HomeHome Intuitionistic Logic Explorer
Theorem List (p. 89 of 159)
< Previous  Next >
Browser slow? Try the
Unicode version.

Mirrors  >  Metamath Home Page  >  ILE Home Page  >  Theorem List Contents  >  Recent Proofs       This page: Page List

Theorem List for Intuitionistic Logic Explorer - 8801-8900   *Has distinct variable group(s)
TypeLabelDescription
Statement
 
Theoremdivrecapi 8801 Relationship between division and reciprocal. (Contributed by Jim Kingdon, 28-Feb-2020.)
 |-  A  e.  CC   &    |-  B  e.  CC   &    |-  B #  0   =>    |-  ( A  /  B )  =  ( A  x.  ( 1  /  B ) )
 
Theoremdivcanap3i 8802 A cancellation law for division. (Contributed by Jim Kingdon, 28-Feb-2020.)
 |-  A  e.  CC   &    |-  B  e.  CC   &    |-  B #  0   =>    |-  ( ( B  x.  A )  /  B )  =  A
 
Theoremdivcanap4i 8803 A cancellation law for division. (Contributed by Jim Kingdon, 28-Feb-2020.)
 |-  A  e.  CC   &    |-  B  e.  CC   &    |-  B #  0   =>    |-  ( ( A  x.  B )  /  B )  =  A
 
Theoremdivap0i 8804 The ratio of numbers apart from zero is apart from zero. (Contributed by Jim Kingdon, 28-Feb-2020.)
 |-  A  e.  CC   &    |-  B  e.  CC   &    |-  A #  0   &    |-  B #  0   =>    |-  ( A  /  B ) #  0
 
Theoremrec11apii 8805 Reciprocal is one-to-one. (Contributed by Jim Kingdon, 28-Feb-2020.)
 |-  A  e.  CC   &    |-  B  e.  CC   &    |-  A #  0   &    |-  B #  0   =>    |-  ( ( 1  /  A )  =  (
 1  /  B )  <->  A  =  B )
 
Theoremdivassapzi 8806 An associative law for division. (Contributed by Jim Kingdon, 28-Feb-2020.)
 |-  A  e.  CC   &    |-  B  e.  CC   &    |-  C  e.  CC   =>    |-  ( C #  0  ->  ( ( A  x.  B ) 
 /  C )  =  ( A  x.  ( B  /  C ) ) )
 
Theoremdivmulapzi 8807 Relationship between division and multiplication. (Contributed by Jim Kingdon, 28-Feb-2020.)
 |-  A  e.  CC   &    |-  B  e.  CC   &    |-  C  e.  CC   =>    |-  ( B #  0  ->  ( ( A  /  B )  =  C  <->  ( B  x.  C )  =  A ) )
 
Theoremdivdirapzi 8808 Distribution of division over addition. (Contributed by Jim Kingdon, 28-Feb-2020.)
 |-  A  e.  CC   &    |-  B  e.  CC   &    |-  C  e.  CC   =>    |-  ( C #  0  ->  ( ( A  +  B ) 
 /  C )  =  ( ( A  /  C )  +  ( B  /  C ) ) )
 
Theoremdivdiv23apzi 8809 Swap denominators in a division. (Contributed by Jim Kingdon, 28-Feb-2020.)
 |-  A  e.  CC   &    |-  B  e.  CC   &    |-  C  e.  CC   =>    |-  (
 ( B #  0  /\  C #  0 )  ->  (
 ( A  /  B )  /  C )  =  ( ( A  /  C )  /  B ) )
 
Theoremdivmulapi 8810 Relationship between division and multiplication. (Contributed by Jim Kingdon, 29-Feb-2020.)
 |-  A  e.  CC   &    |-  B  e.  CC   &    |-  C  e.  CC   &    |-  B #  0   =>    |-  ( ( A  /  B )  =  C  <->  ( B  x.  C )  =  A )
 
Theoremdivdiv32api 8811 Swap denominators in a division. (Contributed by Jim Kingdon, 29-Feb-2020.)
 |-  A  e.  CC   &    |-  B  e.  CC   &    |-  C  e.  CC   &    |-  B #  0   &    |-  C #  0   =>    |-  ( ( A  /  B )  /  C )  =  ( ( A 
 /  C )  /  B )
 
Theoremdivassapi 8812 An associative law for division. (Contributed by Jim Kingdon, 9-Mar-2020.)
 |-  A  e.  CC   &    |-  B  e.  CC   &    |-  C  e.  CC   &    |-  C #  0   =>    |-  ( ( A  x.  B )  /  C )  =  ( A  x.  ( B  /  C ) )
 
Theoremdivdirapi 8813 Distribution of division over addition. (Contributed by Jim Kingdon, 9-Mar-2020.)
 |-  A  e.  CC   &    |-  B  e.  CC   &    |-  C  e.  CC   &    |-  C #  0   =>    |-  ( ( A  +  B )  /  C )  =  ( ( A 
 /  C )  +  ( B  /  C ) )
 
Theoremdiv23api 8814 A commutative/associative law for division. (Contributed by Jim Kingdon, 9-Mar-2020.)
 |-  A  e.  CC   &    |-  B  e.  CC   &    |-  C  e.  CC   &    |-  C #  0   =>    |-  ( ( A  x.  B )  /  C )  =  ( ( A 
 /  C )  x.  B )
 
Theoremdiv11api 8815 One-to-one relationship for division. (Contributed by Jim Kingdon, 9-Mar-2020.)
 |-  A  e.  CC   &    |-  B  e.  CC   &    |-  C  e.  CC   &    |-  C #  0   =>    |-  ( ( A  /  C )  =  ( B  /  C )  <->  A  =  B )
 
