| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > dfgrp3m | Unicode version | ||
| Description: Alternate definition of a
group as semigroup (with at least one element)
which is also a quasigroup, i.e. a magma in which solutions |
| Ref | Expression |
|---|---|
| dfgrp3.b |
|
| dfgrp3.p |
|
| Ref | Expression |
|---|---|
| dfgrp3m |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | grpsgrp 13558 |
. . 3
| |
| 2 | dfgrp3.b |
. . . . 5
| |
| 3 | eqid 2229 |
. . . . 5
| |
| 4 | 2, 3 | grpidcl 13562 |
. . . 4
|
| 5 | elex2 2816 |
. . . 4
| |
| 6 | 4, 5 | syl 14 |
. . 3
|
| 7 | simpl 109 |
. . . . . . 7
| |
| 8 | simpr 110 |
. . . . . . . 8
| |
| 9 | 8 | adantl 277 |
. . . . . . 7
|
| 10 | simpl 109 |
. . . . . . . 8
| |
| 11 | 10 | adantl 277 |
. . . . . . 7
|
| 12 | eqid 2229 |
. . . . . . . 8
| |
| 13 | 2, 12 | grpsubcl 13613 |
. . . . . . 7
|
| 14 | 7, 9, 11, 13 | syl3anc 1271 |
. . . . . 6
|
| 15 | oveq1 6008 |
. . . . . . . 8
| |
| 16 | 15 | eqeq1d 2238 |
. . . . . . 7
|
| 17 | 16 | adantl 277 |
. . . . . 6
|
| 18 | dfgrp3.p |
. . . . . . . 8
| |
| 19 | 2, 18, 12 | grpnpcan 13625 |
. . . . . . 7
|
| 20 | 7, 9, 11, 19 | syl3anc 1271 |
. . . . . 6
|
| 21 | 14, 17, 20 | rspcedvd 2913 |
. . . . 5
|
| 22 | eqid 2229 |
. . . . . . . . 9
| |
| 23 | 2, 22 | grpinvcl 13581 |
. . . . . . . 8
|
| 24 | 23 | adantrr 479 |
. . . . . . 7
|
| 25 | 2, 18, 7, 24, 9 | grpcld 13547 |
. . . . . 6
|
| 26 | oveq2 6009 |
. . . . . . . 8
| |
| 27 | 26 | eqeq1d 2238 |
. . . . . . 7
|
| 28 | 27 | adantl 277 |
. . . . . 6
|
| 29 | 2, 18, 3, 22 | grprinv 13584 |
. . . . . . . . 9
|
| 30 | 29 | adantrr 479 |
. . . . . . . 8
|
| 31 | 30 | oveq1d 6016 |
. . . . . . 7
|
| 32 | 2, 18 | grpass 13542 |
. . . . . . . 8
|
| 33 | 7, 11, 24, 9, 32 | syl13anc 1273 |
. . . . . . 7
|
| 34 | grpmnd 13540 |
. . . . . . . 8
| |
| 35 | 2, 18, 3 | mndlid 13468 |
. . . . . . . 8
|
| 36 | 34, 8, 35 | syl2an 289 |
. . . . . . 7
|
| 37 | 31, 33, 36 | 3eqtr3d 2270 |
. . . . . 6
|
| 38 | 25, 28, 37 | rspcedvd 2913 |
. . . . 5
|
| 39 | 21, 38 | jca 306 |
. . . 4
|
| 40 | 39 | ralrimivva 2612 |
. . 3
|
| 41 | 1, 6, 40 | 3jca 1201 |
. 2
|
| 42 | simp1 1021 |
. . 3
| |
| 43 | 2, 18 | dfgrp3mlem 13631 |
. . 3
|
| 44 | 2, 18 | dfgrp2 13560 |
. . 3
|
| 45 | 42, 43, 44 | sylanbrc 417 |
. 2
|
| 46 | 41, 45 | impbii 126 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 617 ax-in2 618 ax-io 714 ax-5 1493 ax-7 1494 ax-gen 1495 ax-ie1 1539 ax-ie2 1540 ax-8 1550 ax-10 1551 ax-11 1552 ax-i12 1553 ax-bndl 1555 ax-4 1556 ax-17 1572 ax-i9 1576 ax-ial 1580 ax-i5r 1581 ax-13 2202 ax-14 2203 ax-ext 2211 ax-coll 4199 ax-sep 4202 ax-pow 4258 ax-pr 4293 ax-un 4524 ax-setind 4629 ax-cnex 8090 ax-resscn 8091 ax-1re 8093 ax-addrcl 8096 |
| This theorem depends on definitions: df-bi 117 df-3an 1004 df-tru 1398 df-fal 1401 df-nf 1507 df-sb 1809 df-eu 2080 df-mo 2081 df-clab 2216 df-cleq 2222 df-clel 2225 df-nfc 2361 df-ne 2401 df-ral 2513 df-rex 2514 df-reu 2515 df-rmo 2516 df-rab 2517 df-v 2801 df-sbc 3029 df-csb 3125 df-dif 3199 df-un 3201 df-in 3203 df-ss 3210 df-pw 3651 df-sn 3672 df-pr 3673 df-op 3675 df-uni 3889 df-int 3924 df-iun 3967 df-br 4084 df-opab 4146 df-mpt 4147 df-id 4384 df-xp 4725 df-rel 4726 df-cnv 4727 df-co 4728 df-dm 4729 df-rn 4730 df-res 4731 df-ima 4732 df-iota 5278 df-fun 5320 df-fn 5321 df-f 5322 df-f1 5323 df-fo 5324 df-f1o 5325 df-fv 5326 df-riota 5954 df-ov 6004 df-oprab 6005 df-mpo 6006 df-1st 6286 df-2nd 6287 df-inn 9111 df-2 9169 df-ndx 13035 df-slot 13036 df-base 13038 df-plusg 13123 df-0g 13291 df-mgm 13389 df-sgrp 13435 df-mnd 13450 df-grp 13536 df-minusg 13537 df-sbg 13538 |
| This theorem is referenced by: dfgrp3me 13633 |
| Copyright terms: Public domain | W3C validator |