ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  isrng Unicode version

Theorem isrng 13285
Description: The predicate "is a non-unital ring." (Contributed by AV, 6-Jan-2020.)
Hypotheses
Ref Expression
isrng.b  |-  B  =  ( Base `  R
)
isrng.g  |-  G  =  (mulGrp `  R )
isrng.p  |-  .+  =  ( +g  `  R )
isrng.t  |-  .x.  =  ( .r `  R )
Assertion
Ref Expression
isrng  |-  ( R  e. Rng 
<->  ( R  e.  Abel  /\  G  e. Smgrp  /\  A. x  e.  B  A. y  e.  B  A. z  e.  B  ( (
x  .x.  ( y  .+  z ) )  =  ( ( x  .x.  y )  .+  (
x  .x.  z )
)  /\  ( (
x  .+  y )  .x.  z )  =  ( ( x  .x.  z
)  .+  ( y  .x.  z ) ) ) ) )
Distinct variable groups:    x, B, y, z    x, R, y, z    x,  .x. , y, z   
x,  .+ , y, z
Allowed substitution hints:    G( x, y, z)

Proof of Theorem isrng
Dummy variables  b  r  t  p are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 fveq2 5534 . . . . . 6  |-  ( r  =  R  ->  (mulGrp `  r )  =  (mulGrp `  R ) )
2 isrng.g . . . . . 6  |-  G  =  (mulGrp `  R )
31, 2eqtr4di 2240 . . . . 5  |-  ( r  =  R  ->  (mulGrp `  r )  =  G )
43eleq1d 2258 . . . 4  |-  ( r  =  R  ->  (
(mulGrp `  r )  e. Smgrp  <-> 
G  e. Smgrp ) )
5 basfn 12569 . . . . . . 7  |-  Base  Fn  _V
6 vex 2755 . . . . . . 7  |-  r  e. 
_V
7 funfvex 5551 . . . . . . . 8  |-  ( ( Fun  Base  /\  r  e.  dom  Base )  ->  ( Base `  r )  e. 
_V )
87funfni 5335 . . . . . . 7  |-  ( (
Base  Fn  _V  /\  r  e.  _V )  ->  ( Base `  r )  e. 
_V )
95, 6, 8mp2an 426 . . . . . 6  |-  ( Base `  r )  e.  _V
109a1i 9 . . . . 5  |-  ( r  =  R  ->  ( Base `  r )  e. 
_V )
11 fveq2 5534 . . . . . 6  |-  ( r  =  R  ->  ( Base `  r )  =  ( Base `  R
) )
12 isrng.b . . . . . 6  |-  B  =  ( Base `  R
)
1311, 12eqtr4di 2240 . . . . 5  |-  ( r  =  R  ->  ( Base `  r )  =  B )
14 plusgslid 12621 . . . . . . . . 9  |-  ( +g  = Slot  ( +g  `  ndx )  /\  ( +g  `  ndx )  e.  NN )
1514slotex 12538 . . . . . . . 8  |-  ( r  e.  _V  ->  ( +g  `  r )  e. 
_V )
1615elv 2756 . . . . . . 7  |-  ( +g  `  r )  e.  _V
1716a1i 9 . . . . . 6  |-  ( ( r  =  R  /\  b  =  B )  ->  ( +g  `  r
)  e.  _V )
18 fveq2 5534 . . . . . . . 8  |-  ( r  =  R  ->  ( +g  `  r )  =  ( +g  `  R
) )
1918adantr 276 . . . . . . 7  |-  ( ( r  =  R  /\  b  =  B )  ->  ( +g  `  r
)  =  ( +g  `  R ) )
20 isrng.p . . . . . . 7  |-  .+  =  ( +g  `  R )
2119, 20eqtr4di 2240 . . . . . 6  |-  ( ( r  =  R  /\  b  =  B )  ->  ( +g  `  r
)  =  .+  )
22 mulrslid 12640 . . . . . . . . . 10  |-  ( .r  = Slot  ( .r `  ndx )  /\  ( .r `  ndx )  e.  NN )
2322slotex 12538 . . . . . . . . 9  |-  ( r  e.  _V  ->  ( .r `  r )  e. 
_V )
2423elv 2756 . . . . . . . 8  |-  ( .r
`  r )  e. 
_V
2524a1i 9 . . . . . . 7  |-  ( ( ( r  =  R  /\  b  =  B )  /\  p  = 
.+  )  ->  ( .r `  r )  e. 
