ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  2tp1odd Unicode version

Theorem 2tp1odd 12028
Description: A number which is twice an integer increased by 1 is odd. (Contributed by AV, 16-Jul-2021.)
Assertion
Ref Expression
2tp1odd  |-  ( ( A  e.  ZZ  /\  B  =  ( (
2  x.  A )  +  1 ) )  ->  -.  2  ||  B )

Proof of Theorem 2tp1odd
Dummy variable  k is distinct from all other variables.
StepHypRef Expression
1 id 19 . . . . 5  |-  ( A  e.  ZZ  ->  A  e.  ZZ )
2 oveq2 5927 . . . . . . . 8  |-  ( k  =  A  ->  (
2  x.  k )  =  ( 2  x.  A ) )
32oveq1d 5934 . . . . . . 7  |-  ( k  =  A  ->  (
( 2  x.  k
)  +  1 )  =  ( ( 2  x.  A )  +  1 ) )
43eqeq1d 2202 . . . . . 6  |-  ( k  =  A  ->  (
( ( 2  x.  k )  +  1 )  =  ( ( 2  x.  A )  +  1 )  <->  ( (
2  x.  A )  +  1 )  =  ( ( 2  x.  A )  +  1 ) ) )
54adantl 277 . . . . 5  |-  ( ( A  e.  ZZ  /\  k  =  A )  ->  ( ( ( 2  x.  k )  +  1 )  =  ( ( 2  x.  A
)  +  1 )  <-> 
( ( 2  x.  A )  +  1 )  =  ( ( 2  x.  A )  +  1 ) ) )
6 eqidd 2194 . . . . 5  |-  ( A  e.  ZZ  ->  (
( 2  x.  A
)  +  1 )  =  ( ( 2  x.  A )  +  1 ) )
71, 5, 6rspcedvd 2871 . . . 4  |-  ( A  e.  ZZ  ->  E. k  e.  ZZ  ( ( 2  x.  k )  +  1 )  =  ( ( 2  x.  A
)  +  1 ) )
8 2z 9348 . . . . . . . 8  |-  2  e.  ZZ
98a1i 9 . . . . . . 7  |-  ( A  e.  ZZ  ->  2  e.  ZZ )
109, 1zmulcld 9448 . . . . . 6  |-  ( A  e.  ZZ  ->  (
2  x.  A )  e.  ZZ )
1110peano2zd 9445 . . . . 5  |-  ( A  e.  ZZ  ->  (
( 2  x.  A
)  +  1 )  e.  ZZ )
12 odd2np1 12017 . . . . 5  |-  ( ( ( 2  x.  A
)  +  1 )  e.  ZZ  ->  ( -.  2  ||  ( ( 2  x.  A )  +  1 )  <->  E. k  e.  ZZ  ( ( 2  x.  k )  +  1 )  =  ( ( 2  x.  A
)  +  1 ) ) )
1311, 12syl 14 . . . 4  |-  ( A  e.  ZZ  ->  ( -.  2  ||  ( ( 2  x.  A )  +  1 )  <->  E. k  e.  ZZ  ( ( 2  x.  k )  +  1 )  =  ( ( 2  x.  A
)  +  1 ) ) )
147, 13mpbird 167 . . 3  |-  ( A  e.  ZZ  ->  -.  2  ||  ( ( 2  x.  A )  +  1 ) )
1514adantr 276 . 2  |-  ( ( A  e.  ZZ  /\  B  =  ( (
2  x.  A )  +  1 ) )  ->  -.  2  ||  ( ( 2  x.  A )  +  1 ) )
16 breq2 4034 . . 3  |-  ( B  =  ( ( 2  x.  A )  +  1 )  ->  (
2  ||  B  <->  2  ||  ( ( 2  x.  A )  +  1 ) ) )
1716adantl 277 . 2  |-  ( ( A  e.  ZZ  /\  B  =  ( (
2  x.  A )  +  1 ) )  ->  ( 2  ||  B 
<->  2  ||  ( ( 2  x.  A )  +  1 ) ) )
1815, 17mtbird 674 1  |-  ( ( A  e.  ZZ  /\  B  =  ( (
2  x.  A )  +  1 ) )  ->  -.  2  ||  B )
Colors of variables: wff set class
Syntax hints:   -. wn 3    -> wi 4    /\ wa 104    <-> wb 105    = wceq 1364    e. wcel 2164   E.wrex 2473   class class class wbr 4030  (class class class)co 5919   1c1 7875    + caddc 7877    x. cmul 7879   2c2 9035   ZZcz 9320    || cdvds 11933
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 710  ax-5 1458  ax-7 1459  ax-gen 1460  ax-ie1 1504  ax-ie2 1505  ax-8 1515  ax-10 1516  ax-11 1517  ax-i12 1518  ax-bndl 1520  ax-4 1521  ax-17 1537  ax-i9 1541  ax-ial 1545  ax-i5r 1546  ax-13 2166  ax-14 2167  ax-ext 2175  ax-sep 4148  ax-pow 4204  ax-pr 4239  ax-un 4465  ax-setind 4570  ax-cnex 7965  ax-resscn 7966  ax-1cn 7967  ax-1re 7968  ax-icn 7969  ax-addcl 7970  ax-addrcl 7971  ax-mulcl 7972  ax-mulrcl 7973  ax-addcom 7974  ax-mulcom 7975  ax-addass 7976  ax-mulass 7977  ax-distr 7978  ax-i2m1 7979  ax-0lt1 7980  ax-1rid 7981  ax-0id 7982  ax-rnegex 7983  ax-precex 7984  ax-cnre 7985  ax-pre-ltirr 7986  ax-pre-ltwlin 7987  ax-pre-lttrn 7988  ax-pre-apti 7989  ax-pre-ltadd 7990  ax-pre-mulgt0 7991  ax-pre-mulext 7992
This theorem depends on definitions:  df-bi 117  df-3or 981  df-3an 982  df-tru 1367  df-fal 1370  df-xor 1387  df-nf 1472  df-sb 1774  df-eu 2045  df-mo 2046  df-clab 2180  df-cleq 2186  df-clel 2189  df-nfc 2325  df-ne 2365  df-nel 2460  df-ral 2477  df-rex 2478  df-reu 2479  df-rmo 2480  df-rab 2481  df-v 2762  df-sbc 2987  df-dif 3156  df-un 3158  df-in 3160  df-ss 3167  df-pw 3604  df-sn 3625  df-pr 3626  df-op 3628  df-uni 3837  df-int 3872  df-br 4031  df-opab 4092  df-id 4325  df-po 4328  df-iso 4329  df-xp 4666  df-rel 4667  df-cnv 4668  df-co 4669  df-dm 4670  df-iota 5216  df-fun 5257  df-fv 5263  df-riota 5874  df-ov 5922  df-oprab 5923  df-mpo 5924  df-pnf 8058  df-mnf 8059  df-xr 8060  df-ltxr 8061  df-le 8062  df-sub 8194  df-neg 8195  df-reap 8596  df-ap 8603  df-div 8694  df-inn 8985  df-2 9043  df-n0 9244  df-z 9321  df-dvds 11934
This theorem is referenced by:  2lgslem3b1  15246  2lgslem3c1  15247
  Copyright terms: Public domain W3C validator