Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > dfgrp3m | Unicode version |
Description: Alternate definition of a group as semigroup (with at least one element) which is also a quasigroup, i.e. a magma in which solutions and of the equations and exist. Theorem 3.2 of [Bruck] p. 28. (Contributed by AV, 28-Aug-2021.) |
Ref | Expression |
---|---|
dfgrp3.b | |
dfgrp3.p |
Ref | Expression |
---|---|
dfgrp3m | Smgrp |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | grpsgrp 12753 | . . 3 Smgrp | |
2 | dfgrp3.b | . . . . 5 | |
3 | eqid 2171 | . . . . 5 | |
4 | 2, 3 | grpidcl 12756 | . . . 4 |
5 | elex2 2747 | . . . 4 | |
6 | 4, 5 | syl 14 | . . 3 |
7 | simpl 108 | . . . . . . 7 | |
8 | simpr 109 | . . . . . . . 8 | |
9 | 8 | adantl 275 | . . . . . . 7 |
10 | simpl 108 | . . . . . . . 8 | |
11 | 10 | adantl 275 | . . . . . . 7 |
12 | eqid 2171 | . . . . . . . 8 | |
13 | 2, 12 | grpsubcl 12801 | . . . . . . 7 |
14 | 7, 9, 11, 13 | syl3anc 1234 | . . . . . 6 |
15 | oveq1 5864 | . . . . . . . 8 | |
16 | 15 | eqeq1d 2180 | . . . . . . 7 |
17 | 16 | adantl 275 | . . . . . 6 |
18 | dfgrp3.p | . . . . . . . 8 | |
19 | 2, 18, 12 | grpnpcan 12813 | . . . . . . 7 |
20 | 7, 9, 11, 19 | syl3anc 1234 | . . . . . 6 |
21 | 14, 17, 20 | rspcedvd 2841 | . . . . 5 |
22 | eqid 2171 | . . . . . . . . 9 | |
23 | 2, 22 | grpinvcl 12773 | . . . . . . . 8 |
24 | 23 | adantrr 477 | . . . . . . 7 |
25 | 2, 18, 7, 24, 9 | grpcld 12743 | . . . . . 6 |
26 | oveq2 5865 | . . . . . . . 8 | |
27 | 26 | eqeq1d 2180 | . . . . . . 7 |
28 | 27 | adantl 275 | . . . . . 6 |
29 | 2, 18, 3, 22 | grprinv 12775 | . . . . . . . . 9 |
30 | 29 | adantrr 477 | . . . . . . . 8 |
31 | 30 | oveq1d 5872 | . . . . . . 7 |
32 | 2, 18 | grpass 12739 | . . . . . . . 8 |
33 | 7, 11, 24, 9, 32 | syl13anc 1236 | . . . . . . 7 |
34 | grpmnd 12737 | . . . . . . . 8 | |
35 | 2, 18, 3 | mndlid 12693 | . . . . . . . 8 |
36 | 34, 8, 35 | syl2an 287 | . . . . . . 7 |
37 | 31, 33, 36 | 3eqtr3d 2212 | . . . . . 6 |
38 | 25, 28, 37 | rspcedvd 2841 | . . . . 5 |
39 | 21, 38 | jca 304 | . . . 4 |
40 | 39 | ralrimivva 2553 | . . 3 |
41 | 1, 6, 40 | 3jca 1173 | . 2 Smgrp |
42 | simp1 993 | . . 3 Smgrp Smgrp | |
43 | 2, 18 | dfgrp3mlem 12819 | . . 3 Smgrp |
44 | 2, 18 | dfgrp2 12754 | . . 3 Smgrp |
45 | 42, 43, 44 | sylanbrc 415 | . 2 Smgrp |
46 | 41, 45 | impbii 125 | 1 Smgrp |
Colors of variables: wff set class |
Syntax hints: wa 103 wb 104 w3a 974 wceq 1349 wex 1486 wcel 2142 wral 2449 wrex 2450 cfv 5200 (class class class)co 5857 cbs 12420 cplusg 12484 c0g 12618 Smgrpcsgrp 12664 cmnd 12674 cgrp 12730 cminusg 12731 csg 12732 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-in1 610 ax-in2 611 ax-io 705 ax-5 1441 ax-7 1442 ax-gen 1443 ax-ie1 1487 ax-ie2 1488 ax-8 1498 ax-10 1499 ax-11 1500 ax-i12 1501 ax-bndl 1503 ax-4 1504 ax-17 1520 ax-i9 1524 ax-ial 1528 ax-i5r 1529 ax-13 2144 ax-14 2145 ax-ext 2153 ax-coll 4105 ax-sep 4108 ax-pow 4161 ax-pr 4195 ax-un 4419 ax-setind 4522 ax-cnex 7869 ax-resscn 7870 ax-1re 7872 ax-addrcl 7875 |
This theorem depends on definitions: df-bi 116 df-3an 976 df-tru 1352 df-fal 1355 df-nf 1455 df-sb 1757 df-eu 2023 df-mo 2024 df-clab 2158 df-cleq 2164 df-clel 2167 df-nfc 2302 df-ne 2342 df-ral 2454 df-rex 2455 df-reu 2456 df-rmo 2457 df-rab 2458 df-v 2733 df-sbc 2957 df-csb 3051 df-dif 3124 df-un 3126 df-in 3128 df-ss 3135 df-pw 3569 df-sn 3590 df-pr 3591 df-op 3593 df-uni 3798 df-int 3833 df-iun 3876 df-br 3991 df-opab 4052 df-mpt 4053 df-id 4279 df-xp 4618 df-rel 4619 df-cnv 4620 df-co 4621 df-dm 4622 df-rn 4623 df-res 4624 df-ima 4625 df-iota 5162 df-fun 5202 df-fn 5203 df-f 5204 df-f1 5205 df-fo 5206 df-f1o 5207 df-fv 5208 df-riota 5813 df-ov 5860 df-oprab 5861 df-mpo 5862 df-1st 6123 df-2nd 6124 df-inn 8883 df-2 8941 df-ndx 12423 df-slot 12424 df-base 12426 df-plusg 12497 df-0g 12620 df-mgm 12632 df-sgrp 12665 df-mnd 12675 df-grp 12733 df-minusg 12734 df-sbg 12735 |
This theorem is referenced by: dfgrp3me 12821 |
Copyright terms: Public domain | W3C validator |