ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  2tp1odd Unicode version

Theorem 2tp1odd 12390
Description: A number which is twice an integer increased by 1 is odd. (Contributed by AV, 16-Jul-2021.)
Assertion
Ref Expression
2tp1odd  |-  ( ( A  e.  ZZ  /\  B  =  ( (
2  x.  A )  +  1 ) )  ->  -.  2  ||  B )

Proof of Theorem 2tp1odd
Dummy variable  k is distinct from all other variables.
StepHypRef Expression
1 id 19 . . . . 5  |-  ( A  e.  ZZ  ->  A  e.  ZZ )
2 oveq2 6008 . . . . . . . 8  |-  ( k  =  A  ->  (
2  x.  k )  =  ( 2  x.  A ) )
32oveq1d 6015 . . . . . . 7  |-  ( k  =  A  ->  (
( 2  x.  k
)  +  1 )  =  ( ( 2  x.  A )  +  1 ) )
43eqeq1d 2238 . . . . . 6  |-  ( k  =  A  ->  (
( ( 2  x.  k )  +  1 )  =  ( ( 2  x.  A )  +  1 )  <->  ( (
2  x.  A )  +  1 )  =  ( ( 2  x.  A )  +  1 ) ) )
54adantl 277 . . . . 5  |-  ( ( A  e.  ZZ  /\  k  =  A )  ->  ( ( ( 2  x.  k )  +  1 )  =  ( ( 2  x.  A
)  +  1 )  <-> 
( ( 2  x.  A )  +  1 )  =  ( ( 2  x.  A )  +  1 ) ) )
6 eqidd 2230 . . . . 5  |-  ( A  e.  ZZ  ->  (
( 2  x.  A
)  +  1 )  =  ( ( 2  x.  A )  +  1 ) )
71, 5, 6rspcedvd 2913 . . . 4  |-  ( A  e.  ZZ  ->  E. k  e.  ZZ  ( ( 2  x.  k )  +  1 )  =  ( ( 2  x.  A
)  +  1 ) )
8 2z 9470 . . . . . . . 8  |-  2  e.  ZZ
98a1i 9 . . . . . . 7  |-  ( A  e.  ZZ  ->  2  e.  ZZ )
109, 1zmulcld 9571 . . . . . 6  |-  ( A  e.  ZZ  ->  (
2  x.  A )  e.  ZZ )
1110peano2zd 9568 . . . . 5  |-  ( A  e.  ZZ  ->  (
( 2  x.  A
)  +  1 )  e.  ZZ )
12 odd2np1 12379 . . . . 5  |-  ( ( ( 2  x.  A
)  +  1 )  e.  ZZ  ->  ( -.  2  ||  ( ( 2  x.  A )  +  1 )  <->  E. k  e.  ZZ  ( ( 2  x.  k )  +  1 )  =  ( ( 2  x.  A
)  +  1 ) ) )
1311, 12syl 14 . . . 4  |-  ( A  e.  ZZ  ->  ( -.  2  ||  ( ( 2  x.  A )  +  1 )  <->  E. k  e.  ZZ  ( ( 2  x.  k )  +  1 )  =  ( ( 2  x.  A
)  +  1 ) ) )
147, 13mpbird 167 . . 3  |-  ( A  e.  ZZ  ->  -.  2  ||  ( ( 2  x.  A )  +  1 ) )
1514adantr 276 . 2  |-  ( ( A  e.  ZZ  /\  B  =  ( (
2  x.  A )  +  1 ) )  ->  -.  2  ||  ( ( 2  x.  A )  +  1 ) )
16 breq2 4086 . . 3  |-  ( B  =  ( ( 2  x.  A )  +  1 )  ->  (
2  ||  B  <->  2  ||  ( ( 2  x.  A )  +  1 ) ) )
1716adantl 277 . 2  |-  ( ( A  e.  ZZ  /\  B  =  ( (
2  x.  A )  +  1 ) )  ->  ( 2  ||  B 
<->  2  ||  ( ( 2  x.  A )  +  1 ) ) )
1815, 17mtbird 677 1  |-  ( ( A  e.  ZZ  /\  B  =  ( (
2  x.  A )  +  1 ) )  ->  -.  2  ||  B )
Colors of variables: wff set class
Syntax hints:   -. wn 3    -> wi 4    /\ wa 104    <-> wb 105    = wceq 1395    e. wcel 2200   E.wrex 2509   class class class wbr 4082  (class class class)co 6000   1c1 7996    + caddc 7998    x. cmul 8000   2c2 9157   ZZcz 9442    || cdvds 12293
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 617  ax-in2 618  ax-io 714  ax-5 1493  ax-7 1494  ax-gen 1495  ax-ie1 1539  ax-ie2 1540  ax-8 1550  ax-10 1551  ax-11 1552  ax-i12 1553  ax-bndl 1555  ax-4 1556  ax-17 1572  ax-i9 1576  ax-ial 1580  ax-i5r 1581  ax-13 2202  ax-14 2203  ax-ext 2211  ax-sep 4201  ax-pow 4257  ax-pr 4292  ax-un 4523  ax-setind 4628  ax-cnex 8086  ax-resscn 8087  ax-1cn 8088  ax-1re 8089  ax-icn 8090  ax-addcl 8091  ax-addrcl 8092  ax-mulcl 8093  ax-mulrcl 8094  ax-addcom 8095  ax-mulcom 8096  ax-addass 8097  ax-mulass 8098  ax-distr 8099  ax-i2m1 8100  ax-0lt1 8101  ax-1rid 8102  ax-0id 8103  ax-rnegex 8104  ax-precex 8105  ax-cnre 8106  ax-pre-ltirr 8107  ax-pre-ltwlin 8108  ax-pre-lttrn 8109  ax-pre-apti 8110  ax-pre-ltadd 8111  ax-pre-mulgt0 8112  ax-pre-mulext 8113
This theorem depends on definitions:  df-bi 117  df-3or 1003  df-3an 1004  df-tru 1398  df-fal 1401  df-xor 1418  df-nf 1507  df-sb 1809  df-eu 2080  df-mo 2081  df-clab 2216  df-cleq 2222  df-clel 2225  df-nfc 2361  df-ne 2401  df-nel 2496  df-ral 2513  df-rex 2514  df-reu 2515  df-rmo 2516  df-rab 2517  df-v 2801  df-sbc 3029  df-dif 3199  df-un 3201  df-in 3203  df-ss 3210  df-pw 3651  df-sn 3672  df-pr 3673  df-op 3675  df-uni 3888  df-int 3923  df-br 4083  df-opab 4145  df-id 4383  df-po 4386  df-iso 4387  df-xp 4724  df-rel 4725  df-cnv 4726  df-co 4727  df-dm 4728  df-iota 5277  df-fun 5319  df-fv 5325  df-riota 5953  df-ov 6003  df-oprab 6004  df-mpo 6005  df-pnf 8179  df-mnf 8180  df-xr 8181  df-ltxr 8182  df-le 8183  df-sub 8315  df-neg 8316  df-reap 8718  df-ap 8725  df-div 8816  df-inn 9107  df-2 9165  df-n0 9366  df-z 9443  df-dvds 12294
This theorem is referenced by:  2lgslem3b1  15771  2lgslem3c1  15772
  Copyright terms: Public domain W3C validator