Theorem List for Intuitionistic Logic Explorer - 8801-8900 *Has distinct variable
group(s)
| Type | Label | Description |
| Statement |
| |
| Theorem | divsubdirap 8801 |
Distribution of division over subtraction. (Contributed by NM,
4-Mar-2005.)
|
   #     
    
    |
| |
| Theorem | recrecap 8802 |
A number is equal to the reciprocal of its reciprocal. (Contributed by
Jim Kingdon, 25-Feb-2020.)
|
  #   
    |
| |
| Theorem | rec11ap 8803 |
Reciprocal is one-to-one. (Contributed by Jim Kingdon, 25-Feb-2020.)
|
   # 
 #     

    |
| |
| Theorem | rec11rap 8804 |
Mutual reciprocals. (Contributed by Jim Kingdon, 25-Feb-2020.)
|
   # 
 #     
     |
| |
| Theorem | divmuldivap 8805 |
Multiplication of two ratios. (Contributed by Jim Kingdon,
25-Feb-2020.)
|
      #  
#   
     
        |
| |
| Theorem | divdivdivap 8806 |
Division of two ratios. Theorem I.15 of [Apostol] p. 18. (Contributed by
Jim Kingdon, 25-Feb-2020.)
|
   
#     #   #            
     |
| |
| Theorem | divcanap5 8807 |
Cancellation of common factor in a ratio. (Contributed by Jim Kingdon,
25-Feb-2020.)
|
   #   #  
   
 
    |
| |
| Theorem | divmul13ap 8808 |
Swap the denominators in the product of two ratios. (Contributed by Jim
Kingdon, 26-Feb-2020.)
|
      #  
#   
     
        |
| |
| Theorem | divmul24ap 8809 |
Swap the numerators in the product of two ratios. (Contributed by Jim
Kingdon, 26-Feb-2020.)
|
      #  
#   
     
        |
| |
| Theorem | divmuleqap 8810 |
Cross-multiply in an equality of ratios. (Contributed by Jim Kingdon,
26-Feb-2020.)
|
      #  
#   
      
     |
| |
| Theorem | recdivap 8811 |
The reciprocal of a ratio. (Contributed by Jim Kingdon, 26-Feb-2020.)
|
   # 
 #           |
| |
| Theorem | divcanap6 8812 |
Cancellation of inverted fractions. (Contributed by Jim Kingdon,
26-Feb-2020.)
|
   # 
 #     
     |
| |
| Theorem | divdiv32ap 8813 |
Swap denominators in a division. (Contributed by Jim Kingdon,
26-Feb-2020.)
|
   #   #  
   
      |
| |
| Theorem | divcanap7 8814 |
Cancel equal divisors in a division. (Contributed by Jim Kingdon,
26-Feb-2020.)
|
   #   #  
   
      |
| |
| Theorem | dmdcanap 8815 |
Cancellation law for division and multiplication. (Contributed by Jim
Kingdon, 26-Feb-2020.)
|
   # 
 # 

          |
| |
| Theorem | divdivap1 8816 |
Division into a fraction. (Contributed by Jim Kingdon, 26-Feb-2020.)
|
   #   #  
   
      |
| |
| Theorem | divdivap2 8817 |
Division by a fraction. (Contributed by Jim Kingdon, 26-Feb-2020.)
|
   #   #  
   
      |
| |
| Theorem | recdivap2 8818 |
Division into a reciprocal. (Contributed by Jim Kingdon, 26-Feb-2020.)
|
   # 
 #     
  
    |
| |
| Theorem | ddcanap 8819 |
Cancellation in a double division. (Contributed by Jim Kingdon,
26-Feb-2020.)
|
   # 
 #   
     |
| |
| Theorem | divadddivap 8820 |
Addition of two ratios. (Contributed by Jim Kingdon, 26-Feb-2020.)
|
      #  
#   
   
