ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  grplrinv Unicode version

Theorem grplrinv 13504
Description: In a group, every member has a left and right inverse. (Contributed by AV, 1-Sep-2021.)
Hypotheses
Ref Expression
grplrinv.b  |-  B  =  ( Base `  G
)
grplrinv.p  |-  .+  =  ( +g  `  G )
grplrinv.i  |-  .0.  =  ( 0g `  G )
Assertion
Ref Expression
grplrinv  |-  ( G  e.  Grp  ->  A. x  e.  B  E. y  e.  B  ( (
y  .+  x )  =  .0.  /\  ( x 
.+  y )  =  .0.  ) )
Distinct variable groups:    y, B    x, G, y    y,  .+    y,  .0.
Allowed substitution hints:    B( x)    .+ ( x)    .0. (
x)

Proof of Theorem grplrinv
StepHypRef Expression
1 grplrinv.b . . . 4  |-  B  =  ( Base `  G
)
2 eqid 2207 . . . 4  |-  ( invg `  G )  =  ( invg `  G )
31, 2grpinvcl 13495 . . 3  |-  ( ( G  e.  Grp  /\  x  e.  B )  ->  ( ( invg `  G ) `  x
)  e.  B )
4 oveq1 5974 . . . . . 6  |-  ( y  =  ( ( invg `  G ) `
 x )  -> 
( y  .+  x
)  =  ( ( ( invg `  G ) `  x
)  .+  x )
)
54eqeq1d 2216 . . . . 5  |-  ( y  =  ( ( invg `  G ) `
 x )  -> 
( ( y  .+  x )  =  .0.  <->  ( ( ( invg `  G ) `  x
)  .+  x )  =  .0.  ) )
6 oveq2 5975 . . . . . 6  |-  ( y  =  ( ( invg `  G ) `
 x )  -> 
( x  .+  y
)  =  ( x 
.+  ( ( invg `  G ) `
 x ) ) )
76eqeq1d 2216 . . . . 5  |-  ( y  =  ( ( invg `  G ) `
 x )  -> 
( ( x  .+  y )  =  .0.  <->  ( x  .+  ( ( invg `  G
) `  x )
)  =  .0.  )
)
85, 7anbi12d 473 . . . 4  |-  ( y  =  ( ( invg `  G ) `
 x )  -> 
( ( ( y 
.+  x )  =  .0.  /\  ( x 
.+  y )  =  .0.  )  <->  ( (
( ( invg `  G ) `  x
)  .+  x )  =  .0.  /\  ( x 
.+  ( ( invg `  G ) `
 x ) )  =  .0.  ) ) )
98adantl 277 . . 3  |-  ( ( ( G  e.  Grp  /\  x  e.  B )  /\  y  =  ( ( invg `  G ) `  x
) )  ->  (
( ( y  .+  x )  =  .0. 
/\  ( x  .+  y )  =  .0.  )  <->  ( ( ( ( invg `  G ) `  x
)  .+  x )  =  .0.  /\  ( x 
.+  ( ( invg `  G ) `
 x ) )  =  .0.  ) ) )
10 grplrinv.p . . . . 5  |-  .+  =  ( +g  `  G )
11 grplrinv.i . . . . 5  |-  .0.  =  ( 0g `  G )
121, 10, 11, 2grplinv 13497 . . . 4  |-  ( ( G  e.  Grp  /\  x  e.  B )  ->  ( ( ( invg `  G ) `
 x )  .+  x )  =  .0.  )
131, 10, 11, 2grprinv 13498 . . . 4  |-  ( ( G  e.  Grp  /\  x  e.  B )  ->  ( x  .+  (
( invg `  G ) `  x
) )  =  .0.  )
1412, 13jca 306 . . 3  |-  ( ( G  e.  Grp  /\  x  e.  B )  ->  ( ( ( ( invg `  G
) `  x )  .+  x )  =  .0. 
/\  ( x  .+  ( ( invg `  G ) `  x
) )  =  .0.  ) )
153, 9, 14rspcedvd 2890 . 2  |-  ( ( G  e.  Grp  /\  x  e.  B )  ->  E. y  e.  B  ( ( y  .+  x )  =  .0. 
/\  ( x  .+  y )  =  .0.  ) )
1615ralrimiva 2581 1  |-  ( G  e.  Grp  ->  A. x  e.  B  E. y  e.  B  ( (
y  .+  x )  =  .0.  /\  ( x 
.+  y )  =  .0.  ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 104    <-> wb 105    = wceq 1373    e. wcel 2178   A.wral 2486   E.wrex 2487   ` cfv 5290  (class class class)co 5967   Basecbs 12947   +g cplusg 13024   0gc0g 13203   Grpcgrp 13447   invgcminusg 13448
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 711  ax-5 1471  ax-7 1472  ax-gen 1473  ax-ie1 1517  ax-ie2 1518  ax-8 1528  ax-10 1529  ax-11 1530  ax-i12 1531  ax-bndl 1533  ax-4 1534  ax-17 1550  ax-i9 1554  ax-ial 1558  ax-i5r 1559  ax-13 2180  ax-14 2181  ax-ext 2189  ax-coll 4175  ax-sep 4178  ax-pow 4234  ax-pr 4269  ax-un 4498  ax-cnex 8051  ax-resscn 8052  ax-1re 8054  ax-addrcl 8057
This theorem depends on definitions:  df-bi 117  df-3an 983  df-tru 1376  df-nf 1485  df-sb 1787  df-eu 2058  df-mo 2059  df-clab 2194  df-cleq 2200  df-clel 2203  df-nfc 2339  df-ral 2491  df-rex 2492  df-reu 2493  df-rmo 2494  df-rab 2495  df-v 2778  df-sbc 3006  df-csb 3102  df-un 3178  df-in 3180  df-ss 3187  df-pw 3628  df-sn 3649  df-pr 3650  df-op 3652  df-uni 3865  df-int 3900  df-iun 3943  df-br 4060  df-opab 4122  df-mpt 4123  df-id 4358  df-xp 4699  df-rel 4700  df-cnv 4701  df-co 4702  df-dm 4703  df-rn 4704  df-res 4705  df-ima 4706  df-iota 5251  df-fun 5292  df-fn 5293  df-f 5294  df-f1 5295  df-fo 5296  df-f1o 5297  df-fv 5298  df-riota 5922  df-ov 5970  df-inn 9072  df-2 9130  df-ndx 12950  df-slot 12951  df-base 12953  df-plusg 13037  df-0g 13205  df-mgm 13303  df-sgrp 13349  df-mnd 13364  df-grp 13450  df-minusg 13451
This theorem is referenced by:  grpidinv2  13505
  Copyright terms: Public domain W3C validator