Theoremdivmuldivapi 8816 Multiplication of two ratios. (Contributed by Jim Kingdon, 9-Mar-2020.)
 |-  A  e.  CC   &    |-  B  e.  CC   &    |-  C  e.  CC   &    |-  D  e.  CC   &    |-  B #  0   &    |-  D #  0   =>    |-  ( ( A  /  B )  x.  ( C  /  D ) )  =  ( ( A  x.  C )  /  ( B  x.  D ) )
 
Theoremdivmul13api 8817 Swap denominators of two ratios. (Contributed by Jim Kingdon, 9-Mar-2020.)
 |-  A  e.  CC   &    |-  B  e.  CC   &    |-  C  e.  CC   &    |-  D  e.  CC   &    |-  B #  0   &    |-  D #  0   =>    |-  ( ( A  /  B )  x.  ( C  /  D ) )  =  ( ( C 
 /  B )  x.  ( A  /  D ) )
 
Theoremdivadddivapi 8818 Addition of two ratios. (Contributed by Jim Kingdon, 9-Mar-2020.)
 |-  A  e.  CC   &    |-  B  e.  CC   &    |-  C  e.  CC   &    |-  D  e.  CC   &    |-  B #  0   &    |-  D #  0   =>    |-  ( ( A  /  B )  +  ( C  /  D ) )  =  ( ( ( A  x.  D )  +  ( C  x.  B ) )  /  ( B  x.  D ) )
 
Theoremdivdivdivapi 8819 Division of two ratios. (Contributed by Jim Kingdon, 9-Mar-2020.)
 |-  A  e.  CC   &    |-  B  e.  CC   &    |-  C  e.  CC   &    |-  D  e.  CC   &    |-  B #  0   &    |-  D #  0   &    |-  C #  0   =>    |-  ( ( A  /  B )  /  ( C  /  D ) )  =  ( ( A  x.  D )  /  ( B  x.  C ) )
 
Theoremrerecclapzi 8820 Closure law for reciprocal. (Contributed by Jim Kingdon, 9-Mar-2020.)
 |-  A  e.  RR   =>    |-  ( A #  0  ->  ( 1  /  A )  e.  RR )
 
Theoremrerecclapi 8821 Closure law for reciprocal. (Contributed by Jim Kingdon, 9-Mar-2020.)
 |-  A  e.  RR   &    |-  A #  0   =>    |-  ( 1  /  A )  e.  RR
 
Theoremredivclapzi 8822 Closure law for division of reals. (Contributed by Jim Kingdon, 9-Mar-2020.)
 |-  A  e.  RR   &    |-  B  e.  RR   =>    |-  ( B #  0  ->  ( A  /  B )  e.  RR )
 
Theoremredivclapi 8823 Closure law for division of reals. (Contributed by Jim Kingdon, 9-Mar-2020.)
 |-  A  e.  RR   &    |-  B  e.  RR   &    |-  B #  0   =>    |-  ( A  /  B )  e.  RR
 
Theoremdiv1d 8824 A number divided by 1 is itself. (Contributed by Mario Carneiro, 27-May-2016.)
 |-  ( ph  ->  A  e.  CC )   =>    |-  ( ph  ->  ( A  /  1 )  =  A )
 
Theoremrecclapd 8825 Closure law for reciprocal. (Contributed by Jim Kingdon, 3-Mar-2020.)
 |-  ( ph  ->  A  e.  CC )   &    |-  ( ph  ->  A #  0 )   =>    |-  ( ph  ->  (
 1  /  A )  e.  CC )
 
Theoremrecap0d 8826 The reciprocal of a number apart from zero is apart from zero. (Contributed by Jim Kingdon, 3-Mar-2020.)
 |-  ( ph  ->  A  e.  CC )   &    |-  ( ph  ->  A #  0 )   =>    |-  ( ph  ->  (
 1  /  A ) #  0 )
 
Theoremrecidapd 8827 Multiplication of a number and its reciprocal. (Contributed by Jim Kingdon, 3-Mar-2020.)
 |-  ( ph  ->  A  e.  CC )   &    |-  ( ph  ->  A #  0 )   =>    |-  ( ph  ->  ( A  x.  ( 1  /  A ) )  =  1 )
 
Theoremrecidap2d 8828 Multiplication of a number and its reciprocal. (Contributed by Jim Kingdon, 3-Mar-2020.)
 |-  ( ph  ->  A  e.  CC )   &    |-  ( ph  ->  A #  0 )   =>    |-  ( ph  ->  (
 ( 1  /  A )  x.  A )  =  1 )
 
Theoremrecrecapd 8829 A number is equal to the reciprocal of its reciprocal. (Contributed by Jim Kingdon, 3-Mar-2020.)
 |-  ( ph  ->  A  e.  CC )   &    |-  ( ph  ->  A #  0 )   =>    |-  ( ph  ->  (
 1  /  ( 1  /  A ) )  =  A )
 
Theoremdividapd 8830 A number divided by itself is one. (Contributed by Jim Kingdon, 3-Mar-2020.)
 |-  ( ph  ->  A  e.  CC )   &    |-  ( ph  ->  A #  0 )   =>    |-  ( ph  ->  ( A  /  A )  =  1 )
 
Theoremdiv0apd 8831 Division into zero is zero. (Contributed by Jim Kingdon, 3-Mar-2020.)
 |-  ( ph  ->  A  e.  CC )   &    |-  ( ph  ->  A #  0 )   =>    |-  ( ph  ->  (
 0  /  A )  =  0 )
 