_V )
26 fveq2 5534 . . . . . . . . . 10  |-  ( r  =  R  ->  ( .r `  r )  =  ( .r `  R
) )
2726adantr 276 . . . . . . . . 9  |-  ( ( r  =  R  /\  b  =  B )  ->  ( .r `  r
)  =  ( .r
`  R ) )
2827adantr 276 . . . . . . . 8  |-  ( ( ( r  =  R  /\  b  =  B )  /\  p  = 
.+  )  ->  ( .r `  r )  =  ( .r `  R
) )
29 isrng.t . . . . . . . 8  |-  .x.  =  ( .r `  R )
3028, 29eqtr4di 2240 . . . . . . 7  |-  ( ( ( r  =  R  /\  b  =  B )  /\  p  = 
.+  )  ->  ( .r `  r )  = 
.x.  )
31 simpllr 534 . . . . . . . 8  |-  ( ( ( ( r  =  R  /\  b  =  B )  /\  p  =  .+  )  /\  t  =  .x.  )  ->  b  =  B )
32 simpr 110 . . . . . . . . . . . . 13  |-  ( ( ( ( r  =  R  /\  b  =  B )  /\  p  =  .+  )  /\  t  =  .x.  )  ->  t  =  .x.  )
33 eqidd 2190 . . . . . . . . . . . . 13  |-  ( ( ( ( r  =  R  /\  b  =  B )  /\  p  =  .+  )  /\  t  =  .x.  )  ->  x  =  x )
34 oveq 5901 . . . . . . . . . . . . . 14  |-  ( p  =  .+  ->  (
y p z )  =  ( y  .+  z ) )
3534ad2antlr 489 . . . . . . . . . . . . 13  |-  ( ( ( ( r  =  R  /\  b  =  B )  /\  p  =  .+  )  /\  t  =  .x.  )  ->  (
y p z )  =  ( y  .+  z ) )
3632, 33, 35oveq123d 5916 . . . . . . . . . . . 12  |-  ( ( ( ( r  =  R  /\  b  =  B )  /\  p  =  .+  )  /\  t  =  .x.  )  ->  (
x t ( y p z ) )  =  ( x  .x.  ( y  .+  z
) ) )
37 simpr 110 . . . . . . . . . . . . . 14  |-  ( ( ( r  =  R  /\  b  =  B )  /\  p  = 
.+  )  ->  p  =  .+  )
3837adantr 276 . . . . . . . . . . . . 13  |-  ( ( ( ( r  =  R  /\  b  =  B )  /\  p  =  .+  )  /\  t  =  .x.  )  ->  p  =  .+  )
39 oveq 5901 . . . . . . . . . . . . . 14  |-  ( t  =  .x.  ->  (
x t y )  =  ( x  .x.  y ) )
4039adantl 277 . . . . . . . . . . . . 13  |-  ( ( ( ( r  =  R  /\  b  =  B )  /\  p  =  .+  )  /\  t  =  .x.  )  ->  (
x t y )  =  ( x  .x.  y ) )
41 oveq 5901 . . . . . . . . . . . . . 14  |-  ( t  =  .x.  ->  (
x t z )  =  ( x  .x.  z ) )
4241adantl 277 . . . . . . . . . . . . 13  |-  ( ( ( ( r  =  R  /\  b  =  B )  /\  p  =  .+  )  /\  t  =  .x.  )  ->  (
x t z )  =  ( x  .x.  z ) )
4338, 40, 42oveq123d 5916 . . . . . . . . . . . 12  |-  ( ( ( ( r  =  R  /\  b  =  B )  /\  p  =  .+  )  /\  t  =  .x.  )  ->  (
( x t y ) p ( x t z ) )  =  ( ( x 
.x.  y )  .+  ( x  .x.  z ) ) )
4436, 43eqeq12d 2204 . . . . . . . . . . 11  |-  ( ( ( ( r  =  R  /\  b  =  B )  /\  p  =  .+  )  /\  t  =  .x.  )  ->  (
( x t ( y p z ) )  =  ( ( x t y ) p ( x t z ) )  <->  ( x  .x.  ( y  .+  z
) )  =  ( ( x  .x.  y
)  .+  ( x  .x.  z ) ) ) )
45 oveq 5901 . . . . . . . . . . . . . 14  |-  ( p  =  .+  ->  (
x p y )  =  ( x  .+  y ) )
4645ad2antlr 489 . . . . . . . . . . . . 13  |-  ( ( ( ( r  =  R  /\  b  =  B )  /\  p  =  .+  )  /\  t  =  .x.  )  ->  (
x p y )  =  ( x  .+  y ) )
