )  ->  ( X  .x.  Y )  =  ( X ( +g  `  (mulGrp `  R )
) Y ) )
2116, 20, 93eltr4d 2273 1  |-  ( ( R  e. Rng  /\  X  e.  B  /\  Y  e.  B )  ->  ( X  .x.  Y )  e.  B )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ w3a 980    = wceq 1364    e. wcel 2160   ` cfv 5232  (class class class)co 5892   Basecbs 12507   +g cplusg 12582   .rcmulr 12583  Mgmcmgm 12823  Smgrpcsgrp 12857  mulGrpcmgp 13267  Rngcrng 13279
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 710  ax-5 1458  ax-7 1459  ax-gen 1460  ax-ie1 1504  ax-ie2 1505  ax-8 1515  ax-10 1516  ax-11 1517  ax-i12 1518  ax-bndl 1520  ax-4 1521  ax-17 1537  ax-i9 1541  ax-ial 1545  ax-i5r 1546  ax-13 2162  ax-14 2163  ax-ext 2171  ax-sep 4136  ax-pow 4189  ax-pr 4224  ax-un 4448  ax-setind 4551  ax-cnex 7927  ax-resscn 7928  ax-1cn 7929  ax-1re 7930  ax-icn 7931  ax-addcl 7932  ax-addrcl 7933  ax-mulcl 7934  ax-addcom 7936  ax-addass 7938  ax-i2m1 7941  ax-0lt1 7942  ax-0id 7944  ax-rnegex 7945  ax-pre-ltirr 7948  ax-pre-ltadd 7952
This theorem depends on definitions:  df-bi 117  df-3an 982  df-tru 1367  df-fal 1370  df-nf 1472  df-sb 1774  df-eu 2041  df-mo 2042  df-clab 2176  df-cleq 2182  df-clel 2185  df-nfc 2321  df-ne 2361  df-nel 2456  df-ral 2473  df-rex 2474  df-rab 2477  df-v 2754  df-sbc 2978  df-csb 3073  df-dif 3146  df-un 3148  df-in 3150  df-ss 3157  df-nul 3438  df-pw 3592  df-sn 3613  df-pr 3614  df-op 3616  df-uni 3825  df-int 3860  df-br 4019  df-opab 4080  df-mpt 4081  df-id 4308  df-xp 4647  df-rel 4648  df-cnv 4649  df-co 4650  df-dm 4651  df-rn 4652  df-res 4653  df-iota 5193  df-fun 5234  df-fn 5235  df-fv 5240  df-ov 5895  df-oprab 5896  df-mpo 5897  df-pnf 8019  df-mnf 8020  df-ltxr 8022  df-inn 8945  df-2 9003  df-3 9004  df-ndx 12510  df-slot 12511  df-base 12513  df-sets 12514  df-plusg 12595  df-mulr 12596  df-mgm 12825  df-sgrp 12858  df-mgp 13268  df-rng 13280
This theorem is referenced by:  rnglz  13292  rngrz  13293  rngmneg1  13294  rngmneg2  13295  rngm2neg  13296  rngsubdi  13298  rngsubdir  13299  rngressid  13301  imasrng  13303  qusrng  13305  opprrng  13420  subrngmcl  13549  rnglidlmcl  13789  2idlcpblrng  13831  qusmulrng  13839
  Copyright terms: Public domain W3C validator