ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  rngabl Unicode version

Theorem rngabl 13898
Description: A non-unital ring is an (additive) abelian group. (Contributed by AV, 17-Feb-2020.)
Assertion
Ref Expression
rngabl  |-  ( R  e. Rng  ->  R  e.  Abel )

Proof of Theorem rngabl
Dummy variables  x  y  z are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 eqid 2229 . . 3  |-  ( Base `  R )  =  (
Base `  R )
2 eqid 2229 . . 3  |-  (mulGrp `  R )  =  (mulGrp `  R )
3 eqid 2229 . . 3  |-  ( +g  `  R )  =  ( +g  `  R )
4 eqid 2229 . . 3  |-  ( .r
`  R )  =  ( .r `  R
)
51, 2, 3, 4isrng 13897 . 2  |-  ( R  e. Rng 
<->  ( R  e.  Abel  /\  (mulGrp `  R )  e. Smgrp  /\  A. x  e.  ( Base `  R
) A. y  e.  ( Base `  R
) A. z  e.  ( Base `  R
) ( ( x ( .r `  R
) ( y ( +g  `  R ) z ) )  =  ( ( x ( .r `  R ) y ) ( +g  `  R ) ( x ( .r `  R
) z ) )  /\  ( ( x ( +g  `  R
) y ) ( .r `  R ) z )  =  ( ( x ( .r
`  R ) z ) ( +g  `  R
) ( y ( .r `  R ) z ) ) ) ) )
65simp1bi 1036 1  |-  ( R  e. Rng  ->  R  e.  Abel )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 104    = wceq 1395    e. wcel 2200   A.wral 2508   ` cfv 5318  (class class class)co 6001   Basecbs 13032   +g cplusg 13110   .rcmulr 13111  Smgrpcsgrp 13434   Abelcabl 13822  mulGrpcmgp 13883  Rngcrng 13895
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 714  ax-5 1493  ax-7 1494  ax-gen 1495  ax-ie1 1539  ax-ie2 1540  ax-8 1550  ax-10 1551  ax-11 1552  ax-i12 1553  ax-bndl 1555  ax-4 1556  ax-17 1572  ax-i9 1576  ax-ial 1580  ax-i5r 1581  ax-13 2202  ax-14 2203  ax-ext 2211  ax-sep 4202  ax-pow 4258  ax-pr 4293  ax-un 4524  ax-cnex 8090  ax-resscn 8091  ax-1re 8093  ax-addrcl 8096
This theorem depends on definitions:  df-bi 117  df-3an 1004  df-tru 1398  df-nf 1507  df-sb 1809  df-eu 2080  df-mo 2081  df-clab 2216  df-cleq 2222  df-clel 2225  df-nfc 2361  df-ral 2513  df-rex 2514  df-rab 2517  df-v 2801  df-sbc 3029  df-un 3201  df-in 3203  df-ss 3210  df-pw 3651  df-sn 3672  df-pr 3673  df-op 3675  df-uni 3889  df-int 3924  df-br 4084  df-opab 4146  df-mpt 4147  df-id 4384  df-xp 4725  df-rel 4726  df-cnv 4727  df-co 4728  df-dm 4729  df-rn 4730  df-res 4731  df-iota 5278  df-fun 5320  df-fn 5321  df-fv 5326  df-ov 6004  df-inn 9111  df-2 9169  df-3 9170  df-ndx 13035  df-slot 13036  df-base 13038  df-plusg 13123  df-mulr 13124  df-rng 13896
This theorem is referenced by:  rnggrp  13901  rnglz  13908  rngansg  13913  rngressid  13917  imasrng  13919  opprrng  14040  subrngringnsg  14169  issubrng2  14174  rnglidlrng  14462  2idlcpblrng  14487  qus2idrng  14489
  Copyright terms: Public domain W3C validator