ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  dfgrp3m Unicode version

Theorem dfgrp3m 12974
Description: Alternate definition of a group as semigroup (with at least one element) which is also a quasigroup, i.e. a magma in which solutions  x and  y of the equations  ( a  .+  x )  =  b and  ( x  .+  a
)  =  b exist. Theorem 3.2 of [Bruck] p. 28. (Contributed by AV, 28-Aug-2021.)
Hypotheses
Ref Expression
dfgrp3.b  |-  B  =  ( Base `  G
)
dfgrp3.p  |-  .+  =  ( +g  `  G )
Assertion
Ref Expression
dfgrp3m  |-  ( G  e.  Grp  <->  ( G  e. Smgrp  /\  E. w  w  e.  B  /\  A. x  e.  B  A. y  e.  B  ( E. l  e.  B  ( l  .+  x
)  =  y  /\  E. r  e.  B  ( x  .+  r )  =  y ) ) )
Distinct variable groups:    B, l, r, w, x, y    G, l, r, w, x, y    .+ , l, r, w, x, y

Proof of Theorem dfgrp3m
Dummy variables  a  i  u are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 grpsgrp 12906 . . 3  |-  ( G  e.  Grp  ->  G  e. Smgrp )
2 dfgrp3.b . . . . 5  |-  B  =  ( Base `  G
)
3 eqid 2177 . . . . 5  |-  ( 0g
`  G )  =  ( 0g `  G
)
42, 3grpidcl 12909 . . . 4  |-  ( G  e.  Grp  ->  ( 0g `  G )  e.  B )
5 elex2 2755 . . . 4  |-  ( ( 0g `  G )  e.  B  ->  E. w  w  e.  B )
64, 5syl 14 . . 3  |-  ( G  e.  Grp  ->  E. w  w  e.  B )
7 simpl 109 . . . . . . 7  |-  ( ( G  e.  Grp  /\  ( x  e.  B  /\  y  e.  B
) )  ->  G  e.  Grp )
8 simpr 110 . . . . . . . 8  |-  ( ( x  e.  B  /\  y  e.  B )  ->  y  e.  B )
98adantl 277 . . . . . . 7  |-  ( ( G  e.  Grp  /\  ( x  e.  B  /\  y  e.  B
) )  ->  y  e.  B )
10 simpl 109 . . . . . . . 8  |-  ( ( x  e.  B  /\  y  e.  B )  ->  x  e.  B )
1110adantl 277 . . . . . . 7  |-  ( ( G  e.  Grp  /\  ( x  e.  B  /\  y  e.  B
) )  ->  x  e.  B )
12 eqid 2177 . . . . . . . 8  |-  ( -g `  G )  =  (
-g `  G )
132, 12grpsubcl 12955 . . . . . . 7  |-  ( ( G  e.  Grp  /\  y  e.  B  /\  x  e.  B )  ->  ( y ( -g `  G ) x )  e.  B )
147, 9, 11, 13syl3anc 1238 . . . . . 6  |-  ( ( G  e.  Grp  /\  ( x  e.  B  /\  y  e.  B
) )  ->  (
y ( -g `  G
) x )  e.  B )
15 oveq1 5884 . . . . . . . 8  |-  ( l  =  ( y (
-g `  G )
x )  ->  (
l  .+  x )  =  ( ( y ( -g `  G
) x )  .+  x ) )
1615eqeq1d 2186 . . . . . . 7  |-  ( l  =  ( y (
-g `  G )
x )  ->  (
( l  .+  x
)  =  y  <->  ( (
y ( -g `  G
) x )  .+  x )  =  y ) )
1716adantl 277 . . . . . 6  |-  ( ( ( G  e.  Grp  /\  ( x  e.  B  /\  y  e.  B
) )  /\  l  =  ( y (
-g `  G )
x ) )  -> 
( ( l  .+  x )  =  y  <-> 
( ( y (
-g `  G )
x )  .+  x
)  =  y ) )
18 dfgrp3.p . . . . . . . 8  |-  .+  =  ( +g  `  G )
192, 18, 12grpnpcan 12967 . . . . . . 7  |-  ( ( G  e.  Grp  /\  y  e.  B  /\  x  e.  B )  ->  ( ( y (
-g `  G )
x )  .+  x
)  =  y )
207, 9, 11, 19syl3anc 1238 . . . . . 6  |-  ( ( G  e.  Grp  /\  ( x  e.  B  /\  y  e.  B
) )  ->  (
( y ( -g `  G ) x ) 
.+  x )  =  y )
2114, 17, 20rspcedvd 2849 . . . . 5  |-  ( ( G  e.  Grp  /\  ( x  e.  B  /\  y  e.  B
) )  ->  E. l  e.  B  ( l  .+  x )  =  y )