Theoremapmul1 8832 Multiplication of both sides of complex apartness by a complex number apart from zero. (Contributed by Jim Kingdon, 20-Mar-2020.)
 |-  ( ( A  e.  CC  /\  B  e.  CC  /\  ( C  e.  CC  /\  C #  0 ) ) 
 ->  ( A #  B  <->  ( A  x.  C ) #  ( B  x.  C ) ) )
 
Theoremapmul2 8833 Multiplication of both sides of complex apartness by a complex number apart from zero. (Contributed by Jim Kingdon, 6-Jan-2023.)
 |-  ( ( A  e.  CC  /\  B  e.  CC  /\  ( C  e.  CC  /\  C #  0 ) ) 
 ->  ( A #  B  <->  ( C  x.  A ) #  ( C  x.  B ) ) )
 
Theoremdivclapd 8834 Closure law for division. (Contributed by Jim Kingdon, 29-Feb-2020.)
 |-  ( ph  ->  A  e.  CC )   &    |-  ( ph  ->  B  e.  CC )   &    |-  ( ph  ->  B #  0 )   =>    |-  ( ph  ->  ( A  /  B )  e.  CC )
 
Theoremdivcanap1d 8835 A cancellation law for division. (Contributed by Jim Kingdon, 29-Feb-2020.)
 |-  ( ph  ->  A  e.  CC )   &    |-  ( ph  ->  B  e.  CC )   &    |-  ( ph  ->  B #  0 )   =>    |-  ( ph  ->  ( ( A 
 /  B )  x.  B )  =  A )
 
Theoremdivcanap2d 8836 A cancellation law for division. (Contributed by Jim Kingdon, 29-Feb-2020.)
 |-  ( ph  ->  A  e.  CC )   &    |-  ( ph  ->  B  e.  CC )   &    |-  ( ph  ->  B #  0 )   =>    |-  ( ph  ->  ( B  x.  ( A  /  B ) )  =  A )
 
Theoremdivrecapd 8837 Relationship between division and reciprocal. Theorem I.9 of [Apostol] p. 18. (Contributed by Jim Kingdon, 29-Feb-2020.)
 |-  ( ph  ->  A  e.  CC )   &    |-  ( ph  ->  B  e.  CC )   &    |-  ( ph  ->  B #  0 )   =>    |-  ( ph  ->  ( A  /  B )  =  ( A  x.  ( 1  /  B ) ) )
 
Theoremdivrecap2d 8838 Relationship between division and reciprocal. (Contributed by Jim Kingdon, 29-Feb-2020.)
 |-  ( ph  ->  A  e.  CC )   &    |-  ( ph  ->  B  e.  CC )   &    |-  ( ph  ->  B #  0 )   =>    |-  ( ph  ->  ( A  /  B )  =  (
 ( 1  /  B )  x.  A ) )
 
Theoremdivcanap3d 8839 A cancellation law for division. (Contributed by Jim Kingdon, 29-Feb-2020.)
 |-  ( ph  ->  A  e.  CC )   &    |-  ( ph  ->  B  e.  CC )   &    |-  ( ph  ->  B #  0 )   =>    |-  ( ph  ->  ( ( B  x.  A )  /  B )  =  A )
 
Theoremdivcanap4d 8840 A cancellation law for division. (Contributed by Jim Kingdon, 29-Feb-2020.)
 |-  ( ph  ->  A  e.  CC )   &    |-  ( ph  ->  B  e.  CC )   &    |-  ( ph  ->  B #  0 )   =>    |-  ( ph  ->  ( ( A  x.  B )  /  B )  =  A )
 
Theoremdiveqap0d 8841 If a ratio is zero, the numerator is zero. (Contributed by Jim Kingdon, 19-Mar-2020.)
 |-  ( ph  ->  A  e.  CC )   &    |-  ( ph  ->  B  e.  CC )   &    |-  ( ph  ->  B #  0 )   &    |-  ( ph  ->  ( A  /  B )  =  0
 )   =>    |-  ( ph  ->  A  =  0 )
 
Theoremdiveqap1d 8842 Equality in terms of unit ratio. (Contributed by Jim Kingdon, 19-Mar-2020.)
 |-  ( ph  ->  A  e.  CC )   &    |-  ( ph  ->  B  e.  CC )   &    |-  ( ph  ->  B #  0 )   &    |-  ( ph  ->  ( A  /  B )  =  1
 )   =>    |-  ( ph  ->  A  =  B )
 
Theoremdiveqap1ad 8843 The quotient of two complex numbers is one iff they are equal. Deduction form of diveqap1 8749. Generalization of diveqap1d 8842. (Contributed by Jim Kingdon, 19-Mar-2020.)
 |-  ( ph  ->  A  e.  CC )   &    |-  ( ph  ->  B  e.  CC )   &    |-  ( ph  ->  B #  0 )   =>    |-  ( ph  ->  ( ( A 
 /  B )  =  1  <->  A  =  B ) )
 
Theoremdiveqap0ad 8844 A fraction of complex numbers is zero iff its numerator is. Deduction form of diveqap0 8726. (Contributed by Jim Kingdon, 19-Mar-2020.)
 |-  ( ph  ->  A  e.  CC )   &    |-  ( ph  ->  B  e.  CC )   &    |-  ( ph  ->  B #  0 )   =>    |-  ( ph  ->  ( ( A 
 /  B )  =  0  <->  A  =  0
 ) )
 
