ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  dfgrp3m Unicode version

Theorem dfgrp3m 13431
Description: Alternate definition of a group as semigroup (with at least one element) which is also a quasigroup, i.e. a magma in which solutions  x and  y of the equations  ( a  .+  x )  =  b and  ( x  .+  a
)  =  b exist. Theorem 3.2 of [Bruck] p. 28. (Contributed by AV, 28-Aug-2021.)
Hypotheses
Ref Expression
dfgrp3.b  |-  B  =  ( Base `  G
)
dfgrp3.p  |-  .+  =  ( +g  `  G )
Assertion
Ref Expression
dfgrp3m  |-  ( G  e.  Grp  <->  ( G  e. Smgrp  /\  E. w  w  e.  B  /\  A. x  e.  B  A. y  e.  B  ( E. l  e.  B  ( l  .+  x
)  =  y  /\  E. r  e.  B  ( x  .+  r )  =  y ) ) )
Distinct variable groups:    B, l, r, w, x, y    G, l, r, w, x, y    .+ , l, r, w, x, y

Proof of Theorem dfgrp3m
Dummy variables  a  i  u are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 grpsgrp 13357 . . 3  |-  ( G  e.  Grp  ->  G  e. Smgrp )
2 dfgrp3.b . . . . 5  |-  B  =  ( Base `  G
)
3 eqid 2205 . . . . 5  |-  ( 0g
`  G )  =  ( 0g `  G
)
42, 3grpidcl 13361 . . . 4  |-  ( G  e.  Grp  ->  ( 0g `  G )  e.  B )
5 elex2 2788 . . . 4  |-  ( ( 0g `  G )  e.  B  ->  E. w  w  e.  B )
64, 5syl 14 . . 3  |-  ( G  e.  Grp  ->  E. w  w  e.  B )
7 simpl 109 . . . . . . 7  |-  ( ( G  e.  Grp  /\  ( x  e.  B  /\  y  e.  B
) )  ->  G  e.  Grp )
8 simpr 110 . . . . . . . 8  |-  ( ( x  e.  B  /\  y  e.  B )  ->  y  e.  B )
98adantl 277 . . . . . . 7  |-  ( ( G  e.  Grp  /\  ( x  e.  B  /\  y  e.  B
) )  ->  y  e.  B )
10 simpl 109 . . . . . . . 8  |-  ( ( x  e.  B  /\  y  e.  B )  ->  x  e.  B )
1110adantl 277 . . . . . . 7  |-  ( ( G  e.  Grp  /\  ( x  e.  B  /\  y  e.  B
) )  ->  x  e.  B )
12 eqid 2205 . . . . . . . 8  |-  ( -g `  G )  =  (
-g `  G )
132, 12grpsubcl 13412 . . . . . . 7  |-  ( ( G  e.  Grp  /\  y  e.  B  /\  x  e.  B )  ->  ( y ( -g `  G ) x )  e.  B )
147, 9, 11, 13syl3anc 1250 . . . . . 6  |-  ( ( G  e.  Grp  /\  ( x  e.  B  /\  y  e.  B
) )  ->  (
y ( -g `  G
) x )  e.  B )
15 oveq1 5951 . . . . . . . 8  |-  ( l  =  ( y (
-g `  G )
x )  ->  (
l  .+  x )  =  ( ( y ( -g `  G
) x )  .+  x ) )
1615eqeq1d 2214 . . . . . . 7  |-  ( l  =  ( y (
-g `  G )
x )  ->  (
( l  .+  x
)  =  y  <->  ( (
y ( -g `  G
) x )  .+  x )  =  y ) )
1716adantl 277 . . . . . 6  |-  ( ( ( G  e.  Grp  /\  ( x  e.  B  /\  y  e.  B
) )  /\  l  =  ( y (
-g `  G )
x ) )  -> 
( ( l  .+  x )  =  y  <-> 
( ( y (
-g `  G )
x )  .+  x
)  =  y ) )
18 dfgrp3.p . . . . . . . 8  |-  .+  =  ( +g  `  G )
192, 18, 12grpnpcan 13424 . . . . . . 7  |-  ( ( G  e.  Grp  /\  y  e.  B  /\  x  e.  B )  ->  ( ( y (
-g `  G )
x )  .+  x
)  =  y )
207, 9, 11, 19syl3anc 1250 . . . . . 6  |-  ( ( G  e.  Grp  /\  ( x  e.  B  /\  y  e.  B
) )  ->  (
( y ( -g `  G ) x ) 
.+  x )  =  y )
2114, 17, 20rspcedvd 2883 . . . . 5  |-  ( ( G  e.  Grp  /\  ( x  e.  B  /\  y  e.  B
) )  ->  E. l  e.  B  ( l  .+  x )  =  y )
