![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > lenltd | Unicode version |
Description: 'Less than or equal to' in terms of 'less than'. (Contributed by Mario Carneiro, 27-May-2016.) |
Ref | Expression |
---|---|
ltd.1 |
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
ltd.2 |
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
Ref | Expression |
---|---|
lenltd |
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | ltd.1 |
. 2
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() | |
2 | ltd.2 |
. 2
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() | |
3 | lenlt 7561 |
. 2
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() | |
4 | 1, 2, 3 | syl2anc 403 |
1
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
Colors of variables: wff set class |
Syntax hints: ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
This theorem was proved from axioms: ax-1 5 ax-2 6 ax-mp 7 ax-ia1 104 ax-ia2 105 ax-ia3 106 ax-in1 579 ax-in2 580 ax-io 665 ax-5 1381 ax-7 1382 ax-gen 1383 ax-ie1 1427 ax-ie2 1428 ax-8 1440 ax-10 1441 ax-11 1442 ax-i12 1443 ax-bndl 1444 ax-4 1445 ax-14 1450 ax-17 1464 ax-i9 1468 ax-ial 1472 ax-i5r 1473 ax-ext 2070 ax-sep 3957 ax-pow 4009 ax-pr 4036 |
This theorem depends on definitions: df-bi 115 df-3an 926 df-tru 1292 df-nf 1395 df-sb 1693 df-eu 1951 df-mo 1952 df-clab 2075 df-cleq 2081 df-clel 2084 df-nfc 2217 df-ral 2364 df-rex 2365 df-v 2621 df-dif 3001 df-un 3003 df-in 3005 df-ss 3012 df-pw 3431 df-sn 3452 df-pr 3453 df-op 3455 df-br 3846 df-opab 3900 df-xp 4444 df-cnv 4446 df-xr 7526 df-le 7528 |
This theorem is referenced by: ltnsymd 7603 nltled 7604 lensymd 7605 leadd1 7908 lemul1 8070 leltap 8101 ap0gt0 8115 prodgt0 8313 prodge0 8315 lediv1 8330 lemuldiv 8342 lerec 8345 lt2msq 8347 le2msq 8362 squeeze0 8365 suprleubex 8415 0mnnnnn0 8705 elnn0z 8763 uzm1 9049 fztri3or 9453 fzdisj 9466 uzdisj 9507 nn0disj 9549 fzouzdisj 9591 elfzonelfzo 9641 flqeqceilz 9725 modifeq2int 9793 modsumfzodifsn 9803 expcanlem 10124 fimaxq 10235 resqrexlemoverl 10454 leabs 10507 absle 10522 maxleast 10646 minmax 10661 climge0 10713 efler 10989 |
Copyright terms: Public domain | W3C validator |