ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  grplrinv Unicode version

Theorem grplrinv 13389
Description: In a group, every member has a left and right inverse. (Contributed by AV, 1-Sep-2021.)
Hypotheses
Ref Expression
grplrinv.b  |-  B  =  ( Base `  G
)
grplrinv.p  |-  .+  =  ( +g  `  G )
grplrinv.i  |-  .0.  =  ( 0g `  G )
Assertion
Ref Expression
grplrinv  |-  ( G  e.  Grp  ->  A. x  e.  B  E. y  e.  B  ( (
y  .+  x )  =  .0.  /\  ( x 
.+  y )  =  .0.  ) )
Distinct variable groups:    y, B    x, G, y    y,  .+    y,  .0.
Allowed substitution hints:    B( x)    .+ ( x)    .0. (
x)

Proof of Theorem grplrinv
StepHypRef Expression
1 grplrinv.b . . . 4  |-  B  =  ( Base `  G
)
2 eqid 2205 . . . 4  |-  ( invg `  G )  =  ( invg `  G )
31, 2grpinvcl 13380 . . 3  |-  ( ( G  e.  Grp  /\  x  e.  B )  ->  ( ( invg `  G ) `  x
)  e.  B )
4 oveq1 5951 . . . . . 6  |-  ( y  =  ( ( invg `  G ) `
 x )  -> 
( y  .+  x
)  =  ( ( ( invg `  G ) `  x
)  .+  x )
)
54eqeq1d 2214 . . . . 5  |-  ( y  =  ( ( invg `  G ) `
 x )  -> 
( ( y  .+  x )  =  .0.  <->  ( ( ( invg `  G ) `  x
)  .+  x )  =  .0.  ) )
6 oveq2 5952 . . . . . 6  |-  ( y  =  ( ( invg `  G ) `
 x )  -> 
( x  .+  y
)  =  ( x 
.+  ( ( invg `  G ) `
 x ) ) )
76eqeq1d 2214 . . . . 5  |-  ( y  =  ( ( invg `  G ) `
 x )  -> 
( ( x  .+  y )  =  .0.  <->  ( x  .+  ( ( invg `  G
) `  x )
)  =  .0.  )
)
85, 7anbi12d 473 . . . 4  |-  ( y  =  ( ( invg `  G ) `
 x )  -> 
( ( ( y 
.+  x )  =  .0.  /\  ( x 
.+  y )  =  .0.  )  <->  ( (
( ( invg `  G ) `  x
)  .+  x )  =  .0.  /\  ( x 
.+  ( ( invg `  G ) `
 x ) )  =  .0.  ) ) )
98adantl 277 . . 3  |-  ( ( ( G  e.  Grp  /\  x  e.  B )  /\  y  =  ( ( invg `  G ) `  x
) )  ->  (
( ( y  .+  x )  =  .0. 
/\  ( x  .+  y )  =  .0.  )  <->  ( ( ( ( invg `  G ) `  x
)  .+  x )  =  .0.  /\  ( x 
.+  ( ( invg `  G ) `
 x ) )  =  .0.  ) ) )
10 grplrinv.p . . . . 5  |-  .+  =  ( +g  `  G )
11 grplrinv.i . . . . 5  |-  .0.  =  ( 0g `  G )
121, 10, 11, 2grplinv 13382 . . . 4  |-  ( ( G  e.  Grp  /\  x  e.  B )  ->  ( ( ( invg `  G ) `
 x )  .+  x )  =  .0.  )
131, 10, 11, 2grprinv 13383 . . . 4  |-  ( ( G  e.  Grp  /\  x  e.  B )  ->  ( x  .+  (
( invg `  G ) `  x
) )  =  .0.  )
1412, 13jca 306 . . 3  |-  ( ( G  e.  Grp  /\  x  e.  B )  ->  ( ( ( ( invg `  G
) `  x )  .+  x )  =  .0. 
/\  ( x  .+  ( ( invg `  G ) `  x
) )  =  .0.  ) )
153, 9, 14rspcedvd 2883 . 2  |-  ( ( G  e.  Grp  /\  x  e.  B )  ->  E. y  e.  B  ( ( y  .+  x )  =  .0. 
/\  ( x  .+  y )  =  .0.  ) )
1615ralrimiva 2579 1  |-  ( G  e.  Grp  ->  A. x  e.  B  E. y  e.  B  ( (
y  .+  x )  =  .0.  /\  ( x 
.+  y )  =  .0.  ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 104    <-> wb 105    = wceq 1373    e. wcel 2176   A.wral 2484   E.wrex 2485   ` cfv 5271  (class class class)co 5944   Basecbs 12832   +g cplusg 12909   0gc0g 13088   Grpcgrp 13332   invgcminusg 13333
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 711  ax-5 1470  ax-7 1471  ax-gen 1472  ax-ie1 1516  ax-ie2 1517  ax-8 1527  ax-10 1528  ax-11 1529  ax-i12 1530  ax-bndl 1532  ax-4 1533  ax-17 1549  ax-i9 1553  ax-ial 1557  ax-i5r 1558  ax-13 2178  ax-14 2179  ax-ext 2187  ax-coll 4159  ax-sep 4162  ax-pow 4218  ax-pr 4253  ax-un 4480  ax-cnex 8016  ax-resscn 8017  ax-1re 8019  ax-addrcl 8022
This theorem depends on definitions:  df-bi 117  df-3an 983  df-tru 1376  df-nf 1484  df-sb 1786  df-eu 2057  df-mo 2058  df-clab 2192  df-cleq 2198  df-clel 2201  df-nfc 2337  df-ral 2489  df-rex 2490  df-reu 2491  df-rmo 2492  df-rab 2493  df-v 2774  df-sbc 2999  df-csb 3094  df-un 3170  df-in 3172  df-ss 3179  df-pw 3618  df-sn 3639  df-pr 3640  df-op 3642  df-uni 3851  df-int 3886  df-iun 3929  df-br 4045  df-opab 4106  df-mpt 4107  df-id 4340  df-xp 4681  df-rel 4682  df-cnv 4683  df-co 4684  df-dm 4685  df-rn 4686  df-res 4687  df-ima 4688  df-iota 5232  df-fun 5273  df-fn 5274  df-f 5275  df-f1 5276  df-fo 5277  df-f1o 5278  df-fv 5279  df-riota 5899  df-ov 5947  df-inn 9037  df-2 9095  df-ndx 12835  df-slot 12836  df-base 12838  df-plusg 12922  df-0g 13090  df-mgm 13188  df-sgrp 13234  df-mnd 13249  df-grp 13335  df-minusg 13336
This theorem is referenced by:  grpidinv2  13390
  Copyright terms: Public domain W3C validator