Theoremdivap1d 8845 If two complex numbers are apart, their quotient is apart from one. (Contributed by Jim Kingdon, 20-Mar-2020.)
 |-  ( ph  ->  A  e.  CC )   &    |-  ( ph  ->  B  e.  CC )   &    |-  ( ph  ->  B #  0 )   &    |-  ( ph  ->  A #  B )   =>    |-  ( ph  ->  ( A  /  B ) #  1 )
 
Theoremdivap0bd 8846 A ratio is zero iff the numerator is zero. (Contributed by Jim Kingdon, 19-Mar-2020.)
 |-  ( ph  ->  A  e.  CC )   &    |-  ( ph  ->  B  e.  CC )   &    |-  ( ph  ->  B #  0 )   =>    |-  ( ph  ->  ( A #  0  <->  ( A  /  B ) #  0 ) )
 
Theoremdivnegapd 8847 Move negative sign inside of a division. (Contributed by Jim Kingdon, 19-Mar-2020.)
 |-  ( ph  ->  A  e.  CC )   &    |-  ( ph  ->  B  e.  CC )   &    |-  ( ph  ->  B #  0 )   =>    |-  ( ph  ->  -u ( A  /  B )  =  ( -u A  /  B ) )
 
Theoremdivneg2apd 8848 Move negative sign inside of a division. (Contributed by Jim Kingdon, 19-Mar-2020.)
 |-  ( ph  ->  A  e.  CC )   &    |-  ( ph  ->  B  e.  CC )   &    |-  ( ph  ->  B #  0 )   =>    |-  ( ph  ->  -u ( A  /  B )  =  ( A  /  -u B ) )
 
Theoremdiv2negapd 8849 Quotient of two negatives. (Contributed by Jim Kingdon, 19-Mar-2020.)
 |-  ( ph  ->  A  e.  CC )   &    |-  ( ph  ->  B  e.  CC )   &    |-  ( ph  ->  B #  0 )   =>    |-  ( ph  ->  ( -u A  /  -u B )  =  ( A  /  B ) )
 
Theoremdivap0d 8850 The ratio of numbers apart from zero is apart from zero. (Contributed by Jim Kingdon, 3-Mar-2020.)
 |-  ( ph  ->  A  e.  CC )   &    |-  ( ph  ->  B  e.  CC )   &    |-  ( ph  ->  A #  0 )   &    |-  ( ph  ->  B #  0 )   =>    |-  ( ph  ->  ( A  /  B ) #  0 )
 
Theoremrecdivapd 8851 The reciprocal of a ratio. (Contributed by Jim Kingdon, 3-Mar-2020.)
 |-  ( ph  ->  A  e.  CC )   &    |-  ( ph  ->  B  e.  CC )   &    |-  ( ph  ->  A #  0 )   &    |-  ( ph  ->  B #  0 )   =>    |-  ( ph  ->  ( 1  /  ( A  /  B ) )  =  ( B 
 /  A ) )
 
Theoremrecdivap2d 8852 Division into a reciprocal. (Contributed by Jim Kingdon, 3-Mar-2020.)
 |-  ( ph  ->  A  e.  CC )   &    |-  ( ph  ->  B  e.  CC )   &    |-  ( ph  ->  A #  0 )   &    |-  ( ph  ->  B #  0 )   =>    |-  ( ph  ->  ( ( 1 
 /  A )  /  B )  =  (
 1  /  ( A  x.  B ) ) )
 
Theoremdivcanap6d 8853 Cancellation of inverted fractions. (Contributed by Jim Kingdon, 3-Mar-2020.)
 |-  ( ph  ->  A  e.  CC )   &    |-  ( ph  ->  B  e.  CC )   &    |-  ( ph  ->  A #  0 )   &    |-  ( ph  ->  B #  0 )   =>    |-  ( ph  ->  ( ( A 
 /  B )  x.  ( B  /  A ) )  =  1
 )
 
Theoremddcanapd 8854 Cancellation in a double division. (Contributed by Jim Kingdon, 3-Mar-2020.)
 |-  ( ph  ->  A  e.  CC )   &    |-  ( ph  ->  B  e.  CC )   &    |-  ( ph  ->  A #  0 )   &    |-  ( ph  ->  B #  0 )   =>    |-  ( ph  ->  ( A  /  ( A  /  B ) )  =  B )
 
Theoremrec11apd 8855 Reciprocal is one-to-one. (Contributed by Jim Kingdon, 3-Mar-2020.)
 |-  ( ph  ->  A  e.  CC )   &    |-  ( ph  ->  B  e.  CC )   &    |-  ( ph  ->  A #  0 )   &    |-  ( ph  ->  B #  0 )   &    |-  ( ph  ->  ( 1  /  A )  =  (
 1  /  B )
 )   =>    |-  ( ph  ->  A  =  B )
 
Theoremdivmulapd 8856 Relationship between division and multiplication. (Contributed by Jim Kingdon, 8-Mar-2020.)
 |-  ( ph  ->  A  e.  CC )   &    |-  ( ph  ->  B  e.  CC )   &    |-  ( ph  ->  C  e.  CC )   &    |-  ( ph  ->  B #  0 )   =>    |-  ( ph  ->  (
 ( A  /  B )  =  C  <->  ( B  x.  C )  =  A ) )
 
Theoremapdivmuld 8857 Relationship between division and multiplication. (Contributed by Jim Kingdon, 26-Dec-2022.)
 |-  ( ph  ->  A  e.  CC )   &    |-  ( ph  ->  B  e.  CC )   &    |-  ( ph  ->  C  e.  CC )   &    |-  ( ph  ->  B #  0 )   =>    |-  ( ph  ->  (
 ( A  /  B ) #  C  <->  ( B  x.  C ) #  A )
 )
 