22 eqid 2205 . . . . . . . . 9  |-  ( invg `  G )  =  ( invg `  G )
232, 22grpinvcl 13380 . . . . . . . 8  |-  ( ( G  e.  Grp  /\  x  e.  B )  ->  ( ( invg `  G ) `  x
)  e.  B )
2423adantrr 479 . . . . . . 7  |-  ( ( G  e.  Grp  /\  ( x  e.  B  /\  y  e.  B
) )  ->  (
( invg `  G ) `  x
)  e.  B )
252, 18, 7, 24, 9grpcld 13346 . . . . . 6  |-  ( ( G  e.  Grp  /\  ( x  e.  B  /\  y  e.  B
) )  ->  (
( ( invg `  G ) `  x
)  .+  y )  e.  B )
26 oveq2 5952 . . . . . . . 8  |-  ( r  =  ( ( ( invg `  G
) `  x )  .+  y )  ->  (
x  .+  r )  =  ( x  .+  ( ( ( invg `  G ) `
 x )  .+  y ) ) )
2726eqeq1d 2214 . . . . . . 7  |-  ( r  =  ( ( ( invg `  G
) `  x )  .+  y )  ->  (
( x  .+  r
)  =  y  <->  ( x  .+  ( ( ( invg `  G ) `
 x )  .+  y ) )  =  y ) )
2827adantl 277 . . . . . 6  |-  ( ( ( G  e.  Grp  /\  ( x  e.  B  /\  y  e.  B
) )  /\  r  =  ( ( ( invg `  G
) `  x )  .+  y ) )  -> 
( ( x  .+  r )  =  y  <-> 
( x  .+  (
( ( invg `  G ) `  x
)  .+  y )
)  =  y ) )
292, 18, 3, 22grprinv 13383 . . . . . . . . 9  |-  ( ( G  e.  Grp  /\  x  e.  B )  ->  ( x  .+  (
( invg `  G ) `  x
) )  =  ( 0g `  G ) )
3029adantrr 479 . . . . . . . 8  |-  ( ( G  e.  Grp  /\  ( x  e.  B  /\  y  e.  B
) )  ->  (
x  .+  ( ( invg `  G ) `
 x ) )  =  ( 0g `  G ) )
3130oveq1d 5959 . . . . . . 7  |-  ( ( G  e.  Grp  /\  ( x  e.  B  /\  y  e.  B
) )  ->  (
( x  .+  (
( invg `  G ) `  x
) )  .+  y
)  =  ( ( 0g `  G ) 
.+  y ) )
322, 18grpass 13341 . . . . . . . 8  |-  ( ( G  e.  Grp  /\  ( x  e.  B  /\  ( ( invg `  G ) `  x
)  e.  B  /\  y  e.  B )
)  ->  ( (
x  .+  ( ( invg `  G ) `
 x ) ) 
.+  y )  =  ( x  .+  (
( ( invg `  G ) `  x
)  .+  y )
) )
337, 11, 24, 9, 32syl13anc 1252 . . . . . . 7  |-  ( ( G  e.  Grp  /\  ( x  e.  B  /\  y  e.  B
) )  ->  (
( x  .+  (
( invg `  G ) `  x
) )  .+  y
)  =  ( x 
.+  ( ( ( invg `  G
) `  x )  .+  y ) ) )
34 grpmnd 13339 . . . . . . . 8  |-  ( G  e.  Grp  ->  G  e.  Mnd )
352, 18, 3mndlid 13267 . . . . . . . 8  |-  ( ( G  e.  Mnd  /\  y  e.  B )  ->  ( ( 0g `  G )  .+  y
)  =  y )
3634, 8, 35syl2an 289 . . . . . . 7  |-  ( ( G  e.  Grp  /\  ( x  e.  B  /\  y  e.  B
) )  ->  (
( 0g `  G
)  .+  y )  =  y )
3731, 33, 363eqtr3d 2246 . . . . . 6  |-  ( ( G  e.  Grp  /\  ( x  e.  B  /\  y  e.  B
) )  ->  (
x  .+  ( (
( invg `  G ) `  x
)  .+  y )
)  =  y )
3825, 28, 37rspcedvd 2883 . . . . 5  |-  ( ( G  e.  Grp  /\  ( x  e.  B  /\  y  e.  B
) )  ->  E. r  e.  B  ( x  .+  r )  =  y )
3921, 38jca 306 . . . 4  |-  ( ( G  e.  Grp  /\  ( x  e.  B  /\  y  e.  B
) )  ->  ( E. l  e.  B  ( l  .+  x
)  =  y  /\  E. r  e.  B  ( x  .+  r )  =  y ) )
4039ralrimivva 2588 . . 3  |-  ( G  e.  Grp  ->  A. x  e.  B  A. y  e.  B  ( E. l  e.  B  (
l  .+  x )  =  y  /\  E. r  e.  B  ( x  .+  r )  =  y ) )
411, 6, 403jca 1180 . 2  |-  ( G  e.  Grp  ->  ( G  e. Smgrp  /\  E. w  w  e.  B  /\  A. x  e.  B  A. y  e.  B  ( E. l  e.  B  ( l  .+  x
