ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  grpidinv Unicode version

Theorem grpidinv 13261
Description: A group has a left and right identity element, and every member has a left and right inverse. (Contributed by NM, 14-Oct-2006.) (Revised by AV, 1-Sep-2021.)
Hypotheses
Ref Expression
grpidinv.b  |-  B  =  ( Base `  G
)
grpidinv.p  |-  .+  =  ( +g  `  G )
Assertion
Ref Expression
grpidinv  |-  ( G  e.  Grp  ->  E. u  e.  B  A. x  e.  B  ( (
( u  .+  x
)  =  x  /\  ( x  .+  u )  =  x )  /\  E. y  e.  B  ( ( y  .+  x
)  =  u  /\  ( x  .+  y )  =  u ) ) )
Distinct variable groups:    u, G, x, y    u, B, y   
u,  .+ , y
Allowed substitution hints:    B( x)    .+ ( x)

Proof of Theorem grpidinv
StepHypRef Expression
1 grpidinv.b . . 3  |-  B  =  ( Base `  G
)
2 eqid 2196 . . 3  |-  ( 0g
`  G )  =  ( 0g `  G
)
31, 2grpidcl 13231 . 2  |-  ( G  e.  Grp  ->  ( 0g `  G )  e.  B )
4 oveq1 5932 . . . . . . 7  |-  ( u  =  ( 0g `  G )  ->  (
u  .+  x )  =  ( ( 0g
`  G )  .+  x ) )
54eqeq1d 2205 . . . . . 6  |-  ( u  =  ( 0g `  G )  ->  (
( u  .+  x
)  =  x  <->  ( ( 0g `  G )  .+  x )  =  x ) )
6 oveq2 5933 . . . . . . 7  |-  ( u  =  ( 0g `  G )  ->  (
x  .+  u )  =  ( x  .+  ( 0g `  G ) ) )
76eqeq1d 2205 . . . . . 6  |-  ( u  =  ( 0g `  G )  ->  (
( x  .+  u
)  =  x  <->  ( x  .+  ( 0g `  G
) )  =  x ) )
85, 7anbi12d 473 . . . . 5  |-  ( u  =  ( 0g `  G )  ->  (
( ( u  .+  x )  =  x  /\  ( x  .+  u )  =  x )  <->  ( ( ( 0g `  G ) 
.+  x )  =  x  /\  ( x 
.+  ( 0g `  G ) )  =  x ) ) )
9 eqeq2 2206 . . . . . . 7  |-  ( u  =  ( 0g `  G )  ->  (
( y  .+  x
)  =  u  <->  ( y  .+  x )  =  ( 0g `  G ) ) )
10 eqeq2 2206 . . . . . . 7  |-  ( u  =  ( 0g `  G )  ->  (
( x  .+  y
)  =  u  <->  ( x  .+  y )  =  ( 0g `  G ) ) )
119, 10anbi12d 473 . . . . . 6  |-  ( u  =  ( 0g `  G )  ->  (
( ( y  .+  x )  =  u  /\  ( x  .+  y )  =  u )  <->  ( ( y 
.+  x )  =  ( 0g `  G
)  /\  ( x  .+  y )  =  ( 0g `  G ) ) ) )
1211rexbidv 2498 . . . . 5  |-  ( u  =  ( 0g `  G )  ->  ( E. y  e.  B  ( ( y  .+  x )  =  u  /\  ( x  .+  y )  =  u )  <->  E. y  e.  B  ( ( y  .+  x )  =  ( 0g `  G )  /\  ( x  .+  y )  =  ( 0g `  G ) ) ) )
138, 12anbi12d 473 . . . 4  |-  ( u  =  ( 0g `  G )  ->  (
( ( ( u 
.+  x )  =  x  /\  ( x 
.+  u )  =  x )  /\  E. y  e.  B  (
( y  .+  x
)  =  u  /\  ( x  .+  y )  =  u ) )  <-> 
( ( ( ( 0g `  G ) 
.+  x )  =  x  /\  ( x 
.+  ( 0g `  G ) )  =  x )  /\  E. y  e.  B  (
( y  .+  x
)  =  ( 0g
`  G )  /\  ( x  .+  y )  =  ( 0g `  G ) ) ) ) )
1413ralbidv 2497 . . 3  |-  ( u  =  ( 0g `  G )  ->  ( A. x  e.  B  ( ( ( u 
.+  x )  =  x  /\  ( x 
.+  u )  =  x )  /\  E. y  e.  B  (
( y  .+  x
)  =  u  /\  ( x  .+  y )  =  u ) )  <->  A. x  e.  B  ( ( ( ( 0g `  G ) 
.+  x )  =  x  /\  ( x 
.+  ( 0g `  G ) )  =  x )  /\  E. y  e.  B  (
( y  .+  x
)  =  ( 0g
`  G )  /\  ( x  .+  y )  =  ( 0g `  G ) ) ) ) )
1514adantl 277 . 2  |-  ( ( G  e.  Grp  /\  u  =  ( 0g `  G ) )  -> 
( A. x  e.  B  ( ( ( u  .+  x )  =  x  /\  (
x  .+  u )  =  x )  /\  E. y  e.  B  (
( y  .+  x
)  =  u  /\  ( x  .+  y )  =  u ) )  <->  A. x  e.  B  ( ( ( ( 0g `  G ) 
.+  x )  =  x  /\  ( x 
.+  ( 0g `  G ) )  =  x )  /\  E. y  e.  B  (
( y  .+  x
)  =  ( 0g
`  G )  /\  ( x  .+  y )  =  ( 0g `  G ) ) ) ) )
16 grpidinv.p . . . 4  |-  .+  =  ( +g  `  G )
171, 16, 2grpidinv2 13260 . . 3  |-  ( ( G  e.  Grp  /\  x  e.  B )  ->  ( ( ( ( 0g `  G ) 
.+  x )  =  x  /\  ( x 
.+  ( 0g `  G ) )  =  x )  /\  E. y  e.  B  (
( y  .+  x
)  =  ( 0g
`  G )  /\  ( x  .+  y )  =  ( 0g `  G ) ) ) )
1817ralrimiva 2570 . 2  |-  ( G  e.  Grp  ->  A. x  e.  B  ( (
( ( 0g `  G )  .+  x
)  =  x  /\  ( x  .+  ( 0g
`  G ) )  =  x )  /\  E. y  e.  B  ( ( y  .+  x
)  =  ( 0g
`  G )  /\  ( x  .+  y )  =  ( 0g `  G ) ) ) )
193, 15, 18rspcedvd 2874 1  |-  ( G  e.  Grp  ->  E. u  e.  B  A. x  e.  B  ( (
( u  .+  x
)  =  x  /\  ( x  .+  u )  =  x )  /\  E. y  e.  B  ( ( y  .+  x
)  =  u  /\  ( x  .+  y )  =  u ) ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 104    <-> wb 105    = wceq 1364    e. wcel 2167   A.wral 2475   E.wrex 2476   ` cfv 5259  (class class class)co 5925   Basecbs 12703   +g cplusg 12780   0gc0g 12958   Grpcgrp 13202
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 710  ax-5 1461  ax-7 1462  ax-gen 1463  ax-ie1 1507  ax-ie2 1508  ax-8 1518  ax-10 1519  ax-11 1520  ax-i12 1521  ax-bndl 1523  ax-4 1524  ax-17 1540  ax-i9 1544  ax-ial 1548  ax-i5r 1549  ax-13 2169  ax-14 2170  ax-ext 2178  ax-coll 4149  ax-sep 4152  ax-pow 4208  ax-pr 4243  ax-un 4469  ax-cnex 7987  ax-resscn 7988  ax-1re 7990  ax-addrcl 7993
This theorem depends on definitions:  df-bi 117  df-3an 982  df-tru 1367  df-nf 1475  df-sb 1777  df-eu 2048  df-mo 2049  df-clab 2183  df-cleq 2189  df-clel 2192  df-nfc 2328  df-ral 2480  df-rex 2481  df-reu 2482  df-rmo 2483  df-rab 2484  df-v 2765  df-sbc 2990  df-csb 3085  df-un 3161  df-in 3163  df-ss 3170  df-pw 3608  df-sn 3629  df-pr 3630  df-op 3632  df-uni 3841  df-int 3876  df-iun 3919  df-br 4035  df-opab 4096  df-mpt 4097  df-id 4329  df-xp 4670  df-rel 4671  df-cnv 4672  df-co 4673  df-dm 4674  df-rn 4675  df-res 4676  df-ima 4677  df-iota 5220  df-fun 5261  df-fn 5262  df-f 5263  df-f1 5264  df-fo 5265  df-f1o 5266  df-fv 5267  df-riota 5880  df-ov 5928  df-inn 9008  df-2 9066  df-ndx 12706  df-slot 12707  df-base 12709  df-plusg 12793  df-0g 12960  df-mgm 13058  df-sgrp 13104  df-mnd 13119  df-grp 13205  df-minusg 13206
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator