| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > lenltd | Unicode version | ||
| Description: 'Less than or equal to' in terms of 'less than'. (Contributed by Mario Carneiro, 27-May-2016.) |
| Ref | Expression |
|---|---|
| ltd.1 |
|
| ltd.2 |
|
| Ref | Expression |
|---|---|
| lenltd |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ltd.1 |
. 2
| |
| 2 | ltd.2 |
. 2
| |
| 3 | lenlt 8105 |
. 2
| |
| 4 | 1, 2, 3 | syl2anc 411 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 615 ax-in2 616 ax-io 710 ax-5 1461 ax-7 1462 ax-gen 1463 ax-ie1 1507 ax-ie2 1508 ax-8 1518 ax-10 1519 ax-11 1520 ax-i12 1521 ax-bndl 1523 ax-4 1524 ax-17 1540 ax-i9 1544 ax-ial 1548 ax-i5r 1549 ax-14 2170 ax-ext 2178 ax-sep 4152 ax-pow 4208 ax-pr 4243 |
| This theorem depends on definitions: df-bi 117 df-3an 982 df-tru 1367 df-nf 1475 df-sb 1777 df-eu 2048 df-mo 2049 df-clab 2183 df-cleq 2189 df-clel 2192 df-nfc 2328 df-ral 2480 df-rex 2481 df-v 2765 df-dif 3159 df-un 3161 df-in 3163 df-ss 3170 df-pw 3608 df-sn 3629 df-pr 3630 df-op 3632 df-br 4035 df-opab 4096 df-xp 4670 df-cnv 4672 df-xr 8068 df-le 8070 |
| This theorem is referenced by: ltnsymd 8149 nltled 8150 lensymd 8151 leadd1 8460 lemul1 8623 leltap 8655 ap0gt0 8670 prodgt0 8882 prodge0 8884 lediv1 8899 lemuldiv 8911 lerec 8914 lt2msq 8916 le2msq 8931 squeeze0 8934 suprleubex 8984 0mnnnnn0 9284 elnn0z 9342 uzm1 9635 infregelbex 9675 fztri3or 10117 fzdisj 10130 uzdisj 10171 nn0disj 10216 fzouzdisj 10259 elfzonelfzo 10309 qdcle 10339 flqeqceilz 10413 modifeq2int 10481 modsumfzodifsn 10491 nn0leexp2 10805 expcanlem 10810 fimaxq 10922 resqrexlemoverl 11189 leabs 11242 absle 11257 maxleast 11381 minmax 11398 climge0 11493 pcfac 12530 gsumfzz 13153 cxple 15179 gausslemma2dlem1a 15325 |
| Copyright terms: Public domain | W3C validator |