Theoremdiv32apd 8858 A commutative/associative law for division. (Contributed by Jim Kingdon, 8-Mar-2020.)
 |-  ( ph  ->  A  e.  CC )   &    |-  ( ph  ->  B  e.  CC )   &    |-  ( ph  ->  C  e.  CC )   &    |-  ( ph  ->  B #  0 )   =>    |-  ( ph  ->  (
 ( A  /  B )  x.  C )  =  ( A  x.  ( C  /  B ) ) )
 
Theoremdiv13apd 8859 A commutative/associative law for division. (Contributed by Jim Kingdon, 8-Mar-2020.)
 |-  ( ph  ->  A  e.  CC )   &    |-  ( ph  ->  B  e.  CC )   &    |-  ( ph  ->  C  e.  CC )   &    |-  ( ph  ->  B #  0 )   =>    |-  ( ph  ->  (
 ( A  /  B )  x.  C )  =  ( ( C  /  B )  x.  A ) )
 
Theoremdivdiv32apd 8860 Swap denominators in a division. (Contributed by Jim Kingdon, 8-Mar-2020.)
 |-  ( ph  ->  A  e.  CC )   &    |-  ( ph  ->  B  e.  CC )   &    |-  ( ph  ->  C  e.  CC )   &    |-  ( ph  ->  B #  0 )   &    |-  ( ph  ->  C #  0 )   =>    |-  ( ph  ->  (
 ( A  /  B )  /  C )  =  ( ( A  /  C )  /  B ) )
 
Theoremdivcanap5d 8861 Cancellation of common factor in a ratio. (Contributed by Jim Kingdon, 8-Mar-2020.)
 |-  ( ph  ->  A  e.  CC )   &    |-  ( ph  ->  B  e.  CC )   &    |-  ( ph  ->  C  e.  CC )   &    |-  ( ph  ->  B #  0 )   &    |-  ( ph  ->  C #  0 )   =>    |-  ( ph  ->  (
 ( C  x.  A )  /  ( C  x.  B ) )  =  ( A  /  B ) )
 
Theoremdivcanap5rd 8862 Cancellation of common factor in a ratio. (Contributed by Jim Kingdon, 8-Mar-2020.)
 |-  ( ph  ->  A  e.  CC )   &    |-  ( ph  ->  B  e.  CC )   &    |-  ( ph  ->  C  e.  CC )   &    |-  ( ph  ->  B #  0 )   &    |-  ( ph  ->  C #  0 )   =>    |-  ( ph  ->  (
 ( A  x.  C )  /  ( B  x.  C ) )  =  ( A  /  B ) )
 
Theoremdivcanap7d 8863 Cancel equal divisors in a division. (Contributed by Jim Kingdon, 8-Mar-2020.)
 |-  ( ph  ->  A  e.  CC )   &    |-  ( ph  ->  B  e.  CC )   &    |-  ( ph  ->  C  e.  CC )   &    |-  ( ph  ->  B #  0 )   &    |-  ( ph  ->  C #  0 )   =>    |-  ( ph  ->  (
 ( A  /  C )  /  ( B  /  C ) )  =  ( A  /  B ) )
 
Theoremdmdcanapd 8864 Cancellation law for division and multiplication. (Contributed by Jim Kingdon, 8-Mar-2020.)
 |-  ( ph  ->  A  e.  CC )   &    |-  ( ph  ->  B  e.  CC )   &    |-  ( ph  ->  C  e.  CC )   &    |-  ( ph  ->  B #  0 )   &    |-  ( ph  ->  C #  0 )   =>    |-  ( ph  ->  (
 ( B  /  C )  x.  ( A  /  B ) )  =  ( A  /  C ) )
 
Theoremdmdcanap2d 8865 Cancellation law for division and multiplication. (Contributed by Jim Kingdon, 8-Mar-2020.)
 |-  ( ph  ->  A  e.  CC )   &    |-  ( ph  ->  B  e.  CC )   &    |-  ( ph  ->  C  e.  CC )   &    |-  ( ph  ->  B #  0 )   &    |-  ( ph  ->  C #  0 )   =>    |-  ( ph  ->  (
 ( A  /  B )  x.  ( B  /  C ) )  =  ( A  /  C ) )
 
Theoremdivdivap1d 8866 Division into a fraction. (Contributed by Jim Kingdon, 8-Mar-2020.)
 |-  ( ph  ->  A  e.  CC )   &    |-  ( ph  ->  B  e.  CC )   &    |-  ( ph  ->  C  e.  CC )   &    |-  ( ph  ->  B #  0 )   &    |-  ( ph  ->  C #  0 )   =>    |-  ( ph  ->  (
 ( A  /  B )  /  C )  =  ( A  /  ( B  x.  C ) ) )
 
Theoremdivdivap2d 8867 Division by a fraction. (Contributed by Jim Kingdon, 8-Mar-2020.)
 |-  ( ph  ->  A  e.  CC )   &    |-  ( ph  ->  B  e.  CC )   &    |-  ( ph  ->  C  e.  CC )   &    |-  ( ph  ->  B #  0 )   &    |-  ( ph  ->  C #  0 )   =>    |-  ( ph  ->  ( A  /  ( B  /  C ) )  =  ( ( A  x.  C )  /  B ) )
 
Theoremdivmulap2d 8868 Relationship between division and multiplication. (Contributed by Jim Kingdon, 2-Mar-2020.)
 |-  ( ph  ->  A  e.  CC )   &    |-  ( ph  ->  B  e.  CC )   &    |-  ( ph  ->  C  e.  CC )   &    |-  ( ph  ->  C #  0 )   =>    |-  ( ph  ->  (
 ( A  /  C )  =  B  <->  A  =  ( C  x.  B ) ) )
 