     
   
    |
| |
| Theorem | divsubdivap 8821 |
Subtraction of two ratios. (Contributed by Jim Kingdon, 26-Feb-2020.)
|
      #  
#   
   
         
    |
| |
| Theorem | conjmulap 8822 |
Two numbers whose reciprocals sum to 1 are called "conjugates" and
satisfy
this relationship. (Contributed by Jim Kingdon, 26-Feb-2020.)
|
   # 
 #         
         |
| |
| Theorem | rerecclap 8823 |
Closure law for reciprocal. (Contributed by Jim Kingdon,
26-Feb-2020.)
|
  #   
  |
| |
| Theorem | redivclap 8824 |
Closure law for division of reals. (Contributed by Jim Kingdon,
26-Feb-2020.)
|
  #  
   |
| |
| Theorem | eqneg 8825 |
A number equal to its negative is zero. (Contributed by NM, 12-Jul-2005.)
(Revised by Mario Carneiro, 27-May-2016.)
|
      |
| |
| Theorem | eqnegd 8826 |
A complex number equals its negative iff it is zero. Deduction form of
eqneg 8825. (Contributed by David Moews, 28-Feb-2017.)
|
   

   |
| |
| Theorem | eqnegad 8827 |
If a complex number equals its own negative, it is zero. One-way
deduction form of eqneg 8825. (Contributed by David Moews,
28-Feb-2017.)
|
        |
| |
| Theorem | div2negap 8828 |
Quotient of two negatives. (Contributed by Jim Kingdon, 27-Feb-2020.)
|
  #     
    |
| |
| Theorem | divneg2ap 8829 |
Move negative sign inside of a division. (Contributed by Jim Kingdon,
27-Feb-2020.)
|
  #    
     |
| |
| Theorem | recclapzi 8830 |
Closure law for reciprocal. (Contributed by Jim Kingdon,
27-Feb-2020.)
|
 #  
  |
| |
| Theorem | recap0apzi 8831 |
The reciprocal of a number apart from zero is apart from zero.
(Contributed by Jim Kingdon, 27-Feb-2020.)
|
 #   #   |
| |
| Theorem | recidapzi 8832 |
Multiplication of a number and its reciprocal. (Contributed by Jim
Kingdon, 27-Feb-2020.)
|
 #  
    |
| |
| Theorem | div1i 8833 |
A number divided by 1 is itself. (Contributed by NM, 9-Jan-2002.)
|
   |
| |
| Theorem | eqnegi 8834 |
A number equal to its negative is zero. (Contributed by NM,
29-May-1999.)
|
 
  |
| |
| Theorem | recclapi 8835 |
Closure law for reciprocal. (Contributed by NM, 30-Apr-2005.)
|
#  
 |
| |
| Theorem | recidapi 8836 |
Multiplication of a number and its reciprocal. (Contributed by NM,
9-Feb-1995.)
|
#  
   |
| |
| Theorem | recrecapi 8837 |
A number is equal to the reciprocal of its reciprocal. Theorem I.10
of [Apostol] p. 18. (Contributed by
NM, 9-Feb-1995.)
|
#  
   |
| |
| Theorem | dividapi 8838 |
A number divided by itself is one. (Contributed by NM,
9-Feb-1995.)
|
#  
 |
| |
| Theorem | div0api 8839 |
Division into zero is zero. (Contributed by NM, 12-Aug-1999.)
|
#  
 |
| |
| Theorem | divclapzi 8840 |
Closure law for division. (Contributed by Jim Kingdon, 27-Feb-2020.)
|
 # 
   |
| |
| Theorem | divcanap1zi 8841 |
A cancellation law for division. (Contributed by Jim Kingdon,
27-Feb-2020.)
|
 #   

  |
| |
| Theorem | divcanap2zi 8842 |
A cancellation law for division. (Contributed by Jim Kingdon,
27-Feb-2020.)
|
 # 
     |
| |
| Theorem | divrecapzi 8843 |
Relationship between division and reciprocal. (Contributed by Jim
Kingdon, 27-Feb-2020.)
|
 # 
       |
| |
| Theorem | divcanap3zi 8844 |
A cancellation law for division. (Contributed by Jim Kingdon,
27-Feb-2020.)
|
 #   
   |
| |
| Theorem | divcanap4zi 8845 |
A cancellation law for division. (Contributed by Jim Kingdon,
27-Feb-2020.)
|
 #   
   |
| |
| Theorem | rec11api 8846 |
Reciprocal is one-to-one. (Contributed by Jim Kingdon, 28-Feb-2020.)
|
  # #    

    |
| |
| Theorem | divclapi 8847 |
Closure law for division. (Contributed by Jim Kingdon,
28-Feb-2020.)
|
#  
 |
| |
| Theorem | divcanap2i 8848 |
A cancellation law for division. (Contributed by Jim Kingdon,
28-Feb-2020.)
|
#  
   |
| |
| Theorem | divcanap1i 8849 |
A cancellation law for division. (Contributed by Jim Kingdon,
28-Feb-2020.)
|
#      |
| |
| Theorem | divrecapi 8850 |
Relationship between division and reciprocal. (Contributed by Jim
Kingdon, 28-Feb-2020.)
|
#  
     |
| |
| Theorem | divcanap3i 8851 |
A cancellation law for division. (Contributed by Jim Kingdon,
28-Feb-2020.)
|
#    
 |
| |
| Theorem | divcanap4i 8852 |
A cancellation law for division. (Contributed by Jim Kingdon,
28-Feb-2020.)
|
#    
 |
| |
| Theorem | divap0i 8853 |
The ratio of numbers apart from zero is apart from zero. (Contributed
by Jim Kingdon, 28-Feb-2020.)
|
# #   #  |
| |
| Theorem | rec11apii 8854 |
Reciprocal is one-to-one. (Contributed by Jim Kingdon,
28-Feb-2020.)
|
# #   

   |
| |
| Theorem | divassapzi 8855 |
An associative law for division. (Contributed by Jim Kingdon,
28-Feb-2020.)
|
 #
          |
| |
| Theorem | divmulapzi 8856 |
Relationship between division and multiplication. (Contributed by Jim
Kingdon, 28-Feb-2020.)
|
 #
    
   |
| |
| Theorem | divdirapzi 8857 |
Distribution of division over addition. (Contributed by Jim Kingdon,
28-Feb-2020.)
|
 #
      
     |
| |
| Theorem | divdiv23apzi 8858 |
Swap denominators in a division. (Contributed by Jim Kingdon,
28-Feb-2020.)
|
  # #        
   |
| |
| Theorem | divmulapi 8859 |
Relationship between division and multiplication. (Contributed by Jim
Kingdon, 29-Feb-2020.)
|
#   
    |
| |
| Theorem | divdiv32api 8860 |
Swap denominators in a division. (Contributed by Jim Kingdon,
29-Feb-2020.)
|
# #   
      |
| |
| Theorem | divassapi 8861 |
An associative law for division. (Contributed by Jim Kingdon,
9-Mar-2020.)
|
#   
  
   |
| |
| Theorem | divdirapi 8862 |
Distribution of division over addition. (Contributed by Jim Kingdon,
9-Mar-2020.)
|
#   
    
   |
| |
| Theorem | div23api 8863 |
A commutative/associative law for division. (Contributed by Jim
Kingdon, 9-Mar-2020.)
|
#   
      |
| |
| Theorem | div11api 8864 |
One-to-one relationship for division. (Contributed by Jim Kingdon,
9-Mar-2020.)
|
#   
 
  |
| |
| Theorem | divmuldivapi 8865 |
Multiplication of two ratios. (Contributed by Jim Kingdon,
9-Mar-2020.)
|
# #   
      
   |
| |
| Theorem | divmul13api 8866 |
Swap denominators of two ratios. (Contributed by Jim Kingdon,
9-Mar-2020.)
|
# #   
          |
| |
| Theorem | divadddivapi 8867 |
Addition of two ratios. (Contributed by Jim Kingdon, 9-Mar-2020.)
|
# #   
          
   |
| |
| Theorem | divdivdivapi 8868 |
Division of two ratios. (Contributed by Jim Kingdon, 9-Mar-2020.)
|
# # #   
      
   |
| |
| Theorem | rerecclapzi 8869 |
Closure law for reciprocal. (Contributed by Jim Kingdon,
9-Mar-2020.)
|
 #  
  |
| |
| Theorem | rerecclapi 8870 |
Closure law for reciprocal. (Contributed by Jim Kingdon,
9-Mar-2020.)
|
#  
 |
| |
| Theorem | redivclapzi 8871 |
Closure law for division of reals. (Contributed by Jim Kingdon,
9-Mar-2020.)
|
 # 
   |
| |
| Theorem | redivclapi 8872 |
Closure law for division of reals. (Contributed by Jim Kingdon,
9-Mar-2020.)
|
#  
 |
| |
| Theorem | div1d 8873 |
A number divided by 1 is itself. (Contributed by Mario Carneiro,
27-May-2016.)
|
       |
| |
| Theorem | recclapd 8874 |
Closure law for reciprocal. (Contributed by Jim Kingdon,
3-Mar-2020.)
|
   #   
   |
| |
| Theorem | recap0d 8875 |
The reciprocal of a number apart from zero is apart from zero.
(Contributed by Jim Kingdon, 3-Mar-2020.)
|
   #   
 #   |
| |
| Theorem | recidapd 8876 |
Multiplication of a number and its reciprocal. (Contributed by Jim
Kingdon, 3-Mar-2020.)
|
   #         |
| |
| Theorem | recidap2d 8877 |
Multiplication of a number and its reciprocal. (Contributed by Jim
Kingdon, 3-Mar-2020.)
|
   #         |
| |
| Theorem | recrecapd 8878 |
A number is equal to the reciprocal of its reciprocal. (Contributed
by Jim Kingdon, 3-Mar-2020.)
|
   #   
     |
| |
| Theorem | dividapd 8879 |
A number divided by itself is one. (Contributed by Jim Kingdon,
3-Mar-2020.)
|
   #       |
| |
| Theorem | div0apd 8880 |
Division into zero is zero. (Contributed by Jim Kingdon,
3-Mar-2020.)
|
   #   
   |
| |
| Theorem | apmul1 8881 |
Multiplication of both sides of complex apartness by a complex number
apart from zero. (Contributed by Jim Kingdon, 20-Mar-2020.)
|
   #    #   #
     |
| |
| Theorem | apmul2 8882 |
Multiplication of both sides of complex apartness by a complex number
apart from zero. (Contributed by Jim Kingdon, 6-Jan-2023.)
|
   #    #   #
     |
| |
| Theorem | divclapd 8883 |
Closure law for division. (Contributed by Jim Kingdon,
29-Feb-2020.)
|
     #
   
