ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  grpidinv Unicode version

Theorem grpidinv 13131
Description: A group has a left and right identity element, and every member has a left and right inverse. (Contributed by NM, 14-Oct-2006.) (Revised by AV, 1-Sep-2021.)
Hypotheses
Ref Expression
grpidinv.b  |-  B  =  ( Base `  G
)
grpidinv.p  |-  .+  =  ( +g  `  G )
Assertion
Ref Expression
grpidinv  |-  ( G  e.  Grp  ->  E. u  e.  B  A. x  e.  B  ( (
( u  .+  x
)  =  x  /\  ( x  .+  u )  =  x )  /\  E. y  e.  B  ( ( y  .+  x
)  =  u  /\  ( x  .+  y )  =  u ) ) )
Distinct variable groups:    u, G, x, y    u, B, y   
u,  .+ , y
Allowed substitution hints:    B( x)    .+ ( x)

Proof of Theorem grpidinv
StepHypRef Expression
1 grpidinv.b . . 3  |-  B  =  ( Base `  G
)
2 eqid 2193 . . 3  |-  ( 0g
`  G )  =  ( 0g `  G
)
31, 2grpidcl 13101 . 2  |-  ( G  e.  Grp  ->  ( 0g `  G )  e.  B )
4 oveq1 5925 . . . . . . 7  |-  ( u  =  ( 0g `  G )  ->  (
u  .+  x )  =  ( ( 0g
`  G )  .+  x ) )
54eqeq1d 2202 . . . . . 6  |-  ( u  =  ( 0g `  G )  ->  (
( u  .+  x
)  =  x  <->  ( ( 0g `  G )  .+  x )  =  x ) )
6 oveq2 5926 . . . . . . 7  |-  ( u  =  ( 0g `  G )  ->  (
x  .+  u )  =  ( x  .+  ( 0g `  G ) ) )
76eqeq1d 2202 . . . . . 6  |-  ( u  =  ( 0g `  G )  ->  (
( x  .+  u
)  =  x  <->  ( x  .+  ( 0g `  G
) )  =  x ) )
85, 7anbi12d 473 . . . . 5  |-  ( u  =  ( 0g `  G )  ->  (
( ( u  .+  x )  =  x  /\  ( x  .+  u )  =  x )  <->  ( ( ( 0g `  G ) 
.+  x )  =  x  /\  ( x 
.+  ( 0g `  G ) )  =  x ) ) )
9 eqeq2 2203 . . . . . . 7  |-  ( u  =  ( 0g `  G )  ->  (
( y  .+  x
)  =  u  <->  ( y  .+  x )  =  ( 0g `  G ) ) )
10 eqeq2 2203 . . . . . . 7  |-  ( u  =  ( 0g `  G )  ->  (
( x  .+  y
)  =  u  <->  ( x  .+  y )  =  ( 0g `  G ) ) )
119, 10anbi12d 473 . . . . . 6  |-  ( u  =  ( 0g `  G )  ->  (
( ( y  .+  x )  =  u  /\  ( x  .+  y )  =  u )  <->  ( ( y 
.+  x )  =  ( 0g `  G
)  /\  ( x  .+  y )  =  ( 0g `  G ) ) ) )
1211rexbidv 2495 . . . . 5  |-  ( u  =  ( 0g `  G )  ->  ( E. y  e.  B  ( ( y  .+  x )  =  u  /\  ( x  .+  y )  =  u )  <->  E. y  e.  B  ( ( y  .+  x )  =  ( 0g `  G )  /\  ( x  .+  y )  =  ( 0g `  G ) ) ) )
138, 12anbi12d 473 . . . 4  |-  ( u  =  ( 0g `  G )  ->  (
( ( ( u 
.+  x )  =  x  /\  ( x 
.+  u )  =  x )  /\  E. y  e.  B  (
( y  .+  x
)  =  u  /\  ( x  .+  y )  =  u ) )  <-> 
( ( ( ( 0g `  G ) 
.+  x )  =  x  /\  ( x 
.+  ( 0g `  G ) )  =  x )  /\  E. y  e.  B  (
( y  .+  x
)  =  ( 0g
`  G )  /\  ( x  .+  y )  =  ( 0g `  G ) ) ) ) )
1413ralbidv 2494 . . 3  |-  ( u  =  ( 0g `  G )  ->  ( A. x  e.  B  ( ( ( u 
.+  x )  =  x  /\  ( x 
.+  u )  =  x )  /\  E. y  e.  B  (
( y  .+  x
)  =  u  /\  ( x  .+  y )  =  u ) )  <->  A. x  e.  B  ( ( ( ( 0g `  G ) 
.+  x )  =  x  /\  ( x 
