ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  rngass Unicode version

Theorem rngass 13438
Description: Associative law for the multiplication operation of a non-unital ring. (Contributed by NM, 27-Aug-2011.) (Revised by AV, 13-Feb-2025.)
Hypotheses
Ref Expression
rngass.b  |-  B  =  ( Base `  R
)
rngass.t  |-  .x.  =  ( .r `  R )
Assertion
Ref Expression
rngass  |-  ( ( R  e. Rng  /\  ( X  e.  B  /\  Y  e.  B  /\  Z  e.  B )
)  ->  ( ( X  .x.  Y )  .x.  Z )  =  ( X  .x.  ( Y 
.x.  Z ) ) )

Proof of Theorem rngass
StepHypRef Expression
1 eqid 2193 . . . . 5  |-  (mulGrp `  R )  =  (mulGrp `  R )
21rngmgp 13435 . . . 4  |-  ( R  e. Rng  ->  (mulGrp `  R )  e. Smgrp )
32adantr 276 . . 3  |-  ( ( R  e. Rng  /\  ( X  e.  B  /\  Y  e.  B  /\  Z  e.  B )
)  ->  (mulGrp `  R
)  e. Smgrp )
4 simpr1 1005 . . . 4  |-  ( ( R  e. Rng  /\  ( X  e.  B  /\  Y  e.  B  /\  Z  e.  B )
)  ->  X  e.  B )
5 rngass.b . . . . . 6  |-  B  =  ( Base `  R
)
61, 5mgpbasg 13425 . . . . 5  |-  ( R  e. Rng  ->  B  =  (
Base `  (mulGrp `  R
) ) )
76adantr 276 . . . 4  |-  ( ( R  e. Rng  /\  ( X  e.  B  /\  Y  e.  B  /\  Z  e.  B )
)  ->  B  =  ( Base `  (mulGrp `  R
) ) )
84, 7eleqtrd 2272 . . 3  |-  ( ( R  e. Rng  /\  ( X  e.  B  /\  Y  e.  B  /\  Z  e.  B )
)  ->  X  e.  ( Base `  (mulGrp `  R
) ) )
9 simpr2 1006 . . . 4  |-  ( ( R  e. Rng  /\  ( X  e.  B  /\  Y  e.  B  /\  Z  e.  B )
)  ->  Y  e.  B )
109, 7eleqtrd 2272 . . 3  |-  ( ( R  e. Rng  /\  ( X  e.  B  /\  Y  e.  B  /\  Z  e.  B )
)  ->  Y  e.  ( Base `  (mulGrp `  R
) ) )
11 simpr3 1007 . . . 4  |-  ( ( R  e. Rng  /\  ( X  e.  B  /\  Y  e.  B  /\  Z  e.  B )
)  ->  Z  e.  B )
1211, 7eleqtrd 2272 . . 3  |-  ( ( R  e. Rng  /\  ( X  e.  B  /\  Y  e.  B  /\  Z  e.  B )
)  ->  Z  e.  ( Base `  (mulGrp `  R
) ) )
13 eqid 2193 . . . 4  |-  ( Base `  (mulGrp `  R )
)  =  ( Base `  (mulGrp `  R )
)
14 eqid 2193 . . . 4  |-  ( +g  `  (mulGrp `  R )
)  =  ( +g  `  (mulGrp `  R )
)
1513, 14sgrpass 12994 . . 3  |-  ( ( (mulGrp `  R )  e. Smgrp  /\  ( X  e.  ( Base `  (mulGrp `  R ) )  /\  Y  e.  ( Base `  (mulGrp `  R )
)  /\  Z  e.  ( Base `  (mulGrp `  R
) ) ) )  ->  ( ( X ( +g  `  (mulGrp `  R ) ) Y ) ( +g  `  (mulGrp `  R ) ) Z )  =  ( X ( +g  `  (mulGrp `  R ) ) ( Y ( +g  `  (mulGrp `  R ) ) Z ) ) )
163, 8, 10, 12, 15syl13anc 1251 . 2  |-  ( ( R  e. Rng  /\  ( X  e.  B  /\  Y  e.  B  /\  Z  e.  B )
)  ->  ( ( X ( +g  `  (mulGrp `  R ) ) Y ) ( +g  `  (mulGrp `  R ) ) Z )  =  ( X ( +g  `  (mulGrp `  R ) ) ( Y ( +g  `  (mulGrp `  R ) ) Z ) ) )
17 rngass.t . . . . . . 7  |-  .x.  =  ( .r `  R )
181, 17mgpplusgg 13423 . . . . . 6  |-  ( R  e. Rng  ->  .x.  =  ( +g  `  (mulGrp `  R
) ) )
1918oveqd 5936 . . . . 5  |-  ( R  e. Rng  ->  ( ( X 
.x.  Y )  .x.  Z )  =  ( ( X  .x.  Y
) ( +g  `  (mulGrp `  R ) ) Z ) )
2018oveqd 5936 . . . . . 6  |-  ( R  e. Rng  ->  ( X  .x.  Y )  =  ( X ( +g  `  (mulGrp `  R ) ) Y ) )
2120oveq1d 5934 . . . . 5  |-  ( R  e. Rng  ->  ( ( X 
.x.  Y ) ( +g  `  (mulGrp `  R ) ) Z )  =  ( ( X ( +g  `  (mulGrp `  R ) ) Y ) ( +g  `  (mulGrp `  R ) ) Z ) )
2219, 21eqtrd 2226 . . . 4  |-  ( R  e. Rng  ->  ( ( X 
.x.  Y )  .x.  Z )  =  ( ( X ( +g  `  (mulGrp `  R )