Theoremdivmulap3d 8869 Relationship between division and multiplication. (Contributed by Jim Kingdon, 2-Mar-2020.)
 |-  ( ph  ->  A  e.  CC )   &    |-  ( ph  ->  B  e.  CC )   &    |-  ( ph  ->  C  e.  CC )   &    |-  ( ph  ->  C #  0 )   =>    |-  ( ph  ->  (
 ( A  /  C )  =  B  <->  A  =  ( B  x.  C ) ) )
 
Theoremdivassapd 8870 An associative law for division. (Contributed by Jim Kingdon, 2-Mar-2020.)
 |-  ( ph  ->  A  e.  CC )   &    |-  ( ph  ->  B  e.  CC )   &    |-  ( ph  ->  C  e.  CC )   &    |-  ( ph  ->  C #  0 )   =>    |-  ( ph  ->  (
 ( A  x.  B )  /  C )  =  ( A  x.  ( B  /  C ) ) )
 
Theoremdiv12apd 8871 A commutative/associative law for division. (Contributed by Jim Kingdon, 2-Mar-2020.)
 |-  ( ph  ->  A  e.  CC )   &    |-  ( ph  ->  B  e.  CC )   &    |-  ( ph  ->  C  e.  CC )   &    |-  ( ph  ->  C #  0 )   =>    |-  ( ph  ->  ( A  x.  ( B  /  C ) )  =  ( B  x.  ( A  /  C ) ) )
 
Theoremdiv23apd 8872 A commutative/associative law for division. (Contributed by Jim Kingdon, 2-Mar-2020.)
 |-  ( ph  ->  A  e.  CC )   &    |-  ( ph  ->  B  e.  CC )   &    |-  ( ph  ->  C  e.  CC )   &    |-  ( ph  ->  C #  0 )   =>    |-  ( ph  ->  (
 ( A  x.  B )  /  C )  =  ( ( A  /  C )  x.  B ) )
 
Theoremdivdirapd 8873 Distribution of division over addition. (Contributed by Jim Kingdon, 2-Mar-2020.)
 |-  ( ph  ->  A  e.  CC )   &    |-  ( ph  ->  B  e.  CC )   &    |-  ( ph  ->  C  e.  CC )   &    |-  ( ph  ->  C #  0 )   =>    |-  ( ph  ->  (
 ( A  +  B )  /  C )  =  ( ( A  /  C )  +  ( B  /  C ) ) )
 
Theoremdivsubdirapd 8874 Distribution of division over subtraction. (Contributed by Jim Kingdon, 2-Mar-2020.)
 |-  ( ph  ->  A  e.  CC )   &    |-  ( ph  ->  B  e.  CC )   &    |-  ( ph  ->  C  e.  CC )   &    |-  ( ph  ->  C #  0 )   =>    |-  ( ph  ->  (
 ( A  -  B )  /  C )  =  ( ( A  /  C )  -  ( B  /  C ) ) )
 
Theoremdiv11apd 8875 One-to-one relationship for division. (Contributed by Jim Kingdon, 2-Mar-2020.)
 |-  ( ph  ->  A  e.  CC )   &    |-  ( ph  ->  B  e.  CC )   &    |-  ( ph  ->  C  e.  CC )   &    |-  ( ph  ->  C #  0 )   &    |-  ( ph  ->  ( A  /  C )  =  ( B  /  C ) )   =>    |-  ( ph  ->  A  =  B )
 
Theoremdivmuldivapd 8876 Multiplication of two ratios. (Contributed by Jim Kingdon, 30-Jul-2021.)
 |-  ( ph  ->  A  e.  CC )   &    |-  ( ph  ->  B  e.  CC )   &    |-  ( ph  ->  C  e.  CC )   &    |-  ( ph  ->  D  e.  CC )   &    |-  ( ph  ->  B #  0 )   &    |-  ( ph  ->  D #  0 )   =>    |-  ( ph  ->  (
 ( A  /  B )  x.  ( C  /  D ) )  =  ( ( A  x.  C )  /  ( B  x.  D ) ) )
 
Theoremdivmuleqapd 8877 Cross-multiply in an equality of ratios. (Contributed by Mario Carneiro, 27-May-2016.)
 |-  ( ph  ->  A  e.  CC )   &    |-  ( ph  ->  B  e.  CC )   &    |-  ( ph  ->  C  e.  CC )   &    |-  ( ph  ->  D  e.  CC )   &    |-  ( ph  ->  B #  0 )   &    |-  ( ph  ->  D #  0 )   =>    |-  ( ph  ->  (
 ( A  /  B )  =  ( C  /  D )  <->  ( A  x.  D )  =  ( C  x.  B ) ) )
 
Theoremrerecclapd 8878 Closure law for reciprocal. (Contributed by Jim Kingdon, 29-Feb-2020.)
 |-  ( ph  ->  A  e.  RR )   &    |-  ( ph  ->  A #  0 )   =>    |-  ( ph  ->  (
 1  /  A )  e.  RR )
 
Theoremredivclapd 8879 Closure law for division of reals. (Contributed by Jim Kingdon, 29-Feb-2020.)
 |-  ( ph  ->  A  e.  RR )   &    |-  ( ph  ->  B  e.  RR )   &    |-  ( ph  ->  B #  0 )   =>    |-  ( ph  ->  ( A  /  B )  e.  RR )
 
