ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  grplrinv Unicode version

Theorem grplrinv 12761
Description: In a group, every member has a left and right inverse. (Contributed by AV, 1-Sep-2021.)
Hypotheses
Ref Expression
grplrinv.b  |-  B  =  ( Base `  G
)
grplrinv.p  |-  .+  =  ( +g  `  G )
grplrinv.i  |-  .0.  =  ( 0g `  G )
Assertion
Ref Expression
grplrinv  |-  ( G  e.  Grp  ->  A. x  e.  B  E. y  e.  B  ( (
y  .+  x )  =  .0.  /\  ( x 
.+  y )  =  .0.  ) )
Distinct variable groups:    y, B    x, G, y    y,  .+    y,  .0.
Allowed substitution hints:    B( x)    .+ ( x)    .0. (
x)

Proof of Theorem grplrinv
StepHypRef Expression
1 grplrinv.b . . . 4  |-  B  =  ( Base `  G
)
2 eqid 2171 . . . 4  |-  ( invg `  G )  =  ( invg `  G )
31, 2grpinvcl 12755 . . 3  |-  ( ( G  e.  Grp  /\  x  e.  B )  ->  ( ( invg `  G ) `  x
)  e.  B )
4 oveq1 5864 . . . . . 6  |-  ( y  =  ( ( invg `  G ) `
 x )  -> 
( y  .+  x
)  =  ( ( ( invg `  G ) `  x
)  .+  x )
)
54eqeq1d 2180 . . . . 5  |-  ( y  =  ( ( invg `  G ) `
 x )  -> 
( ( y  .+  x )  =  .0.  <->  ( ( ( invg `  G ) `  x
)  .+  x )  =  .0.  ) )
6 oveq2 5865 . . . . . 6  |-  ( y  =  ( ( invg `  G ) `
 x )  -> 
( x  .+  y
)  =  ( x 
.+  ( ( invg `  G ) `
 x ) ) )
76eqeq1d 2180 . . . . 5  |-  ( y  =  ( ( invg `  G ) `
 x )  -> 
( ( x  .+  y )  =  .0.  <->  ( x  .+  ( ( invg `  G
) `  x )
)  =  .0.  )
)
85, 7anbi12d 471 . . . 4  |-  ( y  =  ( ( invg `  G ) `
 x )  -> 
( ( ( y 
.+  x )  =  .0.  /\  ( x 
.+  y )  =  .0.  )  <->  ( (
( ( invg `  G ) `  x
)  .+  x )  =  .0.  /\  ( x 
.+  ( ( invg `  G ) `
 x ) )  =  .0.  ) ) )
98adantl 275 . . 3  |-  ( ( ( G  e.  Grp  /\  x  e.  B )  /\  y  =  ( ( invg `  G ) `  x
) )  ->  (
( ( y  .+  x )  =  .0. 
/\  ( x  .+  y )  =  .0.  )  <->  ( ( ( ( invg `  G ) `  x
)  .+  x )  =  .0.  /\  ( x 
.+  ( ( invg `  G ) `
 x ) )  =  .0.  ) ) )
10 grplrinv.p . . . . 5  |-  .+  =  ( +g  `  G )
11 grplrinv.i . . . . 5  |-  .0.  =  ( 0g `  G )
121, 10, 11, 2grplinv 12756 . . . 4  |-  ( ( G  e.  Grp  /\  x  e.  B )  ->  ( ( ( invg `  G ) `
 x )  .+  x )  =  .0.  )
131, 10, 11, 2grprinv 12757 . . . 4  |-  ( ( G  e.  Grp  /\  x  e.  B )  ->  ( x  .+  (
( invg `  G ) `  x
) )  =  .0.  )
1412, 13jca 304 . . 3  |-  ( ( G  e.  Grp  /\  x  e.  B )  ->  ( ( ( ( invg `  G
) `  x )  .+  x )  =  .0. 
/\  ( x  .+  ( ( invg `  G ) `  x
) )  =  .0.  ) )
153, 9, 14rspcedvd 2841 . 2  |-  ( ( G  e.  Grp  /\  x  e.  B )  ->  E. y  e.  B  ( ( y  .+  x )  =  .0. 
/\  ( x  .+  y )  =  .0.  ) )
1615ralrimiva 2544 1  |-  ( G  e.  Grp  ->  A. x  e.  B  E. y  e.  B  ( (
y  .+  x )  =  .0.  /\  ( x 
.+  y )  =  .0.  ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 103    <-> wb 104    = wceq 1349    e. wcel 2142   A.wral 2449   E.wrex 2450   ` cfv 5200  (class class class)co 5857   Basecbs 12420   +g cplusg 12484   0gc0g 12600   Grpcgrp 12712   invgcminusg 12713
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-io 705  ax-5 1441  ax-7 1442  ax-gen 1443  ax-ie1 1487  ax-ie2 1488  ax-8 1498  ax-10 1499  ax-11 1500  ax-i12 1501  ax-bndl 1503  ax-4 1504  ax-17 1520  ax-i9 1524  ax-ial 1528  ax-i5r 1529  ax-13 2144  ax-14 2145  ax-ext 2153  ax-coll 4105  ax-sep 4108  ax-pow 4161  ax-pr 4195  ax-un 4419  ax-cnex 7869  ax-resscn 7870  ax-1re 7872  ax-addrcl 7875
This theorem depends on definitions:  df-bi 116  df-3an 976  df-tru 1352  df-nf 1455  df-sb 1757  df-eu 2023  df-mo 2024  df-clab 2158  df-cleq 2164  df-clel 2167  df-nfc 2302  df-ral 2454  df-rex 2455  df-reu 2456  df-rmo 2457  df-rab 2458  df-v 2733  df-sbc 2957  df-csb 3051  df-un 3126  df-in 3128  df-ss 3135  df-pw 3569  df-sn 3590  df-pr 3591  df-op 3593  df-uni 3798  df-int 3833  df-iun 3876  df-br 3991  df-opab 4052  df-mpt 4053  df-id 4279  df-xp 4618  df-rel 4619  df-cnv 4620  df-co 4621  df-dm 4622  df-rn 4623  df-res 4624  df-ima 4625  df-iota 5162  df-fun 5202  df-fn 5203  df-f 5204  df-f1 5205  df-fo 5206  df-f1o 5207  df-fv 5208  df-riota 5813  df-ov 5860  df-inn 8883  df-2 8941  df-ndx 12423  df-slot 12424  df-base 12426  df-plusg 12497  df-0g 12602  df-mgm 12614  df-sgrp 12647  df-mnd 12657  df-grp 12715  df-minusg 12716
This theorem is referenced by:  grpidinv2  12762
  Copyright terms: Public domain W3C validator