ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  strndxid Unicode version

Theorem strndxid 13060
Description: The value of a structure component extractor is the value of the corresponding slot of the structure. (Contributed by AV, 13-Mar-2020.)
Hypotheses
Ref Expression
strndxid.s  |-  ( ph  ->  S  e.  V )
strndxid.e  |-  E  = Slot 
N
strndxid.n  |-  N  e.  NN
Assertion
Ref Expression
strndxid  |-  ( ph  ->  ( S `  ( E `  ndx ) )  =  ( E `  S ) )

Proof of Theorem strndxid
StepHypRef Expression
1 strndxid.e . . . 4  |-  E  = Slot 
N
2 strndxid.n . . . 4  |-  N  e.  NN
31, 2ndxid 13056 . . 3  |-  E  = Slot  ( E `  ndx )
4 strndxid.s . . 3  |-  ( ph  ->  S  e.  V )
51, 2ndxarg 13055 . . . . 5  |-  ( E `
 ndx )  =  N
65, 2eqeltri 2302 . . . 4  |-  ( E `
 ndx )  e.  NN
76a1i 9 . . 3  |-  ( ph  ->  ( E `  ndx )  e.  NN )
83, 4, 7strnfvnd 13052 . 2  |-  ( ph  ->  ( E `  S
)  =  ( S `
 ( E `  ndx ) ) )
98eqcomd 2235 1  |-  ( ph  ->  ( S `  ( E `  ndx ) )  =  ( E `  S ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    = wceq 1395    e. wcel 2200   ` cfv 5318   NNcn 9110   ndxcnx 13029  Slot cslot 13031
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 714  ax-5 1493  ax-7 1494  ax-gen 1495  ax-ie1 1539  ax-ie2 1540  ax-8 1550  ax-10 1551  ax-11 1552  ax-i12 1553  ax-bndl 1555  ax-4 1556  ax-17 1572  ax-i9 1576  ax-ial 1580  ax-i5r 1581  ax-13 2202  ax-14 2203  ax-ext 2211  ax-sep 4202  ax-pow 4258  ax-pr 4293  ax-un 4524  ax-cnex 8090  ax-resscn 8091  ax-1re 8093  ax-addrcl 8096
This theorem depends on definitions:  df-bi 117  df-3an 1004  df-tru 1398  df-nf 1507  df-sb 1809  df-eu 2080  df-mo 2081  df-clab 2216  df-cleq 2222  df-clel 2225  df-nfc 2361  df-ral 2513  df-rex 2514  df-v 2801  df-sbc 3029  df-un 3201  df-in 3203  df-ss 3210  df-pw 3651  df-sn 3672  df-pr 3673  df-op 3675  df-uni 3889  df-int 3924  df-br 4084  df-opab 4146  df-mpt 4147  df-id 4384  df-xp 4725  df-rel 4726  df-cnv 4727  df-co 4728  df-dm 4729  df-rn 4730  df-res 4731  df-iota 5278  df-fun 5320  df-fv 5326  df-inn 9111  df-ndx 13035  df-slot 13036
This theorem is referenced by:  imasbas  13340  imasplusg  13341  imasmulr  13342
  Copyright terms: Public domain W3C validator