ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  lenltd Unicode version

Theorem lenltd 8037
Description: 'Less than or equal to' in terms of 'less than'. (Contributed by Mario Carneiro, 27-May-2016.)
Hypotheses
Ref Expression
ltd.1  |-  ( ph  ->  A  e.  RR )
ltd.2  |-  ( ph  ->  B  e.  RR )
Assertion
Ref Expression
lenltd  |-  ( ph  ->  ( A  <_  B  <->  -.  B  <  A ) )

Proof of Theorem lenltd
StepHypRef Expression
1 ltd.1 . 2  |-  ( ph  ->  A  e.  RR )
2 ltd.2 . 2  |-  ( ph  ->  B  e.  RR )
3 lenlt 7995 . 2  |-  ( ( A  e.  RR  /\  B  e.  RR )  ->  ( A  <_  B  <->  -.  B  <  A ) )
41, 2, 3syl2anc 409 1  |-  ( ph  ->  ( A  <_  B  <->  -.  B  <  A ) )
Colors of variables: wff set class
Syntax hints:   -. wn 3    -> wi 4    <-> wb 104    e. wcel 2141   class class class wbr 3989   RRcr 7773    < clt 7954    <_ cle 7955
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-in1 609  ax-in2 610  ax-io 704  ax-5 1440  ax-7 1441  ax-gen 1442  ax-ie1 1486  ax-ie2 1487  ax-8 1497  ax-10 1498  ax-11 1499  ax-i12 1500  ax-bndl 1502  ax-4 1503  ax-17 1519  ax-i9 1523  ax-ial 1527  ax-i5r 1528  ax-14 2144  ax-ext 2152  ax-sep 4107  ax-pow 4160  ax-pr 4194
This theorem depends on definitions:  df-bi 116  df-3an 975  df-tru 1351  df-nf 1454  df-sb 1756  df-eu 2022  df-mo 2023  df-clab 2157  df-cleq 2163  df-clel 2166  df-nfc 2301  df-ral 2453  df-rex 2454  df-v 2732  df-dif 3123  df-un 3125  df-in 3127  df-ss 3134  df-pw 3568  df-sn 3589  df-pr 3590  df-op 3592  df-br 3990  df-opab 4051  df-xp 4617  df-cnv 4619  df-xr 7958  df-le 7960
This theorem is referenced by:  ltnsymd  8039  nltled  8040  lensymd  8041  leadd1  8349  lemul1  8512  leltap  8544  ap0gt0  8559  prodgt0  8768  prodge0  8770  lediv1  8785  lemuldiv  8797  lerec  8800  lt2msq  8802  le2msq  8817  squeeze0  8820  suprleubex  8870  0mnnnnn0  9167  elnn0z  9225  uzm1  9517  infregelbex  9557  fztri3or  9995  fzdisj  10008  uzdisj  10049  nn0disj  10094  fzouzdisj  10136  elfzonelfzo  10186  flqeqceilz  10274  modifeq2int  10342  modsumfzodifsn  10352  nn0leexp2  10645  expcanlem  10649  fimaxq  10762  resqrexlemoverl  10985  leabs  11038  absle  11053  maxleast  11177  minmax  11193  climge0  11288  pcfac  12302  cxple  13631
  Copyright terms: Public domain W3C validator