| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > dfgrp3m | Unicode version | ||
| Description: Alternate definition of a
group as semigroup (with at least one element)
which is also a quasigroup, i.e. a magma in which solutions |
| Ref | Expression |
|---|---|
| dfgrp3.b |
|
| dfgrp3.p |
|
| Ref | Expression |
|---|---|
| dfgrp3m |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | grpsgrp 13472 |
. . 3
| |
| 2 | dfgrp3.b |
. . . . 5
| |
| 3 | eqid 2207 |
. . . . 5
| |
| 4 | 2, 3 | grpidcl 13476 |
. . . 4
|
| 5 | elex2 2793 |
. . . 4
| |
| 6 | 4, 5 | syl 14 |
. . 3
|
| 7 | simpl 109 |
. . . . . . 7
| |
| 8 | simpr 110 |
. . . . . . . 8
| |
| 9 | 8 | adantl 277 |
. . . . . . 7
|
| 10 | simpl 109 |
. . . . . . . 8
| |
| 11 | 10 | adantl 277 |
. . . . . . 7
|
| 12 | eqid 2207 |
. . . . . . . 8
| |
| 13 | 2, 12 | grpsubcl 13527 |
. . . . . . 7
|
| 14 | 7, 9, 11, 13 | syl3anc 1250 |
. . . . . 6
|
| 15 | oveq1 5974 |
. . . . . . . 8
| |
| 16 | 15 | eqeq1d 2216 |
. . . . . . 7
|
| 17 | 16 | adantl 277 |
. . . . . 6
|
| 18 | dfgrp3.p |
. . . . . . . 8
| |
| 19 | 2, 18, 12 | grpnpcan 13539 |
. . . . . . 7
|
| 20 | 7, 9, 11, 19 | syl3anc 1250 |
. . . . . 6
|
| 21 | 14, 17, 20 | rspcedvd 2890 |
. . . . 5
|
| 22 | eqid 2207 |
. . . . . . . . 9
| |
| 23 | 2, 22 | grpinvcl 13495 |
. . . . . . . 8
|
| 24 | 23 | adantrr 479 |
. . . . . . 7
|
| 25 | 2, 18, 7, 24, 9 | grpcld 13461 |
. . . . . 6
|
| 26 | oveq2 5975 |
. . . . . . . 8
| |
| 27 | 26 | eqeq1d 2216 |
. . . . . . 7
|
| 28 | 27 | adantl 277 |
. . . . . 6
|
| 29 | 2, 18, 3, 22 | grprinv 13498 |
. . . . . . . . 9
|
| 30 | 29 | adantrr 479 |
. . . . . . . 8
|
| 31 | 30 | oveq1d 5982 |
. . . . . . 7
|
| 32 | 2, 18 | grpass 13456 |
. . . . . . . 8
|
| 33 | 7, 11, 24, 9, 32 | syl13anc 1252 |
. . . . . . 7
|
| 34 | grpmnd 13454 |
. . . . . . . 8
| |
| 35 | 2, 18, 3 | mndlid 13382 |
. . . . . . . 8
|
| 36 | 34, 8, 35 | syl2an 289 |
. . . . . . 7
|
| 37 | 31, 33, 36 | 3eqtr3d 2248 |
. . . . . 6
|
| 38 | 25, 28, 37 | rspcedvd 2890 |
. . . . 5
|
| 39 | 21, 38 | jca 306 |
. . . 4
|
| 40 | 39 | ralrimivva 2590 |
. . 3
|
| 41 | 1, 6, 40 | 3jca 1180 |
. 2
|
| 42 | simp1 1000 |
. . 3
| |
| 43 | 2, 18 | dfgrp3mlem 13545 |
. . 3
|
| 44 | 2, 18 | dfgrp2 13474 |
. . 3
|
| 45 | 42, 43, 44 | sylanbrc 417 |
. 2
|
| 46 | 41, 45 | impbii 126 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 615 ax-in2 616 ax-io 711 ax-5 1471 ax-7 1472 ax-gen 1473 ax-ie1 1517 ax-ie2 1518 ax-8 1528 ax-10 1529 ax-11 1530 ax-i12 1531 ax-bndl 1533 ax-4 1534 ax-17 1550 ax-i9 1554 ax-ial 1558 ax-i5r 1559 ax-13 2180 ax-14 2181 ax-ext 2189 ax-coll 4175 ax-sep 4178 ax-pow 4234 ax-pr 4269 ax-un 4498 ax-setind 4603 ax-cnex 8051 ax-resscn 8052 ax-1re 8054 ax-addrcl 8057 |
| This theorem depends on definitions: df-bi 117 df-3an 983 df-tru 1376 df-fal 1379 df-nf 1485 df-sb 1787 df-eu 2058 df-mo 2059 df-clab 2194 df-cleq 2200 df-clel 2203 df-nfc 2339 df-ne 2379 df-ral 2491 df-rex 2492 df-reu 2493 df-rmo 2494 df-rab 2495 df-v 2778 df-sbc 3006 df-csb 3102 df-dif 3176 df-un 3178 df-in 3180 df-ss 3187 df-pw 3628 df-sn 3649 df-pr 3650 df-op 3652 df-uni 3865 df-int 3900 df-iun 3943 df-br 4060 df-opab 4122 df-mpt 4123 df-id 4358 df-xp 4699 df-rel 4700 df-cnv 4701 df-co 4702 df-dm 4703 df-rn 4704 df-res 4705 df-ima 4706 df-iota 5251 df-fun 5292 df-fn 5293 df-f 5294 df-f1 5295 df-fo 5296 df-f1o 5297 df-fv 5298 df-riota 5922 df-ov 5970 df-oprab 5971 df-mpo 5972 df-1st 6249 df-2nd 6250 df-inn 9072 df-2 9130 df-ndx 12950 df-slot 12951 df-base 12953 df-plusg 13037 df-0g 13205 df-mgm 13303 df-sgrp 13349 df-mnd 13364 df-grp 13450 df-minusg 13451 df-sbg 13452 |
| This theorem is referenced by: dfgrp3me 13547 |
| Copyright terms: Public domain | W3C validator |