22 eqid 2177 . . . . . . . . 9  |-  ( invg `  G )  =  ( invg `  G )
232, 22grpinvcl 12926 . . . . . . . 8  |-  ( ( G  e.  Grp  /\  x  e.  B )  ->  ( ( invg `  G ) `  x
)  e.  B )
2423adantrr 479 . . . . . . 7  |-  ( ( G  e.  Grp  /\  ( x  e.  B  /\  y  e.  B
) )  ->  (
( invg `  G ) `  x
)  e.  B )
252, 18, 7, 24, 9grpcld 12895 . . . . . 6  |-  ( ( G  e.  Grp  /\  ( x  e.  B  /\  y  e.  B
) )  ->  (
( ( invg `  G ) `  x
)  .+  y )  e.  B )
26 oveq2 5885 . . . . . . . 8  |-  ( r  =  ( ( ( invg `  G
) `  x )  .+  y )  ->  (
x  .+  r )  =  ( x  .+  ( ( ( invg `  G ) `
 x )  .+  y ) ) )
2726eqeq1d 2186 . . . . . . 7  |-  ( r  =  ( ( ( invg `  G
) `  x )  .+  y )  ->  (
( x  .+  r
)  =  y  <->  ( x  .+  ( ( ( invg `  G ) `
 x )  .+  y ) )  =  y ) )
2827adantl 277 . . . . . 6  |-  ( ( ( G  e.  Grp  /\  ( x  e.  B  /\  y  e.  B
) )  /\  r  =  ( ( ( invg `  G
) `  x )  .+  y ) )  -> 
( ( x  .+  r )  =  y  <-> 
( x  .+  (
( ( invg `  G ) `  x
)  .+  y )
)  =  y ) )
292, 18, 3, 22grprinv 12928 . . . . . . . . 9  |-  ( ( G  e.  Grp  /\  x  e.  B )  ->  ( x  .+  (
( invg `  G ) `  x
) )  =  ( 0g `  G ) )
3029adantrr 479 . . . . . . . 8  |-  ( ( G  e.  Grp  /\  ( x  e.  B  /\  y  e.  B
) )  ->  (
x  .+  ( ( invg `  G ) `
 x ) )  =  ( 0g `  G ) )
3130oveq1d 5892 . . . . . . 7  |-  ( ( G  e.  Grp  /\  ( x  e.  B  /\  y  e.  B
) )  ->  (
( x  .+  (
( invg `  G ) `  x
) )  .+  y
)  =  ( ( 0g `  G ) 
.+  y ) )
322, 18grpass 12891 . . . . . . . 8  |-  ( ( G  e.  Grp  /\  ( x  e.  B  /\  ( ( invg `  G ) `  x
)  e.  B  /\  y  e.  B )
)  ->  ( (
x  .+  ( ( invg `  G ) `
 x ) ) 
.+  y )  =  ( x  .+  (
( ( invg `  G ) `  x
)  .+  y )
) )
337, 11, 24, 9, 32syl13anc 1240 . . . . . . 7  |-  ( ( G  e.  Grp  /\  ( x  e.  B  /\  y  e.  B
) )  ->  (
( x  .+  (
( invg `  G ) `  x
) )  .+  y
)  =  ( x 
.+  ( ( ( invg `  G
) `  x )  .+  y ) ) )
34 grpmnd 12889 . . . . . . . 8  |-  ( G  e.  Grp  ->  G  e.  Mnd )
352, 18, 3mndlid 12841 . . . . . . . 8  |-  ( ( G  e.  Mnd  /\  y  e.  B )  ->  ( ( 0g `  G )  .+  y
)  =  y )
3634, 8, 35syl2an 289 . . . . . . 7  |-  ( ( G  e.  Grp  /\  ( x  e.  B  /\  y  e.  B
) )  ->  (
( 0g `  G
)  .+  y )  =  y )
3731, 33, 363eqtr3d 2218 . . . . . 6  |-  ( ( G  e.  Grp  /\  ( x  e.  B  /\  y  e.  B
) )  ->  (
x  .+  ( (
( invg `  G ) `  x
)  .+  y )
)  =  y )
3825, 28, 37rspcedvd 2849 . . . . 5  |-  ( ( G  e.  Grp  /\  ( x  e.  B  /\  y  e.  B
) )  ->  E. r  e.  B  ( x  .+  r )  =  y )
3921, 38jca 306 . . . 4  |-  ( ( G  e.  Grp  /\  ( x  e.  B  /\  y  e.  B
) )  ->  ( E. l  e.  B  ( l  .+  x
)  =  y  /\  E. r  e.  B  ( x  .+  r )  =  y ) )
4039ralrimivva 2559 . . 3  |-  ( G  e.  Grp  ->  A. x  e.  B  A. y  e.  B  ( E. l  e.  B  (
l  .+  x )  =  y  /\  E. r  e.  B  ( x  .+  r )  =  y ) )
411, 6, 403jca 1177 . 2  |-  ( G  e.  Grp  ->  ( G  e. Smgrp  /\  E. w  w  e.  B  /\  A. x  e.  B  A. y  e.  B  ( E. l  e.  B  ( l  .+  x
