Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > lenltd | Unicode version |
Description: 'Less than or equal to' in terms of 'less than'. (Contributed by Mario Carneiro, 27-May-2016.) |
Ref | Expression |
---|---|
ltd.1 | |
ltd.2 |
Ref | Expression |
---|---|
lenltd |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | ltd.1 | . 2 | |
2 | ltd.2 | . 2 | |
3 | lenlt 7970 | . 2 | |
4 | 1, 2, 3 | syl2anc 409 | 1 |
Colors of variables: wff set class |
Syntax hints: wn 3 wi 4 wb 104 wcel 2136 class class class wbr 3981 cr 7748 clt 7929 cle 7930 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-in1 604 ax-in2 605 ax-io 699 ax-5 1435 ax-7 1436 ax-gen 1437 ax-ie1 1481 ax-ie2 1482 ax-8 1492 ax-10 1493 ax-11 1494 ax-i12 1495 ax-bndl 1497 ax-4 1498 ax-17 1514 ax-i9 1518 ax-ial 1522 ax-i5r 1523 ax-14 2139 ax-ext 2147 ax-sep 4099 ax-pow 4152 ax-pr 4186 |
This theorem depends on definitions: df-bi 116 df-3an 970 df-tru 1346 df-nf 1449 df-sb 1751 df-eu 2017 df-mo 2018 df-clab 2152 df-cleq 2158 df-clel 2161 df-nfc 2296 df-ral 2448 df-rex 2449 df-v 2727 df-dif 3117 df-un 3119 df-in 3121 df-ss 3128 df-pw 3560 df-sn 3581 df-pr 3582 df-op 3584 df-br 3982 df-opab 4043 df-xp 4609 df-cnv 4611 df-xr 7933 df-le 7935 |
This theorem is referenced by: ltnsymd 8014 nltled 8015 lensymd 8016 leadd1 8324 lemul1 8487 leltap 8519 ap0gt0 8534 prodgt0 8743 prodge0 8745 lediv1 8760 lemuldiv 8772 lerec 8775 lt2msq 8777 le2msq 8792 squeeze0 8795 suprleubex 8845 0mnnnnn0 9142 elnn0z 9200 uzm1 9492 infregelbex 9532 fztri3or 9970 fzdisj 9983 uzdisj 10024 nn0disj 10069 fzouzdisj 10111 elfzonelfzo 10161 flqeqceilz 10249 modifeq2int 10317 modsumfzodifsn 10327 nn0leexp2 10620 expcanlem 10624 fimaxq 10736 resqrexlemoverl 10959 leabs 11012 absle 11027 maxleast 11151 minmax 11167 climge0 11262 pcfac 12276 cxple 13437 |
Copyright terms: Public domain | W3C validator |