.+  ( 0g `  G ) )  =  x )  /\  E. y  e.  B  (
( y  .+  x
)  =  ( 0g
`  G )  /\  ( x  .+  y )  =  ( 0g `  G ) ) ) ) )
1514adantl 277 . 2  |-  ( ( G  e.  Grp  /\  u  =  ( 0g `  G ) )  -> 
( A. x  e.  B  ( ( ( u  .+  x )  =  x  /\  (
x  .+  u )  =  x )  /\  E. y  e.  B  (
( y  .+  x
)  =  u  /\  ( x  .+  y )  =  u ) )  <->  A. x  e.  B  ( ( ( ( 0g `  G ) 
.+  x )  =  x  /\  ( x 
.+  ( 0g `  G ) )  =  x )  /\  E. y  e.  B  (
( y  .+  x
)  =  ( 0g
`  G )  /\  ( x  .+  y )  =  ( 0g `  G ) ) ) ) )
16 grpidinv.p . . . 4  |-  .+  =  ( +g  `  G )
171, 16, 2grpidinv2 13130 . . 3  |-  ( ( G  e.  Grp  /\  x  e.  B )  ->  ( ( ( ( 0g `  G ) 
.+  x )  =  x  /\  ( x 
.+  ( 0g `  G ) )  =  x )  /\  E. y  e.  B  (
( y  .+  x
)  =  ( 0g
`  G )  /\  ( x  .+  y )  =  ( 0g `  G ) ) ) )
1817ralrimiva 2567 . 2  |-  ( G  e.  Grp  ->  A. x  e.  B  ( (
( ( 0g `  G )  .+  x
)  =  x  /\  ( x  .+  ( 0g
`  G ) )  =  x )  /\  E. y  e.  B  ( ( y  .+  x
)  =  ( 0g
`  G )  /\  ( x  .+  y )  =  ( 0g `  G ) ) ) )
193, 15, 18rspcedvd 2870 1  |-  ( G  e.  Grp  ->  E. u  e.  B  A. x  e.  B  ( (
( u  .+  x
)  =  x  /\  ( x  .+  u )  =  x )  /\  E. y  e.  B  ( ( y  .+  x
)  =  u  /\  ( x  .+  y )  =  u ) ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 104    <-> wb 105    = wceq 1364    e. wcel 2164   A.wral 2472   E.wrex 2473   ` cfv 5254  (class class class)co 5918   Basecbs 12618   +g cplusg 12695   0gc0g 12867   Grpcgrp 13072
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 710  ax-5 1458  ax-7 1459  ax-gen 1460  ax-ie1 1504  ax-ie2 1505  ax-8 1515  ax-10 1516  ax-11 1517  ax-i12 1518  ax-bndl 1520  ax-4 1521  ax-17 1537  ax-i9 1541  ax-ial 1545  ax-i5r 1546  ax-13 2166  ax-14 2167  ax-ext 2175  ax-coll 4144  ax-sep 4147  ax-pow 4203  ax-pr 4238  ax-un 4464  ax-cnex 7963  ax-resscn 7964  ax-1re 7966  ax-addrcl 7969
This theorem depends on definitions:  df-bi 117  df-3an 982  df-tru 1367  df-nf 1472  df-sb 1774  df-eu 2045  df-mo 2046  df-clab 2180  df-cleq 2186  df-clel 2189  df-nfc 2325  df-ral 2477  df-rex 2478  df-reu 2479  df-rmo 2480  df-rab 2481  df-v 2762  df-sbc 2986  df-csb 3081  df-un 3157  df-in 3159  df-ss 3166  df-pw 3603  df-sn 3624  df-pr 3625  df-op 3627  df-uni 3836  df-int 3871  df-iun 3914  df-br 4030  df-opab 4091  df-mpt 4092  df-id 4324  df-xp 4665  df-rel 4666  df-cnv 4667  df-co 4668  df-dm 4669  df-rn 4670  df-res 4671  df-ima 4672  df-iota 5215  df-fun 5256  df-fn 5257  df-f 5258  df-f1 5259  df-fo 5260  df-f1o 5261  df-fv 5262  df-riota 5873  df-ov 5921  df-inn 8983  df-2 9041  df-ndx 12621  df-slot 12622  df-base 12624  df-plusg 12708  df-0g 12869  df-mgm 12939  df-sgrp 12985  df-mnd 12998  df-grp 13075  df-minusg 13076
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator