ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  modqmuladd Unicode version

Theorem modqmuladd 10509
Description: Decomposition of an integer into a multiple of a modulus and a remainder. (Contributed by Jim Kingdon, 23-Oct-2021.)
Hypotheses
Ref Expression
modqmuladd.a  |-  ( ph  ->  A  e.  ZZ )
modqmuladd.bq  |-  ( ph  ->  B  e.  QQ )
modqmuladd.b  |-  ( ph  ->  B  e.  ( 0 [,) M ) )
modqmuladd.m  |-  ( ph  ->  M  e.  QQ )
modqmuladd.mgt0  |-  ( ph  ->  0  <  M )
Assertion
Ref Expression
modqmuladd  |-  ( ph  ->  ( ( A  mod  M )  =  B  <->  E. k  e.  ZZ  A  =  ( ( k  x.  M
)  +  B ) ) )
Distinct variable groups:    A, k    B, k    k, M    ph, k

Proof of Theorem modqmuladd
StepHypRef Expression
1 modqmuladd.a . . . . . . 7  |-  ( ph  ->  A  e.  ZZ )
2 zq 9746 . . . . . . 7  |-  ( A  e.  ZZ  ->  A  e.  QQ )
31, 2syl 14 . . . . . 6  |-  ( ph  ->  A  e.  QQ )
4 modqmuladd.m . . . . . 6  |-  ( ph  ->  M  e.  QQ )
5 modqmuladd.mgt0 . . . . . . 7  |-  ( ph  ->  0  <  M )
65gt0ne0d 8584 . . . . . 6  |-  ( ph  ->  M  =/=  0 )
7 qdivcl 9763 . . . . . 6  |-  ( ( A  e.  QQ  /\  M  e.  QQ  /\  M  =/=  0 )  ->  ( A  /  M )  e.  QQ )
83, 4, 6, 7syl3anc 1249 . . . . 5  |-  ( ph  ->  ( A  /  M
)  e.  QQ )
98flqcld 10418 . . . 4  |-  ( ph  ->  ( |_ `  ( A  /  M ) )  e.  ZZ )
10 oveq1 5950 . . . . . . 7  |-  ( k  =  ( |_ `  ( A  /  M
) )  ->  (
k  x.  M )  =  ( ( |_
`  ( A  /  M ) )  x.  M ) )
1110oveq1d 5958 . . . . . 6  |-  ( k  =  ( |_ `  ( A  /  M
) )  ->  (
( k  x.  M
)  +  ( A  mod  M ) )  =  ( ( ( |_ `  ( A  /  M ) )  x.  M )  +  ( A  mod  M
) ) )
1211eqeq2d 2216 . . . . 5  |-  ( k  =  ( |_ `  ( A  /  M
) )  ->  ( A  =  ( (
k  x.  M )  +  ( A  mod  M ) )  <->  A  =  ( ( ( |_
`  ( A  /  M ) )  x.  M )  +  ( A  mod  M ) ) ) )
1312adantl 277 . . . 4  |-  ( (
ph  /\  k  =  ( |_ `  ( A  /  M ) ) )  ->  ( A  =  ( ( k  x.  M )  +  ( A  mod  M
) )  <->  A  =  ( ( ( |_
`  ( A  /  M ) )  x.  M )  +  ( A  mod  M ) ) ) )
14 flqpmodeq 10470 . . . . . 6  |-  ( ( A  e.  QQ  /\  M  e.  QQ  /\  0  <  M )  ->  (
( ( |_ `  ( A  /  M
) )  x.  M
)  +  ( A  mod  M ) )  =  A )
153, 4, 5, 14syl3anc 1249 . . . . 5  |-  ( ph  ->  ( ( ( |_
`  ( A  /  M ) )  x.  M )  +  ( A  mod  M ) )  =  A )
1615eqcomd 2210 . . . 4  |-  ( ph  ->  A  =  ( ( ( |_ `  ( A  /  M ) )  x.  M )  +  ( A  mod  M
) ) )
179, 13, 16rspcedvd 2882 . . 3  |-  ( ph  ->  E. k  e.  ZZ  A  =  ( (
k  x.  M )  +  ( A  mod  M ) ) )
18 oveq2 5951 . . . . . 6  |-  ( B  =  ( A  mod  M )  ->  ( (
k  x.  M )  +  B )  =  ( ( k  x.  M )  +  ( A  mod  M ) ) )
1918eqeq2d 2216 . . . . 5  |-  ( B  =  ( A  mod  M )  ->  ( A  =  ( ( k  x.  M )  +  B )  <->  A  =  ( ( k  x.  M )  +  ( A  mod  M ) ) ) )
2019eqcoms 2207 . . . 4  |-  ( ( A  mod  M )  =  B  ->  ( A  =  ( (
k  x.  M )  +  B )  <->  A  =  ( ( k  x.  M )  +  ( A  mod  M ) ) ) )
2120rexbidv 2506 . . 3  |-  ( ( A  mod  M )  =  B  ->  ( E. k  e.  ZZ  A  =  ( (
k  x.  M )  +  B )  <->  E. k  e.  ZZ  A  =  ( ( k  x.  M
)  +  ( A  mod  M ) ) ) )
2217, 21syl5ibrcom 157 . 2  |-  ( ph  ->  ( ( A  mod  M )  =  B  ->  E. k  e.  ZZ  A  =  ( (
k  x.  M )  +  B ) ) )
23 oveq1 5950 . . . . . 6  |-  ( A  =  ( ( k  x.  M )  +  B )  ->  ( A  mod  M )  =  ( ( ( k  x.  M )  +  B )  mod  M
) )
2423adantl 277 . . . . 5  |-  ( ( ( ph  /\  k  e.  ZZ )  /\  A  =  ( ( k  x.  M )  +  B ) )  -> 
( A  mod  M
)  =  ( ( ( k  x.  M
)  +  B )  mod  M ) )
25 simplr 528 . . . . . 6  |-  ( ( ( ph  /\  k  e.  ZZ )  /\  A  =  ( ( k  x.  M )  +  B ) )  -> 
k  e.  ZZ )
264ad2antrr 488 . . . . . 6  |-  ( ( ( ph  /\  k  e.  ZZ )  /\  A  =  ( ( k  x.  M )  +  B ) )  ->  M  e.  QQ )
27 modqmuladd.bq . . . . . . 7  |-  ( ph  ->  B  e.  QQ )
2827ad2antrr 488 . . . . . 6  |-  ( ( ( ph  /\  k  e.  ZZ )  /\  A  =  ( ( k  x.  M )  +  B ) )  ->  B  e.  QQ )
29 modqmuladd.b . . . . . . 7  |-  ( ph  ->  B  e.  ( 0 [,) M ) )
3029ad2antrr 488 . . . . . 6  |-  ( ( ( ph  /\  k  e.  ZZ )  /\  A  =  ( ( k  x.  M )  +  B ) )  ->  B  e.  ( 0 [,) M ) )
31 mulqaddmodid 10507 . . . . . 6  |-  ( ( ( k  e.  ZZ  /\  M  e.  QQ )  /\  ( B  e.  QQ  /\  B  e.  ( 0 [,) M
) ) )  -> 
( ( ( k  x.  M )  +  B )  mod  M
)  =  B )
3225, 26, 28, 30, 31syl22anc 1250 . . . . 5  |-  ( ( ( ph  /\  k  e.  ZZ )  /\  A  =  ( ( k  x.  M )  +  B ) )  -> 
( ( ( k  x.  M )  +  B )  mod  M
)  =  B )
3324, 32eqtrd 2237 . . . 4  |-  ( ( ( ph  /\  k  e.  ZZ )  /\  A  =  ( ( k  x.  M )  +  B ) )  -> 
( A  mod  M
)  =  B )
3433ex 115 . . 3  |-  ( (
ph  /\  k  e.  ZZ )  ->  ( A  =  ( ( k  x.  M )  +  B )  ->  ( A  mod  M )  =  B ) )
3534rexlimdva 2622 . 2  |-  ( ph  ->  ( E. k  e.  ZZ  A  =  ( ( k  x.  M
)  +  B )  ->  ( A  mod  M )  =  B ) )
3622, 35impbid 129 1  |-  ( ph  ->  ( ( A  mod  M )  =  B  <->  E. k  e.  ZZ  A  =  ( ( k  x.  M
)  +  B ) ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 104    <-> wb 105    = wceq 1372    e. wcel 2175    =/= wne 2375   E.wrex 2484   class class class wbr 4043   ` cfv 5270  (class class class)co 5943   0cc0 7924    + caddc 7927    x. cmul 7929    < clt 8106    / cdiv 8744   ZZcz 9371   QQcq 9739   [,)cico 10011   |_cfl 10409    mod cmo 10465
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 710  ax-5 1469  ax-7 1470  ax-gen 1471  ax-ie1 1515  ax-ie2 1516  ax-8 1526  ax-10 1527  ax-11 1528  ax-i12 1529  ax-bndl 1531  ax-4 1532  ax-17 1548  ax-i9 1552  ax-ial 1556  ax-i5r 1557  ax-13 2177  ax-14 2178  ax-ext 2186  ax-sep 4161  ax-pow 4217  ax-pr 4252  ax-un 4479  ax-setind 4584  ax-cnex 8015  ax-resscn 8016  ax-1cn 8017  ax-1re 8018  ax-icn 8019  ax-addcl 8020  ax-addrcl 8021  ax-mulcl 8022  ax-mulrcl 8023  ax-addcom 8024  ax-mulcom 8025  ax-addass 8026  ax-mulass 8027  ax-distr 8028  ax-i2m1 8029  ax-0lt1 8030  ax-1rid 8031  ax-0id 8032  ax-rnegex 8033  ax-precex 8034  ax-cnre 8035  ax-pre-ltirr 8036  ax-pre-ltwlin 8037  ax-pre-lttrn 8038  ax-pre-apti 8039  ax-pre-ltadd 8040  ax-pre-mulgt0 8041  ax-pre-mulext 8042  ax-arch 8043
This theorem depends on definitions:  df-bi 117  df-3or 981  df-3an 982  df-tru 1375  df-fal 1378  df-nf 1483  df-sb 1785  df-eu 2056  df-mo 2057  df-clab 2191  df-cleq 2197  df-clel 2200  df-nfc 2336  df-ne 2376  df-nel 2471  df-ral 2488  df-rex 2489  df-reu 2490  df-rmo 2491  df-rab 2492  df-v 2773  df-sbc 2998  df-csb 3093  df-dif 3167  df-un 3169  df-in 3171  df-ss 3178  df-pw 3617  df-sn 3638  df-pr 3639  df-op 3641  df-uni 3850  df-int 3885  df-iun 3928  df-br 4044  df-opab 4105  df-mpt 4106  df-id 4339  df-po 4342  df-iso 4343  df-xp 4680  df-rel 4681  df-cnv 4682  df-co 4683  df-dm 4684  df-rn 4685  df-res 4686  df-ima 4687  df-iota 5231  df-fun 5272  df-fn 5273  df-f 5274  df-fv 5278  df-riota 5898  df-ov 5946  df-oprab 5947  df-mpo 5948  df-1st 6225  df-2nd 6226  df-pnf 8108  df-mnf 8109  df-xr 8110  df-ltxr 8111  df-le 8112  df-sub 8244  df-neg 8245  df-reap 8647  df-ap 8654  df-div 8745  df-inn 9036  df-n0 9295  df-z 9372  df-q 9740  df-rp 9775  df-ico 10015  df-fl 10411  df-mod 10466
This theorem is referenced by:  modqmuladdim  10510
  Copyright terms: Public domain W3C validator