| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > lenltd | Unicode version | ||
| Description: 'Less than or equal to' in terms of 'less than'. (Contributed by Mario Carneiro, 27-May-2016.) |
| Ref | Expression |
|---|---|
| ltd.1 |
|
| ltd.2 |
|
| Ref | Expression |
|---|---|
| lenltd |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ltd.1 |
. 2
| |
| 2 | ltd.2 |
. 2
| |
| 3 | lenlt 8150 |
. 2
| |
| 4 | 1, 2, 3 | syl2anc 411 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 615 ax-in2 616 ax-io 711 ax-5 1470 ax-7 1471 ax-gen 1472 ax-ie1 1516 ax-ie2 1517 ax-8 1527 ax-10 1528 ax-11 1529 ax-i12 1530 ax-bndl 1532 ax-4 1533 ax-17 1549 ax-i9 1553 ax-ial 1557 ax-i5r 1558 ax-14 2179 ax-ext 2187 ax-sep 4163 ax-pow 4219 ax-pr 4254 |
| This theorem depends on definitions: df-bi 117 df-3an 983 df-tru 1376 df-nf 1484 df-sb 1786 df-eu 2057 df-mo 2058 df-clab 2192 df-cleq 2198 df-clel 2201 df-nfc 2337 df-ral 2489 df-rex 2490 df-v 2774 df-dif 3168 df-un 3170 df-in 3172 df-ss 3179 df-pw 3618 df-sn 3639 df-pr 3640 df-op 3642 df-br 4046 df-opab 4107 df-xp 4682 df-cnv 4684 df-xr 8113 df-le 8115 |
| This theorem is referenced by: ltnsymd 8194 nltled 8195 lensymd 8196 leadd1 8505 lemul1 8668 leltap 8700 ap0gt0 8715 prodgt0 8927 prodge0 8929 lediv1 8944 lemuldiv 8956 lerec 8959 lt2msq 8961 le2msq 8976 squeeze0 8979 suprleubex 9029 0mnnnnn0 9329 elnn0z 9387 uzm1 9681 infregelbex 9721 fztri3or 10163 fzdisj 10176 uzdisj 10217 nn0disj 10262 fzouzdisj 10306 elfzonelfzo 10361 qdcle 10391 flqeqceilz 10465 modifeq2int 10533 modsumfzodifsn 10543 nn0leexp2 10857 expcanlem 10862 fimaxq 10974 resqrexlemoverl 11365 leabs 11418 absle 11433 maxleast 11557 minmax 11574 climge0 11669 pcfac 12706 gsumfzz 13360 cxple 15422 gausslemma2dlem1a 15568 |
| Copyright terms: Public domain | W3C validator |