| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > lenltd | Unicode version | ||
| Description: 'Less than or equal to' in terms of 'less than'. (Contributed by Mario Carneiro, 27-May-2016.) |
| Ref | Expression |
|---|---|
| ltd.1 |
|
| ltd.2 |
|
| Ref | Expression |
|---|---|
| lenltd |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ltd.1 |
. 2
| |
| 2 | ltd.2 |
. 2
| |
| 3 | lenlt 8222 |
. 2
| |
| 4 | 1, 2, 3 | syl2anc 411 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 617 ax-in2 618 ax-io 714 ax-5 1493 ax-7 1494 ax-gen 1495 ax-ie1 1539 ax-ie2 1540 ax-8 1550 ax-10 1551 ax-11 1552 ax-i12 1553 ax-bndl 1555 ax-4 1556 ax-17 1572 ax-i9 1576 ax-ial 1580 ax-i5r 1581 ax-14 2203 ax-ext 2211 ax-sep 4202 ax-pow 4258 ax-pr 4293 |
| This theorem depends on definitions: df-bi 117 df-3an 1004 df-tru 1398 df-nf 1507 df-sb 1809 df-eu 2080 df-mo 2081 df-clab 2216 df-cleq 2222 df-clel 2225 df-nfc 2361 df-ral 2513 df-rex 2514 df-v 2801 df-dif 3199 df-un 3201 df-in 3203 df-ss 3210 df-pw 3651 df-sn 3672 df-pr 3673 df-op 3675 df-br 4084 df-opab 4146 df-xp 4725 df-cnv 4727 df-xr 8185 df-le 8187 |
| This theorem is referenced by: ltnsymd 8266 nltled 8267 lensymd 8268 leadd1 8577 lemul1 8740 leltap 8772 ap0gt0 8787 prodgt0 8999 prodge0 9001 lediv1 9016 lemuldiv 9028 lerec 9031 lt2msq 9033 le2msq 9048 squeeze0 9051 suprleubex 9101 0mnnnnn0 9401 elnn0z 9459 uzm1 9753 infregelbex 9793 fztri3or 10235 fzdisj 10248 uzdisj 10289 nn0disj 10334 fzouzdisj 10378 elfzonelfzo 10436 qdcle 10466 flqeqceilz 10540 modifeq2int 10608 modsumfzodifsn 10618 nn0leexp2 10932 expcanlem 10937 fimaxq 11049 swrdccatin2 11261 resqrexlemoverl 11532 leabs 11585 absle 11600 maxleast 11724 minmax 11741 climge0 11836 pcfac 12873 gsumfzz 13528 cxple 15591 gausslemma2dlem1a 15737 |
| Copyright terms: Public domain | W3C validator |