47 eqidd 2190 . . . . . . . . . . . . 13  |-  ( ( ( ( r  =  R  /\  b  =  B )  /\  p  =  .+  )  /\  t  =  .x.  )  ->  z  =  z )
4832, 46, 47oveq123d 5916 . . . . . . . . . . . 12  |-  ( ( ( ( r  =  R  /\  b  =  B )  /\  p  =  .+  )  /\  t  =  .x.  )  ->  (
( x p y ) t z )  =  ( ( x 
.+  y )  .x.  z ) )
49 oveq 5901 . . . . . . . . . . . . . 14  |-  ( t  =  .x.  ->  (
y t z )  =  ( y  .x.  z ) )
5049adantl 277 . . . . . . . . . . . . 13  |-  ( ( ( ( r  =  R  /\  b  =  B )  /\  p  =  .+  )  /\  t  =  .x.  )  ->  (
y t z )  =  ( y  .x.  z ) )
5138, 42, 50oveq123d 5916 . . . . . . . . . . . 12  |-  ( ( ( ( r  =  R  /\  b  =  B )  /\  p  =  .+  )  /\  t  =  .x.  )  ->  (
( x t z ) p ( y t z ) )  =  ( ( x 
.x.  z )  .+  ( y  .x.  z
) ) )
5248, 51eqeq12d 2204 . . . . . . . . . . 11  |-  ( ( ( ( r  =  R  /\  b  =  B )  /\  p  =  .+  )  /\  t  =  .x.  )  ->  (
( ( x p y ) t z )  =  ( ( x t z ) p ( y t z ) )  <->  ( (
x  .+  y )  .x.  z )  =  ( ( x  .x.  z
)  .+  ( y  .x.  z ) ) ) )
5344, 52anbi12d 473 . . . . . . . . . 10  |-  ( ( ( ( r  =  R  /\  b  =  B )  /\  p  =  .+  )  /\  t  =  .x.  )  ->  (
( ( x t ( y p z ) )  =  ( ( x t y ) p ( x t z ) )  /\  ( ( x p y ) t z )  =  ( ( x t z ) p ( y t z ) ) )  <->  ( ( x 
.x.  ( y  .+  z ) )  =  ( ( x  .x.  y )  .+  (
x  .x.  z )
)  /\  ( (
x  .+  y )  .x.  z )  =  ( ( x  .x.  z
)  .+  ( y  .x.  z ) ) ) ) )
5431, 53raleqbidv 2698 . . . . . . . . 9  |-  ( ( ( ( r  =  R  /\  b  =  B )  /\  p  =  .+  )  /\  t  =  .x.  )  ->  ( A. z  e.  b 
( ( x t ( y p z ) )  =  ( ( x t y ) p ( x t z ) )  /\  ( ( x p y ) t z )  =  ( ( x t z ) p ( y t z ) ) )  <->  A. z  e.  B  ( ( x  .x.  ( y  .+  z
) )  =  ( ( x  .x.  y
)  .+  ( x  .x.  z ) )  /\  ( ( x  .+  y )  .x.  z
)  =  ( ( x  .x.  z ) 
.+  ( y  .x.  z ) ) ) ) )
5531, 54raleqbidv 2698 . . . . . . . 8  |-  ( ( ( ( r  =  R  /\  b  =  B )  /\  p  =  .+  )  /\  t  =  .x.  )  ->  ( A. y  e.  b  A. z  e.  b 
( ( x t ( y p z ) )  =  ( ( x t y ) p ( x t z ) )  /\  ( ( x p y ) t z )  =  ( ( x t z ) p ( y t z ) ) )  <->  A. y  e.  B  A. z  e.  B  ( ( x  .x.  ( y  .+  z
) )  =  ( ( x  .x.  y
)  .+  ( x  .x.  z ) )  /\  ( ( x  .+  y )  .x.  z
)  =  ( ( x  .x.  z ) 
.+  ( y  .x.  z ) ) ) ) )
5631, 55raleqbidv 2698 . . . . . . 7  |-  ( ( ( ( r  =  R  /\  b  =  B )  /\  p  =  .+  )  /\  t  =  .x.  )  ->  ( A. x  e.  b  A. y  e.  b  A. z  e.  b 
( ( x t ( y p z ) )  =  ( ( x t y ) p ( x t z ) )  /\  ( ( x p y ) t z )  =  ( ( x t z ) p ( y t z ) ) )  <->  A. x  e.  B  A. y  e.  B  A. z  e.  B  ( ( x  .x.  ( y  .+  z
) )  =  ( ( x  .x.  y
)  .+  ( x  .x.  z ) )  /\  ( ( x  .+  y )  .x.  z
)  =  ( ( x  .x.  z ) 
.+  ( y  .x.  z ) ) ) ) )
5725, 30, 56sbcied2 3015 . . . . . 6  |-  ( ( ( r  =  R  /\  b  =  B )  /\  p  = 