Theoremdiveqap1bd 8880 If two complex numbers are equal, their quotient is one. One-way deduction form of diveqap1 8749. Converse of diveqap1d 8842. (Contributed by David Moews, 28-Feb-2017.) (Revised by Jim Kingdon, 2-Aug-2023.)
 |-  ( ph  ->  B  e.  CC )   &    |-  ( ph  ->  B #  0 )   &    |-  ( ph  ->  A  =  B )   =>    |-  ( ph  ->  ( A  /  B )  =  1 )
 
Theoremdiv2subap 8881 Swap the order of subtraction in a division. (Contributed by Scott Fenton, 24-Jun-2013.)
 |-  ( ( ( A  e.  CC  /\  B  e.  CC )  /\  ( C  e.  CC  /\  D  e.  CC  /\  C #  D ) )  ->  ( ( A  -  B ) 
 /  ( C  -  D ) )  =  ( ( B  -  A )  /  ( D  -  C ) ) )
 
Theoremdiv2subapd 8882 Swap subtrahend and minuend inside the numerator and denominator of a fraction. Deduction form of div2subap 8881. (Contributed by David Moews, 28-Feb-2017.)
 |-  ( ph  ->  A  e.  CC )   &    |-  ( ph  ->  B  e.  CC )   &    |-  ( ph  ->  C  e.  CC )   &    |-  ( ph  ->  D  e.  CC )   &    |-  ( ph  ->  C #  D )   =>    |-  ( ph  ->  (
 ( A  -  B )  /  ( C  -  D ) )  =  ( ( B  -  A )  /  ( D  -  C ) ) )
 
Theoremsubrecap 8883 Subtraction of reciprocals. (Contributed by Scott Fenton, 9-Jul-2015.)
 |-  ( ( ( A  e.  CC  /\  A #  0 )  /\  ( B  e.  CC  /\  B #  0 ) )  ->  ( ( 1  /  A )  -  (
 1  /  B )
 )  =  ( ( B  -  A ) 
 /  ( A  x.  B ) ) )
 
Theoremsubrecapi 8884 Subtraction of reciprocals. (Contributed by Scott Fenton, 9-Jan-2017.)
 |-  A  e.  CC   &    |-  B  e.  CC   &    |-  A #  0   &    |-  B #  0   =>    |-  ( ( 1  /  A )  -  (
 1  /  B )
 )  =  ( ( B  -  A ) 
 /  ( A  x.  B ) )
 
Theoremsubrecapd 8885 Subtraction of reciprocals. (Contributed by Scott Fenton, 9-Jan-2017.)
 |-  ( ph  ->  A  e.  CC )   &    |-  ( ph  ->  B  e.  CC )   &    |-  ( ph  ->  A #  0 )   &    |-  ( ph  ->  B #  0 )   =>    |-  ( ph  ->  ( ( 1 
 /  A )  -  ( 1  /  B ) )  =  (
 ( B  -  A )  /  ( A  x.  B ) ) )
 
Theoremmvllmulapd 8886 Move LHS left multiplication to RHS. (Contributed by Jim Kingdon, 10-Jun-2020.)
 |-  ( ph  ->  A  e.  CC )   &    |-  ( ph  ->  B  e.  CC )   &    |-  ( ph  ->  A #  0 )   &    |-  ( ph  ->  ( A  x.  B )  =  C )   =>    |-  ( ph  ->  B  =  ( C  /  A ) )
 
Theoremrerecapb 8887* A real number has a multiplicative inverse if and only if it is apart from zero. Theorem 11.2.4 of [HoTT], p. (varies). (Contributed by Jim Kingdon, 18-Jan-2025.)
 |-  ( A  e.  RR  ->  ( A #  0  <->  E. x  e.  RR  ( A  x.  x )  =  1 )
 )
 
4.3.9  Ordering on reals (cont.)
 
Theoremltp1 8888 A number is less than itself plus 1. (Contributed by NM, 20-Aug-2001.)
 |-  ( A  e.  RR  ->  A  <  ( A  +  1 ) )
 
Theoremlep1 8889 A number is less than or equal to itself plus 1. (Contributed by NM, 5-Jan-2006.)
 |-  ( A  e.  RR  ->  A  <_  ( A  +  1 ) )
 
Theoremltm1 8890 A number minus 1 is less than itself. (Contributed by NM, 9-Apr-2006.)
 |-  ( A  e.  RR  ->  ( A  -  1
 )  <  A )
 
Theoremlem1 8891 A number minus 1 is less than or equal to itself. (Contributed by Mario Carneiro, 2-Oct-2015.)
 |-  ( A  e.  RR  ->  ( A  -  1
 )  <_  A )
 
Theoremletrp1 8892 A transitive property of 'less than or equal' and plus 1. (Contributed by NM, 5-Aug-2005.)
 |-  ( ( A  e.  RR  /\  B  e.  RR  /\  A  <_  B )  ->  A  <_  ( B  +  1 ) )
 
Theoremp1le 8893 A transitive property of plus 1 and 'less than or equal'. (Contributed by NM, 16-Aug-2005.)
 |-  ( ( A  e.  RR  /\  B  e.  RR  /\  ( A  +  1 )  <_  B )  ->  A  <_  B )
 
Theoremrecgt0 8894 The reciprocal of a positive number is positive. Exercise 4 of [Apostol] p. 21. (Contributed by NM, 25-Aug-1999.) (Revised by Mario Carneiro, 27-May-2016.)
 |-  ( ( A  e.  RR  /\  0  <  A )  ->  0  <  (
 1  /  A )
 )
 