  |
| |
| Theorem | divcanap1d 8884 |
A cancellation law for division. (Contributed by Jim Kingdon,
29-Feb-2020.)
|
     #
        |
| |
| Theorem | divcanap2d 8885 |
A cancellation law for division. (Contributed by Jim Kingdon,
29-Feb-2020.)
|
     #
   
    |
| |
| Theorem | divrecapd 8886 |
Relationship between division and reciprocal. Theorem I.9 of
[Apostol] p. 18. (Contributed by Jim
Kingdon, 29-Feb-2020.)
|
     #
   
      |
| |
| Theorem | divrecap2d 8887 |
Relationship between division and reciprocal. (Contributed by Jim
Kingdon, 29-Feb-2020.)
|
     #
   
      |
| |
| Theorem | divcanap3d 8888 |
A cancellation law for division. (Contributed by Jim Kingdon,
29-Feb-2020.)
|
     #
     
  |
| |
| Theorem | divcanap4d 8889 |
A cancellation law for division. (Contributed by Jim Kingdon,
29-Feb-2020.)
|
     #
     
  |
| |
| Theorem | diveqap0d 8890 |
If a ratio is zero, the numerator is zero. (Contributed by Jim
Kingdon, 19-Mar-2020.)
|
     #
   
    |
| |
| Theorem | diveqap1d 8891 |
Equality in terms of unit ratio. (Contributed by Jim Kingdon,
19-Mar-2020.)
|
     #
   
    |
| |
| Theorem | diveqap1ad 8892 |
The quotient of two complex numbers is one iff they are equal.
Deduction form of diveqap1 8798. Generalization of diveqap1d 8891.
(Contributed by Jim Kingdon, 19-Mar-2020.)
|
     #
    
   |
| |
| Theorem | diveqap0ad 8893 |
A fraction of complex numbers is zero iff its numerator is. Deduction
form of diveqap0 8775. (Contributed by Jim Kingdon, 19-Mar-2020.)
|
     #
    
   |
| |
| Theorem | divap1d 8894 |
If two complex numbers are apart, their quotient is apart from one.
(Contributed by Jim Kingdon, 20-Mar-2020.)
|
     #
  #
    #
  |
| |
| Theorem | divap0bd 8895 |
A ratio is zero iff the numerator is zero. (Contributed by Jim
Kingdon, 19-Mar-2020.)
|
     #
   #   #    |
| |
| Theorem | divnegapd 8896 |
Move negative sign inside of a division. (Contributed by Jim Kingdon,
19-Mar-2020.)
|
     #
    
     |
| |
| Theorem | divneg2apd 8897 |
Move negative sign inside of a division. (Contributed by Jim Kingdon,
19-Mar-2020.)
|
     #
    
     |
| |
| Theorem | div2negapd 8898 |
Quotient of two negatives. (Contributed by Jim Kingdon,
19-Mar-2020.)
|
     #
          |
| |
| Theorem | divap0d 8899 |
The ratio of numbers apart from zero is apart from zero. (Contributed
by Jim Kingdon, 3-Mar-2020.)
|
     #
  #
    #
  |
| |
| Theorem | recdivapd 8900 |
The reciprocal of a ratio. (Contributed by Jim Kingdon,
3-Mar-2020.)
|
     #
  #
   
      |