.+  )  ->  ( [. ( .r `  r
)  /  t ]. A. x  e.  b  A. y  e.  b  A. z  e.  b 
( ( x t ( y p z ) )  =  ( ( x t y ) p ( x t z ) )  /\  ( ( x p y ) t z )  =  ( ( x t z ) p ( y t z ) ) )  <->  A. x  e.  B  A. y  e.  B  A. z  e.  B  ( ( x  .x.  ( y  .+  z
) )  =  ( ( x  .x.  y
)  .+  ( x  .x.  z ) )  /\  ( ( x  .+  y )  .x.  z
)  =  ( ( x  .x.  z ) 
.+  ( y  .x.  z ) ) ) ) )
5817, 21, 57sbcied2 3015 . . . . 5  |-  ( ( r  =  R  /\  b  =  B )  ->  ( [. ( +g  `  r )  /  p ]. [. ( .r `  r )  /  t ]. A. x  e.  b 
A. y  e.  b 
A. z  e.  b  ( ( x t ( y p z ) )  =  ( ( x t y ) p ( x t z ) )  /\  ( ( x p y ) t z )  =  ( ( x t z ) p ( y t z ) ) )  <->  A. x  e.  B  A. y  e.  B  A. z  e.  B  ( ( x  .x.  ( y  .+  z
) )  =  ( ( x  .x.  y
)  .+  ( x  .x.  z ) )  /\  ( ( x  .+  y )  .x.  z
)  =  ( ( x  .x.  z ) 
.+  ( y  .x.  z ) ) ) ) )
5910, 13, 58sbcied2 3015 . . . 4  |-  ( r  =  R  ->  ( [. ( Base `  r
)  /  b ]. [. ( +g  `  r
)  /  p ]. [. ( .r `  r
)  /  t ]. A. x  e.  b  A. y  e.  b  A. z  e.  b 
( ( x t ( y p z ) )  =  ( ( x t y ) p ( x t z ) )  /\  ( ( x p y ) t z )  =  ( ( x t z ) p ( y t z ) ) )  <->  A. x  e.  B  A. y  e.  B  A. z  e.  B  ( ( x  .x.  ( y  .+  z
) )  =  ( ( x  .x.  y
)  .+  ( x  .x.  z ) )  /\  ( ( x  .+  y )  .x.  z
)  =  ( ( x  .x.  z ) 
.+  ( y  .x.  z ) ) ) ) )
604, 59anbi12d 473 . . 3  |-  ( r  =  R  ->  (
( (mulGrp `  r
)  e. Smgrp  /\  [. ( Base `  r )  / 
b ]. [. ( +g  `  r )  /  p ]. [. ( .r `  r )  /  t ]. A. x  e.  b 
A. y  e.  b 
A. z  e.  b  ( ( x t ( y p z ) )  =  ( ( x t y ) p ( x t z ) )  /\  ( ( x p y ) t z )  =  ( ( x t z ) p ( y t z ) ) ) )  <->  ( G  e. Smgrp  /\  A. x  e.  B  A. y  e.  B  A. z  e.  B  ( ( x 
.x.  ( y  .+  z ) )  =  ( ( x  .x.  y )  .+  (
x  .x.  z )
)  /\  ( (
x  .+  y )  .x.  z )  =  ( ( x  .x.  z
)  .+  ( y  .x.  z ) ) ) ) ) )
61 df-rng 13284 . . 3  |- Rng  =  {
r  e.  Abel  |  ( (mulGrp `  r )  e. Smgrp  /\  [. ( Base `  r )  /  b ]. [. ( +g  `  r
)  /  p ]. [. ( .r `  r
)  /  t ]. A. x  e.  b  A. y  e.  b  A. z  e.  b 
( ( x t ( y p z ) )  =  ( ( x t y ) p ( x t z ) )  /\  ( ( x p y ) t z )  =  ( ( x t z ) p ( y t z ) ) ) ) }
6260, 61elrab2 2911 . 2  |-  ( R  e. Rng 
<->  ( R  e.  Abel  /\  ( G  e. Smgrp  /\  A. x  e.  B  A. y  e.  B  A. z  e.  B  (
( x  .x.  (
y  .+  z )
)  =  ( ( x  .x.  y ) 
.+  ( x  .x.  z ) )  /\  ( ( x  .+  y )  .x.  z
)  =  ( ( x  .x.  z ) 
.+  ( y  .x.  z ) ) ) ) ) )
63 3anass 984 . 2  |-  ( ( R  e.  Abel  /\  G  e. Smgrp  /\  A. x  e.  B  A. y  e.  B  A. z  e.  B  ( ( x 
.x.  ( y  .+  z ) )  =  ( ( x  .x.  y )  .+  (
x  .x.  z )
)  /\  ( (
x  .+  y )  .x.  z )  =  ( ( x  .x.  z
)  .+  ( y  .x.  z ) ) ) )  <->  ( R  e. 
