ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  grplrinv Unicode version

Theorem grplrinv 13585
Description: In a group, every member has a left and right inverse. (Contributed by AV, 1-Sep-2021.)
Hypotheses
Ref Expression
grplrinv.b  |-  B  =  ( Base `  G
)
grplrinv.p  |-  .+  =  ( +g  `  G )
grplrinv.i  |-  .0.  =  ( 0g `  G )
Assertion
Ref Expression
grplrinv  |-  ( G  e.  Grp  ->  A. x  e.  B  E. y  e.  B  ( (
y  .+  x )  =  .0.  /\  ( x 
.+  y )  =  .0.  ) )
Distinct variable groups:    y, B    x, G, y    y,  .+    y,  .0.
Allowed substitution hints:    B( x)    .+ ( x)    .0. (
x)

Proof of Theorem grplrinv
StepHypRef Expression
1 grplrinv.b . . . 4  |-  B  =  ( Base `  G
)
2 eqid 2229 . . . 4  |-  ( invg `  G )  =  ( invg `  G )
31, 2grpinvcl 13576 . . 3  |-  ( ( G  e.  Grp  /\  x  e.  B )  ->  ( ( invg `  G ) `  x
)  e.  B )
4 oveq1 6007 . . . . . 6  |-  ( y  =  ( ( invg `  G ) `
 x )  -> 
( y  .+  x
)  =  ( ( ( invg `  G ) `  x
)  .+  x )
)
54eqeq1d 2238 . . . . 5  |-  ( y  =  ( ( invg `  G ) `
 x )  -> 
( ( y  .+  x )  =  .0.  <->  ( ( ( invg `  G ) `  x
)  .+  x )  =  .0.  ) )
6 oveq2 6008 . . . . . 6  |-  ( y  =  ( ( invg `  G ) `
 x )  -> 
( x  .+  y
)  =  ( x 
.+  ( ( invg `  G ) `
 x ) ) )
76eqeq1d 2238 . . . . 5  |-  ( y  =  ( ( invg `  G ) `
 x )  -> 
( ( x  .+  y )  =  .0.  <->  ( x  .+  ( ( invg `  G
) `  x )
)  =  .0.  )
)
85, 7anbi12d 473 . . . 4  |-  ( y  =  ( ( invg `  G ) `
 x )  -> 
( ( ( y 
.+  x )  =  .0.  /\  ( x 
.+  y )  =  .0.  )  <->  ( (
( ( invg `  G ) `  x
)  .+  x )  =  .0.  /\  ( x 
.+  ( ( invg `  G ) `
 x ) )  =  .0.  ) ) )
98adantl 277 . . 3  |-  ( ( ( G  e.  Grp  /\  x  e.  B )  /\  y  =  ( ( invg `  G ) `  x
) )  ->  (
( ( y  .+  x )  =  .0. 
/\  ( x  .+  y )  =  .0.  )  <->  ( ( ( ( invg `  G ) `  x
)  .+  x )  =  .0.  /\  ( x 
.+  ( ( invg `  G ) `
 x ) )  =  .0.  ) ) )
10 grplrinv.p . . . . 5  |-  .+  =  ( +g  `  G )
11 grplrinv.i . . . . 5  |-  .0.  =  ( 0g `  G )
121, 10, 11, 2grplinv 13578 . . . 4  |-  ( ( G  e.  Grp  /\  x  e.  B )  ->  ( ( ( invg `  G ) `
 x )  .+  x )  =  .0.  )
131, 10, 11, 2grprinv 13579 . . . 4  |-  ( ( G  e.  Grp  /\  x  e.  B )  ->  ( x  .+  (
( invg `  G ) `  x
) )  =  .0.  )
1412, 13jca 306 . . 3  |-  ( ( G  e.  Grp  /\  x  e.  B )  ->  ( ( ( ( invg `  G
) `  x )  .+  x )  =  .0. 
/\  ( x  .+  ( ( invg `  G ) `  x
) )  =  .0.  ) )
153, 9, 14rspcedvd 2913 . 2  |-  ( ( G  e.  Grp  /\  x  e.  B )  ->  E. y  e.  B  ( ( y  .+  x )  =  .0. 
/\  ( x  .+  y )  =  .0.  ) )
1615ralrimiva 2603 1  |-  ( G  e.  Grp  ->  A. x  e.  B  E. y  e.  B  ( (
y  .+  x )  =  .0.  /\  ( x 
.+  y )  =  .0.  ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 104    <-> wb 105    = wceq 1395    e. wcel 2200   A.wral 2508   E.wrex 2509   ` cfv 5317  (class class class)co 6000   Basecbs 13027   +g cplusg 13105   0gc0g 13284   Grpcgrp 13528   invgcminusg 13529
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 714  ax-5 1493  ax-7 1494  ax-gen 1495  ax-ie1 1539  ax-ie2 1540  ax-8 1550  ax-10 1551  ax-11 1552  ax-i12 1553  ax-bndl 1555  ax-4 1556  ax-17 1572  ax-i9 1576  ax-ial 1580  ax-i5r 1581  ax-13 2202  ax-14 2203  ax-ext 2211  ax-coll 4198  ax-sep 4201  ax-pow 4257  ax-pr 4292  ax-un 4523  ax-cnex 8086  ax-resscn 8087  ax-1re 8089  ax-addrcl 8092
This theorem depends on definitions:  df-bi 117  df-3an 1004  df-tru 1398  df-nf 1507  df-sb 1809  df-eu 2080  df-mo 2081  df-clab 2216  df-cleq 2222  df-clel 2225  df-nfc 2361  df-ral 2513  df-rex 2514  df-reu 2515  df-rmo 2516  df-rab 2517  df-v 2801  df-sbc 3029  df-csb 3125  df-un 3201  df-in 3203  df-ss 3210  df-pw 3651  df-sn 3672  df-pr 3673  df-op 3675  df-uni 3888  df-int 3923  df-iun 3966  df-br 4083  df-opab 4145  df-mpt 4146  df-id 4383  df-xp 4724  df-rel 4725  df-cnv 4726  df-co 4727  df-dm 4728  df-rn 4729  df-res 4730  df-ima 4731  df-iota 5277  df-fun 5319  df-fn 5320  df-f 5321  df-f1 5322  df-fo 5323  df-f1o 5324  df-fv 5325  df-riota 5953  df-ov 6003  df-inn 9107  df-2 9165  df-ndx 13030  df-slot 13031  df-base 13033  df-plusg 13118  df-0g 13286  df-mgm 13384  df-sgrp 13430  df-mnd 13445  df-grp 13531  df-minusg 13532
This theorem is referenced by:  grpidinv2  13586
  Copyright terms: Public domain W3C validator