| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > lenltd | Unicode version | ||
| Description: 'Less than or equal to' in terms of 'less than'. (Contributed by Mario Carneiro, 27-May-2016.) |
| Ref | Expression |
|---|---|
| ltd.1 |
|
| ltd.2 |
|
| Ref | Expression |
|---|---|
| lenltd |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ltd.1 |
. 2
| |
| 2 | ltd.2 |
. 2
| |
| 3 | lenlt 8102 |
. 2
| |
| 4 | 1, 2, 3 | syl2anc 411 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 615 ax-in2 616 ax-io 710 ax-5 1461 ax-7 1462 ax-gen 1463 ax-ie1 1507 ax-ie2 1508 ax-8 1518 ax-10 1519 ax-11 1520 ax-i12 1521 ax-bndl 1523 ax-4 1524 ax-17 1540 ax-i9 1544 ax-ial 1548 ax-i5r 1549 ax-14 2170 ax-ext 2178 ax-sep 4151 ax-pow 4207 ax-pr 4242 |
| This theorem depends on definitions: df-bi 117 df-3an 982 df-tru 1367 df-nf 1475 df-sb 1777 df-eu 2048 df-mo 2049 df-clab 2183 df-cleq 2189 df-clel 2192 df-nfc 2328 df-ral 2480 df-rex 2481 df-v 2765 df-dif 3159 df-un 3161 df-in 3163 df-ss 3170 df-pw 3607 df-sn 3628 df-pr 3629 df-op 3631 df-br 4034 df-opab 4095 df-xp 4669 df-cnv 4671 df-xr 8065 df-le 8067 |
| This theorem is referenced by: ltnsymd 8146 nltled 8147 lensymd 8148 leadd1 8457 lemul1 8620 leltap 8652 ap0gt0 8667 prodgt0 8879 prodge0 8881 lediv1 8896 lemuldiv 8908 lerec 8911 lt2msq 8913 le2msq 8928 squeeze0 8931 suprleubex 8981 0mnnnnn0 9281 elnn0z 9339 uzm1 9632 infregelbex 9672 fztri3or 10114 fzdisj 10127 uzdisj 10168 nn0disj 10213 fzouzdisj 10256 elfzonelfzo 10306 qdcle 10336 flqeqceilz 10410 modifeq2int 10478 modsumfzodifsn 10488 nn0leexp2 10802 expcanlem 10807 fimaxq 10919 resqrexlemoverl 11186 leabs 11239 absle 11254 maxleast 11378 minmax 11395 climge0 11490 pcfac 12519 gsumfzz 13127 cxple 15153 gausslemma2dlem1a 15299 |
| Copyright terms: Public domain | W3C validator |