)  =  y  /\  E. r  e.  B  ( x  .+  r )  =  y ) ) )
42 simp1 1000 . . 3  |-  ( ( G  e. Smgrp  /\  E. w  w  e.  B  /\  A. x  e.  B  A. y  e.  B  ( E. l  e.  B  ( l  .+  x
)  =  y  /\  E. r  e.  B  ( x  .+  r )  =  y ) )  ->  G  e. Smgrp )
432, 18dfgrp3mlem 13430 . . 3  |-  ( ( G  e. Smgrp  /\  E. w  w  e.  B  /\  A. x  e.  B  A. y  e.  B  ( E. l  e.  B  ( l  .+  x
)  =  y  /\  E. r  e.  B  ( x  .+  r )  =  y ) )  ->  E. u  e.  B  A. a  e.  B  ( ( u  .+  a )  =  a  /\  E. i  e.  B  ( i  .+  a )  =  u ) )
442, 18dfgrp2 13359 . . 3  |-  ( G  e.  Grp  <->  ( G  e. Smgrp  /\  E. u  e.  B  A. a  e.  B  ( ( u 
.+  a )  =  a  /\  E. i  e.  B  ( i  .+  a )  =  u ) ) )
4542, 43, 44sylanbrc 417 . 2  |-  ( ( G  e. Smgrp  /\  E. w  w  e.  B  /\  A. x  e.  B  A. y  e.  B  ( E. l  e.  B  ( l  .+  x
)  =  y  /\  E. r  e.  B  ( x  .+  r )  =  y ) )  ->  G  e.  Grp )
4641, 45impbii 126 1  |-  ( G  e.  Grp  <->  ( G  e. Smgrp  /\  E. w  w  e.  B  /\  A. x  e.  B  A. y  e.  B  ( E. l  e.  B  ( l  .+  x
)  =  y  /\  E. r  e.  B  ( x  .+  r )  =  y ) ) )
Colors of variables: wff set class
Syntax hints:    /\ wa 104    <-> wb 105    /\ w3a 981    = wceq 1373   E.wex 1515    e. wcel 2176   A.wral 2484   E.wrex 2485   ` cfv 5271  (class class class)co 5944   Basecbs 12832   +g cplusg 12909   0gc0g 13088  Smgrpcsgrp 13233   Mndcmnd 13248   Grpcgrp 13332   invgcminusg 13333   -gcsg 13334
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 711  ax-5 1470  ax-7 1471  ax-gen 1472  ax-ie1 1516  ax-ie2 1517  ax-8 1527  ax-10 1528  ax-11 1529  ax-i12 1530  ax-bndl 1532  ax-4 1533  ax-17 1549  ax-i9 1553  ax-ial 1557  ax-i5r 1558  ax-13 2178  ax-14 2179  ax-ext 2187  ax-coll 4159  ax-sep 4162  ax-pow 4218  ax-pr 4253  ax-un 4480  ax-setind 4585  ax-cnex 8016  ax-resscn 8017  ax-1re 8019  ax-addrcl 8022
This theorem depends on definitions:  df-bi 117  df-3an 983  df-tru 1376  df-fal 1379  df-nf 1484  df-sb 1786  df-eu 2057  df-mo 2058  df-clab 2192  df-cleq 2198  df-clel 2201  df-nfc 2337  df-ne 2377  df-ral 2489  df-rex 2490  df-reu 2491  df-rmo 2492  df-rab 2493  df-v 2774  df-sbc 2999  df-csb 3094  df-dif 3168  df-un 3170  df-in 3172  df-ss 3179  df-pw 3618  df-sn 3639  df-pr 3640  df-op 3642  df-uni 3851  df-int 3886  df-iun 3929  df-br 4045  df-opab 4106  df-mpt 4107  df-id 4340  df-xp 4681  df-rel 4682  df-cnv 4683  df-co 4684  df-dm 4685  df-rn 4686  df-res 4687  df-ima 4688  df-iota 5232  df-fun 5273  df-fn 5274  df-f 5275  df-f1 5276  df-fo 5277  df-f1o 5278  df-fv 5279  df-riota 5899  df-ov 5947  df-oprab 5948  df-mpo 5949  df-1st 6226  df-2nd 6227  df-inn 9037  df-2 9095  df-ndx 12835  df-slot 12836  df-base 12838  df-plusg 12922  df-0g 13090  df-mgm 13188  df-sgrp 13234  df-mnd 13249  df-grp 13335  df-minusg 13336  df-sbg 13337
This theorem is referenced by:  dfgrp3me  13432
  Copyright terms: Public domain W3C validator