)  =  y  /\  E. r  e.  B  ( x  .+  r )  =  y ) ) )
42 simp1 997 . . 3  |-  ( ( G  e. Smgrp  /\  E. w  w  e.  B  /\  A. x  e.  B  A. y  e.  B  ( E. l  e.  B  ( l  .+  x
)  =  y  /\  E. r  e.  B  ( x  .+  r )  =  y ) )  ->  G  e. Smgrp )
432, 18dfgrp3mlem 12973 . . 3  |-  ( ( G  e. Smgrp  /\  E. w  w  e.  B  /\  A. x  e.  B  A. y  e.  B  ( E. l  e.  B  ( l  .+  x
)  =  y  /\  E. r  e.  B  ( x  .+  r )  =  y ) )  ->  E. u  e.  B  A. a  e.  B  ( ( u  .+  a )  =  a  /\  E. i  e.  B  ( i  .+  a )  =  u ) )
442, 18dfgrp2 12907 . . 3  |-  ( G  e.  Grp  <->  ( G  e. Smgrp  /\  E. u  e.  B  A. a  e.  B  ( ( u 
.+  a )  =  a  /\  E. i  e.  B  ( i  .+  a )  =  u ) ) )
4542, 43, 44sylanbrc 417 . 2  |-  ( ( G  e. Smgrp  /\  E. w  w  e.  B  /\  A. x  e.  B  A. y  e.  B  ( E. l  e.  B  ( l  .+  x
)  =  y  /\  E. r  e.  B  ( x  .+  r )  =  y ) )  ->  G  e.  Grp )
4641, 45impbii 126 1  |-  ( G  e.  Grp  <->  ( G  e. Smgrp  /\  E. w  w  e.  B  /\  A. x  e.  B  A. y  e.  B  ( E. l  e.  B  ( l  .+  x
)  =  y  /\  E. r  e.  B  ( x  .+  r )  =  y ) ) )
Colors of variables: wff set class
Syntax hints:    /\ wa 104    <-> wb 105    /\ w3a 978    = wceq 1353   E.wex 1492    e. wcel 2148   A.wral 2455   E.wrex 2456   ` cfv 5218  (class class class)co 5877   Basecbs 12464   +g cplusg 12538   0gc0g 12710  Smgrpcsgrp 12812   Mndcmnd 12822   Grpcgrp 12882   invgcminusg 12883   -gcsg 12884
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 614  ax-in2 615  ax-io 709  ax-5 1447  ax-7 1448  ax-gen 1449  ax-ie1 1493  ax-ie2 1494  ax-8 1504  ax-10 1505  ax-11 1506  ax-i12 1507  ax-bndl 1509  ax-4 1510  ax-17 1526  ax-i9 1530  ax-ial 1534  ax-i5r 1535  ax-13 2150  ax-14 2151  ax-ext 2159  ax-coll 4120  ax-sep 4123  ax-pow 4176  ax-pr 4211  ax-un 4435  ax-setind 4538  ax-cnex 7904  ax-resscn 7905  ax-1re 7907  ax-addrcl 7910
This theorem depends on definitions:  df-bi 117  df-3an 980  df-tru 1356  df-fal 1359  df-nf 1461  df-sb 1763  df-eu 2029  df-mo 2030  df-clab 2164  df-cleq 2170  df-clel 2173  df-nfc 2308  df-ne 2348  df-ral 2460  df-rex 2461  df-reu 2462  df-rmo 2463  df-rab 2464  df-v 2741  df-sbc 2965  df-csb 3060  df-dif 3133  df-un 3135  df-in 3137  df-ss 3144  df-pw 3579  df-sn 3600  df-pr 3601  df-op 3603  df-uni 3812  df-int 3847  df-iun 3890  df-br 4006  df-opab 4067  df-mpt 4068  df-id 4295  df-xp 4634  df-rel 4635  df-cnv 4636  df-co 4637  df-dm 4638  df-rn 4639  df-res 4640  df-ima 4641  df-iota 5180  df-fun 5220  df-fn 5221  df-f 5222  df-f1 5223  df-fo 5224  df-f1o 5225  df-fv 5226  df-riota 5833  df-ov 5880  df-oprab 5881  df-mpo 5882  df-1st 6143  df-2nd 6144  df-inn 8922  df-2 8980  df-ndx 12467  df-slot 12468  df-base 12470  df-plusg 12551  df-0g 12712  df-mgm 12780  df-sgrp 12813  df-mnd 12823  df-grp 12885  df-minusg 12886  df-sbg 12887
This theorem is referenced by:  dfgrp3me  12975
  Copyright terms: Public domain W3C validator