) Y ) ( +g  `  (mulGrp `  R ) ) Z ) )
2318oveqd 5936 . . . . 5  |-  ( R  e. Rng  ->  ( X  .x.  ( Y  .x.  Z ) )  =  ( X ( +g  `  (mulGrp `  R ) ) ( Y  .x.  Z ) ) )
2418oveqd 5936 . . . . . 6  |-  ( R  e. Rng  ->  ( Y  .x.  Z )  =  ( Y ( +g  `  (mulGrp `  R ) ) Z ) )
2524oveq2d 5935 . . . . 5  |-  ( R  e. Rng  ->  ( X ( +g  `  (mulGrp `  R ) ) ( Y  .x.  Z ) )  =  ( X ( +g  `  (mulGrp `  R ) ) ( Y ( +g  `  (mulGrp `  R ) ) Z ) ) )
2623, 25eqtrd 2226 . . . 4  |-  ( R  e. Rng  ->  ( X  .x.  ( Y  .x.  Z ) )  =  ( X ( +g  `  (mulGrp `  R ) ) ( Y ( +g  `  (mulGrp `  R ) ) Z ) ) )
2722, 26eqeq12d 2208 . . 3  |-  ( R  e. Rng  ->  ( ( ( X  .x.  Y ) 
.x.  Z )  =  ( X  .x.  ( Y  .x.  Z ) )  <-> 
( ( X ( +g  `  (mulGrp `  R ) ) Y ) ( +g  `  (mulGrp `  R ) ) Z )  =  ( X ( +g  `  (mulGrp `  R ) ) ( Y ( +g  `  (mulGrp `  R ) ) Z ) ) ) )
2827adantr 276 . 2  |-  ( ( R  e. Rng  /\  ( X  e.  B  /\  Y  e.  B  /\  Z  e.  B )
)  ->  ( (
( X  .x.  Y
)  .x.  Z )  =  ( X  .x.  ( Y  .x.  Z ) )  <->  ( ( X ( +g  `  (mulGrp `  R ) ) Y ) ( +g  `  (mulGrp `  R ) ) Z )  =  ( X ( +g  `  (mulGrp `  R ) ) ( Y ( +g  `  (mulGrp `  R ) ) Z ) ) ) )
2916, 28mpbird 167 1  |-  ( ( R  e. Rng  /\  ( X  e.  B  /\  Y  e.  B  /\  Z  e.  B )
)  ->  ( ( X  .x.  Y )  .x.  Z )  =  ( X  .x.  ( Y 
.x.  Z ) ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 104    <-> wb 105    /\ w3a 980    = wceq 1364    e. wcel 2164   ` cfv 5255  (class class class)co 5919   Basecbs 12621   +g cplusg 12698   .rcmulr 12699  Smgrpcsgrp 12987  mulGrpcmgp 13419  Rngcrng 13431
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 710  ax-5 1458  ax-7 1459  ax-gen 1460  ax-ie1 1504  ax-ie2 1505  ax-8 1515  ax-10 1516  ax-11 1517  ax-i12 1518  ax-bndl 1520  ax-4 1521  ax-17 1537  ax-i9 1541  ax-ial 1545  ax-i5r 1546  ax-13 2166  ax-14 2167  ax-ext 2175  ax-sep 4148  ax-pow 4204  ax-pr 4239  ax-un 4465  ax-setind 4570  ax-cnex 7965  ax-resscn 7966  ax-1cn 7967  ax-1re 7968  ax-icn 7969  ax-addcl 7970  ax-addrcl 7971  ax-mulcl 7972  ax-addcom 7974  ax-addass 7976  ax-i2m1 7979  ax-0lt1 7980  ax-0id 7982  ax-rnegex 7983  ax-pre-ltirr 7986  ax-pre-ltadd 7990
This theorem depends on definitions:  df-bi 117  df-3an 982  df-tru 1367  df-fal 1370  df-nf 1472  df-sb 1774  df-eu 2045  df-mo 2046  df-clab 2180  df-cleq 2186  df-clel 2189  df-nfc 2325  df-ne 2365  df-nel 2460  df-ral 2477  df-rex 2478  df-rab 2481  df-v 2762  df-sbc 2987  df-csb 3082  df-dif 3156  df-un 3158  df-in 3160  df-ss 3167  df-nul 3448  df-pw 3604  df-sn 3625  df-pr 3626  df-op 3628  df-uni 3837  df-int 3872  df-br 4031  df-opab 4092  df-mpt 4093  df-id 4325  df-xp 4666  df-rel 4667  df-cnv 4668  df-co 4669  df-dm 4670  df-rn 4671  df-res 4672  df-iota 5216  df-fun 5257  df-fn 5258  df-fv 5263  df-ov 5922  df-oprab 5923  df-mpo 5924  df-pnf 8058  df-mnf 8059  df-ltxr 8061  df-inn 8985  df-2 9043  df-3 9044  df-ndx 12624  df-slot 12625  df-base 12627  df-sets 12628  df-plusg 12711  df-mulr 12712  df-sgrp 12988  df-mgp 13420  df-rng 13432
This theorem is referenced by:  rngressid  13453  imasrng  13455  opprrng  13576  issubrng2  13709
  Copyright terms: Public domain W3C validator