Theoremprodgt0gt0 8895 Infer that a multiplicand is positive from a positive multiplier and positive product. See prodgt0 8896 for the same theorem with  0  < 
A replaced by the weaker condition 
0  <_  A. (Contributed by Jim Kingdon, 29-Feb-2020.)
 |-  ( ( ( A  e.  RR  /\  B  e.  RR )  /\  (
 0  <  A  /\  0  <  ( A  x.  B ) ) ) 
 ->  0  <  B )
 
Theoremprodgt0 8896 Infer that a multiplicand is positive from a nonnegative multiplier and positive product. (Contributed by NM, 24-Apr-2005.) (Revised by Mario Carneiro, 27-May-2016.)
 |-  ( ( ( A  e.  RR  /\  B  e.  RR )  /\  (
 0  <_  A  /\  0  <  ( A  x.  B ) ) ) 
 ->  0  <  B )
 
Theoremprodgt02 8897 Infer that a multiplier is positive from a nonnegative multiplicand and positive product. (Contributed by NM, 24-Apr-2005.)
 |-  ( ( ( A  e.  RR  /\  B  e.  RR )  /\  (
 0  <_  B  /\  0  <  ( A  x.  B ) ) ) 
 ->  0  <  A )
 
Theoremprodge0 8898 Infer that a multiplicand is nonnegative from a positive multiplier and nonnegative product. (Contributed by NM, 2-Jul-2005.) (Revised by Mario Carneiro, 27-May-2016.)
 |-  ( ( ( A  e.  RR  /\  B  e.  RR )  /\  (
 0  <  A  /\  0  <_  ( A  x.  B ) ) ) 
 ->  0  <_  B )
 
Theoremprodge02 8899 Infer that a multiplier is nonnegative from a positive multiplicand and nonnegative product. (Contributed by NM, 2-Jul-2005.)
 |-  ( ( ( A  e.  RR  /\  B  e.  RR )  /\  (
 0  <  B  /\  0  <_  ( A  x.  B ) ) ) 
 ->  0  <_  A )
 
Theoremltmul2 8900 Multiplication of both sides of 'less than' by a positive number. Theorem I.19 of [Apostol] p. 20. (Contributed by NM, 13-Feb-2005.)
 |-  ( ( A  e.  RR  /\  B  e.  RR  /\  ( C  e.  RR  /\  0  <  C ) )  ->  ( A  <  B  <->  ( C  x.  A )  <  ( C  x.  B ) ) )
    < Previous  Next >

Page List
Jump to page: Contents  1 1-100 2 101-200 3 201-300 4 301-400 5 401-500 6 501-600 7 601-700 8 701-800 9 801-900 10 901-1000 11 1001-1100 12 1101-1200 13 1201-1300 14 1301-1400 15 1401-1500 16 1501-1600 17 1601-1700 18 1701-1800 19 1801-1900 20 1901-2000 21 2001-2100 22 2101-2200 23 2201-2300 24 2301-2400 25 2401-2500 26 2501-2600 27 2601-2700 28 2701-2800 29 2801-2900 30 2901-3000 31 3001-3100 32 3101-3200 33 3201-3300 34 3301-3400 35 3401-3500 36 3501-3600 37 3601-3700 38 3701-3800 39 3801-3900 40 3901-4000 41 4001-4100 42 4101-4200 43 4201-4300 44 4301-4400 45 4401-4500 46 4501-4600 47 4601-4700 48 4701-4800 49 4801-4900 50 4901-5000 51 5001-5100 52 5101-5200 53 5201-5300 54 5301-5400 55 5401-5500 56 5501-5600 57 5601-5700 58 5701-5800 59 5801-5900 60 5901-6000 61 6001-6100 62 6101-6200 63 6201-6300 64 6301-6400 65 6401-6500 66 6501-6600 67 6601-6700 68 6701-6800 69 6801-6900 70 6901-7000 71 7001-7100 72 7101-7200 73 7201-7300 74 7301-7400 75 7401-7500 76 7501-7600 77 7601-7700 78 7701-7800 79 7801-7900 80 7901-8000 81 8001-8100 82 8101-8200 83 8201-8300 84 8301-8400 85 8401-8500 86 8501-8600 87 8601-8700 88 8701-8800 89 8801-8900 90 8901-9000 91 9001-9100 92 9101-9200 93 9201-9300 94 9301-9400 95 9401-9500 96 9501-9600 97 9601-9700 98 9701-9800 99 9801-9900 100 9901-10000 101 10001-10100 102 10101-10200 103 10201-10300 104 10301-10400 105 10401-10500 106 10501-10600 107 10601-10700 108 10701-10800 109 10801-10900 110 10901-11000 111 11001-11100 112 11101-11200 113 11201-11300 114 11301-11400 115 11401-11500 116 11501-11600 117 11601-11700 118 11701-11800 119 11801-11900 120 11901-12000 121 12001-12100 122 12101-12200 123 12201-12300 124 12301-12400 125 12401-12500 126 12501-12600 127 12601-12700 128 12701-12800 129 12801-12900 130 12901-13000 131 13001-13100 132 13101-13200 133 13201-13300 134 13301-13400 135 13401-13500 136 13501-13600 137 13601-13700 138 13701-13800 139 13801-13900 140 13901-14000 141 14001-14100 142 14101-14200 143 14201-14300 144 14301-14400 145 14401-14500 146 14501-14600 147 14601-14700 148 14701-14800 149 14801-14900 150 14901-15000 151 15001-15100 152 15101-15200 153 15201-15300 154 15301-15400 155 15401-15500 156 15501-15600 157 15601-15700 158 15701-15800 159 15801-15815
  Copyright terms: Public domain < Previous  Next >