Abel  /\  ( G  e. Smgrp  /\  A. x  e.  B  A. y  e.  B  A. z  e.  B  ( ( x  .x.  ( y  .+  z
) )  =  ( ( x  .x.  y
)  .+  ( x  .x.  z ) )  /\  ( ( x  .+  y )  .x.  z
)  =  ( ( x  .x.  z ) 
.+  ( y  .x.  z ) ) ) ) ) )
6462, 63bitr4i 187 1  |-  ( R  e. Rng 
<->  ( R  e.  Abel  /\  G  e. Smgrp  /\  A. x  e.  B  A. y  e.  B  A. z  e.  B  ( (
x  .x.  ( y  .+  z ) )  =  ( ( x  .x.  y )  .+  (
x  .x.  z )
)  /\  ( (
x  .+  y )  .x.  z )  =  ( ( x  .x.  z
)  .+  ( y  .x.  z ) ) ) ) )
Colors of variables: wff set class
Syntax hints:    /\ wa 104    <-> wb 105    /\ w3a 980    = wceq 1364    e. wcel 2160   A.wral 2468   _Vcvv 2752   [.wsbc 2977    Fn wfn 5230   ` cfv 5235  (class class class)co 5895   Basecbs 12511   +g cplusg 12586   .rcmulr 12587  Smgrpcsgrp 12861   Abelcabl 13221  mulGrpcmgp 13271  Rngcrng 13283
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 710  ax-5 1458  ax-7 1459  ax-gen 1460  ax-ie1 1504  ax-ie2 1505  ax-8 1515  ax-10 1516  ax-11 1517  ax-i12 1518  ax-bndl 1520  ax-4 1521  ax-17 1537  ax-i9 1541  ax-ial 1545  ax-i5r 1546  ax-13 2162  ax-14 2163  ax-ext 2171  ax-sep 4136  ax-pow 4192  ax-pr 4227  ax-un 4451  ax-cnex 7931  ax-resscn 7932  ax-1re 7934  ax-addrcl 7937
This theorem depends on definitions:  df-bi 117  df-3an 982  df-tru 1367  df-nf 1472  df-sb 1774  df-eu 2041  df-mo 2042  df-clab 2176  df-cleq 2182  df-clel 2185  df-nfc 2321  df-ral 2473  df-rex 2474  df-rab 2477  df-v 2754  df-sbc 2978  df-un 3148  df-in 3150  df-ss 3157  df-pw 3592  df-sn 3613  df-pr 3614  df-op 3616  df-uni 3825  df-int 3860  df-br 4019  df-opab 4080  df-mpt 4081  df-id 4311  df-xp 4650  df-rel 4651  df-cnv 4652  df-co 4653  df-dm 4654  df-rn 4655  df-res 4656  df-iota 5196  df-fun 5237  df-fn 5238  df-fv 5243  df-ov 5898  df-inn 8949  df-2 9007  df-3 9008  df-ndx 12514  df-slot 12515  df-base 12517  df-plusg 12599  df-mulr 12600  df-rng 13284
This theorem is referenced by:  rngabl  13286  rngmgp  13287  rngdi  13291  rngdir  13292  isrngd  13304  rngpropd  13306  ringrng  13387  rnglidlrng  13811
  Copyright terms: Public domain W3C validator