ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  2tp1odd Unicode version

Theorem 2tp1odd 11891
Description: A number which is twice an integer increased by 1 is odd. (Contributed by AV, 16-Jul-2021.)
Assertion
Ref Expression
2tp1odd  |-  ( ( A  e.  ZZ  /\  B  =  ( (
2  x.  A )  +  1 ) )  ->  -.  2  ||  B )

Proof of Theorem 2tp1odd
Dummy variable  k is distinct from all other variables.
StepHypRef Expression
1 id 19 . . . . 5  |-  ( A  e.  ZZ  ->  A  e.  ZZ )
2 oveq2 5885 . . . . . . . 8  |-  ( k  =  A  ->  (
2  x.  k )  =  ( 2  x.  A ) )
32oveq1d 5892 . . . . . . 7  |-  ( k  =  A  ->  (
( 2  x.  k
)  +  1 )  =  ( ( 2  x.  A )  +  1 ) )
43eqeq1d 2186 . . . . . 6  |-  ( k  =  A  ->  (
( ( 2  x.  k )  +  1 )  =  ( ( 2  x.  A )  +  1 )  <->  ( (
2  x.  A )  +  1 )  =  ( ( 2  x.  A )  +  1 ) ) )
54adantl 277 . . . . 5  |-  ( ( A  e.  ZZ  /\  k  =  A )  ->  ( ( ( 2  x.  k )  +  1 )  =  ( ( 2  x.  A
)  +  1 )  <-> 
( ( 2  x.  A )  +  1 )  =  ( ( 2  x.  A )  +  1 ) ) )
6 eqidd 2178 . . . . 5  |-  ( A  e.  ZZ  ->  (
( 2  x.  A
)  +  1 )  =  ( ( 2  x.  A )  +  1 ) )
71, 5, 6rspcedvd 2849 . . . 4  |-  ( A  e.  ZZ  ->  E. k  e.  ZZ  ( ( 2  x.  k )  +  1 )  =  ( ( 2  x.  A
)  +  1 ) )
8 2z 9283 . . . . . . . 8  |-  2  e.  ZZ
98a1i 9 . . . . . . 7  |-  ( A  e.  ZZ  ->  2  e.  ZZ )
109, 1zmulcld 9383 . . . . . 6  |-  ( A  e.  ZZ  ->  (
2  x.  A )  e.  ZZ )
1110peano2zd 9380 . . . . 5  |-  ( A  e.  ZZ  ->  (
( 2  x.  A
)  +  1 )  e.  ZZ )
12 odd2np1 11880 . . . . 5  |-  ( ( ( 2  x.  A
)  +  1 )  e.  ZZ  ->  ( -.  2  ||  ( ( 2  x.  A )  +  1 )  <->  E. k  e.  ZZ  ( ( 2  x.  k )  +  1 )  =  ( ( 2  x.  A
)  +  1 ) ) )
1311, 12syl 14 . . . 4  |-  ( A  e.  ZZ  ->  ( -.  2  ||  ( ( 2  x.  A )  +  1 )  <->  E. k  e.  ZZ  ( ( 2  x.  k )  +  1 )  =  ( ( 2  x.  A
)  +  1 ) ) )
147, 13mpbird 167 . . 3  |-  ( A  e.  ZZ  ->  -.  2  ||  ( ( 2  x.  A )  +  1 ) )
1514adantr 276 . 2  |-  ( ( A  e.  ZZ  /\  B  =  ( (
2  x.  A )  +  1 ) )  ->  -.  2  ||  ( ( 2  x.  A )  +  1 ) )
16 breq2 4009 . . 3  |-  ( B  =  ( ( 2  x.  A )  +  1 )  ->  (
2  ||  B  <->  2  ||  ( ( 2  x.  A )  +  1 ) ) )
1716adantl 277 . 2  |-  ( ( A  e.  ZZ  /\  B  =  ( (
2  x.  A )  +  1 ) )  ->  ( 2  ||  B 
<->  2  ||  ( ( 2  x.  A )  +  1 ) ) )
1815, 17mtbird 673 1  |-  ( ( A  e.  ZZ  /\  B  =  ( (
2  x.  A )  +  1 ) )  ->  -.  2  ||  B )
Colors of variables: wff set class
Syntax hints:   -. wn 3    -> wi 4    /\ wa 104    <-> wb 105    = wceq 1353    e. wcel 2148   E.wrex 2456   class class class wbr 4005  (class class class)co 5877   1c1 7814    + caddc 7816    x. cmul 7818   2c2 8972   ZZcz 9255    || cdvds 11796
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 614  ax-in2 615  ax-io 709  ax-5 1447  ax-7 1448  ax-gen 1449  ax-ie1 1493  ax-ie2 1494  ax-8 1504  ax-10 1505  ax-11 1506  ax-i12 1507  ax-bndl 1509  ax-4 1510  ax-17 1526  ax-i9 1530  ax-ial 1534  ax-i5r 1535  ax-13 2150  ax-14 2151  ax-ext 2159  ax-sep 4123  ax-pow 4176  ax-pr 4211  ax-un 4435  ax-setind 4538  ax-cnex 7904  ax-resscn 7905  ax-1cn 7906  ax-1re 7907  ax-icn 7908  ax-addcl 7909  ax-addrcl 7910  ax-mulcl 7911  ax-mulrcl 7912  ax-addcom 7913  ax-mulcom 7914  ax-addass 7915  ax-mulass 7916  ax-distr 7917  ax-i2m1 7918  ax-0lt1 7919  ax-1rid 7920  ax-0id 7921  ax-rnegex 7922  ax-precex 7923  ax-cnre 7924  ax-pre-ltirr 7925  ax-pre-ltwlin 7926  ax-pre-lttrn 7927  ax-pre-apti 7928  ax-pre-ltadd 7929  ax-pre-mulgt0 7930  ax-pre-mulext 7931
This theorem depends on definitions:  df-bi 117  df-3or 979  df-3an 980  df-tru 1356  df-fal 1359  df-xor 1376  df-nf 1461  df-sb 1763  df-eu 2029  df-mo 2030  df-clab 2164  df-cleq 2170  df-clel 2173  df-nfc 2308  df-ne 2348  df-nel 2443  df-ral 2460  df-rex 2461  df-reu 2462  df-rmo 2463  df-rab 2464  df-v 2741  df-sbc 2965  df-dif 3133  df-un 3135  df-in 3137  df-ss 3144  df-pw 3579  df-sn 3600  df-pr 3601  df-op 3603  df-uni 3812  df-int 3847  df-br 4006  df-opab 4067  df-id 4295  df-po 4298  df-iso 4299  df-xp 4634  df-rel 4635  df-cnv 4636  df-co 4637  df-dm 4638  df-iota 5180  df-fun 5220  df-fv 5226  df-riota 5833  df-ov 5880  df-oprab 5881  df-mpo 5882  df-pnf 7996  df-mnf 7997  df-xr 7998  df-ltxr 7999  df-le 8000  df-sub 8132  df-neg 8133  df-reap 8534  df-ap 8541  df-div 8632  df-inn 8922  df-2 8980  df-n0 9179  df-z 9256  df-dvds 11797
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator