ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  strndxid Unicode version

Theorem strndxid 12975
Description: The value of a structure component extractor is the value of the corresponding slot of the structure. (Contributed by AV, 13-Mar-2020.)
Hypotheses
Ref Expression
strndxid.s  |-  ( ph  ->  S  e.  V )
strndxid.e  |-  E  = Slot 
N
strndxid.n  |-  N  e.  NN
Assertion
Ref Expression
strndxid  |-  ( ph  ->  ( S `  ( E `  ndx ) )  =  ( E `  S ) )

Proof of Theorem strndxid
StepHypRef Expression
1 strndxid.e . . . 4  |-  E  = Slot 
N
2 strndxid.n . . . 4  |-  N  e.  NN
31, 2ndxid 12971 . . 3  |-  E  = Slot  ( E `  ndx )
4 strndxid.s . . 3  |-  ( ph  ->  S  e.  V )
51, 2ndxarg 12970 . . . . 5  |-  ( E `
 ndx )  =  N
65, 2eqeltri 2280 . . . 4  |-  ( E `
 ndx )  e.  NN
76a1i 9 . . 3  |-  ( ph  ->  ( E `  ndx )  e.  NN )
83, 4, 7strnfvnd 12967 . 2  |-  ( ph  ->  ( E `  S
)  =  ( S `
 ( E `  ndx ) ) )
98eqcomd 2213 1  |-  ( ph  ->  ( S `  ( E `  ndx ) )  =  ( E `  S ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    = wceq 1373    e. wcel 2178   ` cfv 5290   NNcn 9071   ndxcnx 12944  Slot cslot 12946
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 711  ax-5 1471  ax-7 1472  ax-gen 1473  ax-ie1 1517  ax-ie2 1518  ax-8 1528  ax-10 1529  ax-11 1530  ax-i12 1531  ax-bndl 1533  ax-4 1534  ax-17 1550  ax-i9 1554  ax-ial 1558  ax-i5r 1559  ax-13 2180  ax-14 2181  ax-ext 2189  ax-sep 4178  ax-pow 4234  ax-pr 4269  ax-un 4498  ax-cnex 8051  ax-resscn 8052  ax-1re 8054  ax-addrcl 8057
This theorem depends on definitions:  df-bi 117  df-3an 983  df-tru 1376  df-nf 1485  df-sb 1787  df-eu 2058  df-mo 2059  df-clab 2194  df-cleq 2200  df-clel 2203  df-nfc 2339  df-ral 2491  df-rex 2492  df-v 2778  df-sbc 3006  df-un 3178  df-in 3180  df-ss 3187  df-pw 3628  df-sn 3649  df-pr 3650  df-op 3652  df-uni 3865  df-int 3900  df-br 4060  df-opab 4122  df-mpt 4123  df-id 4358  df-xp 4699  df-rel 4700  df-cnv 4701  df-co 4702  df-dm 4703  df-rn 4704  df-res 4705  df-iota 5251  df-fun 5292  df-fv 5298  df-inn 9072  df-ndx 12950  df-slot 12951
This theorem is referenced by:  imasbas  13254  imasplusg  13255  imasmulr  13256
  Copyright terms: Public domain W3C validator