| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > strndxid | GIF version | ||
| Description: The value of a structure component extractor is the value of the corresponding slot of the structure. (Contributed by AV, 13-Mar-2020.) |
| Ref | Expression |
|---|---|
| strndxid.s | ⊢ (𝜑 → 𝑆 ∈ 𝑉) |
| strndxid.e | ⊢ 𝐸 = Slot 𝑁 |
| strndxid.n | ⊢ 𝑁 ∈ ℕ |
| Ref | Expression |
|---|---|
| strndxid | ⊢ (𝜑 → (𝑆‘(𝐸‘ndx)) = (𝐸‘𝑆)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | strndxid.e | . . . 4 ⊢ 𝐸 = Slot 𝑁 | |
| 2 | strndxid.n | . . . 4 ⊢ 𝑁 ∈ ℕ | |
| 3 | 1, 2 | ndxid 12775 | . . 3 ⊢ 𝐸 = Slot (𝐸‘ndx) |
| 4 | strndxid.s | . . 3 ⊢ (𝜑 → 𝑆 ∈ 𝑉) | |
| 5 | 1, 2 | ndxarg 12774 | . . . . 5 ⊢ (𝐸‘ndx) = 𝑁 |
| 6 | 5, 2 | eqeltri 2277 | . . . 4 ⊢ (𝐸‘ndx) ∈ ℕ |
| 7 | 6 | a1i 9 | . . 3 ⊢ (𝜑 → (𝐸‘ndx) ∈ ℕ) |
| 8 | 3, 4, 7 | strnfvnd 12771 | . 2 ⊢ (𝜑 → (𝐸‘𝑆) = (𝑆‘(𝐸‘ndx))) |
| 9 | 8 | eqcomd 2210 | 1 ⊢ (𝜑 → (𝑆‘(𝐸‘ndx)) = (𝐸‘𝑆)) |
| Colors of variables: wff set class |
| Syntax hints: → wi 4 = wceq 1372 ∈ wcel 2175 ‘cfv 5268 ℕcn 9018 ndxcnx 12748 Slot cslot 12750 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 710 ax-5 1469 ax-7 1470 ax-gen 1471 ax-ie1 1515 ax-ie2 1516 ax-8 1526 ax-10 1527 ax-11 1528 ax-i12 1529 ax-bndl 1531 ax-4 1532 ax-17 1548 ax-i9 1552 ax-ial 1556 ax-i5r 1557 ax-13 2177 ax-14 2178 ax-ext 2186 ax-sep 4161 ax-pow 4217 ax-pr 4252 ax-un 4478 ax-cnex 7998 ax-resscn 7999 ax-1re 8001 ax-addrcl 8004 |
| This theorem depends on definitions: df-bi 117 df-3an 982 df-tru 1375 df-nf 1483 df-sb 1785 df-eu 2056 df-mo 2057 df-clab 2191 df-cleq 2197 df-clel 2200 df-nfc 2336 df-ral 2488 df-rex 2489 df-v 2773 df-sbc 2998 df-un 3169 df-in 3171 df-ss 3178 df-pw 3617 df-sn 3638 df-pr 3639 df-op 3641 df-uni 3850 df-int 3885 df-br 4044 df-opab 4105 df-mpt 4106 df-id 4338 df-xp 4679 df-rel 4680 df-cnv 4681 df-co 4682 df-dm 4683 df-rn 4684 df-res 4685 df-iota 5229 df-fun 5270 df-fv 5276 df-inn 9019 df-ndx 12754 df-slot 12755 |
| This theorem is referenced by: imasbas 13057 imasplusg 13058 imasmulr 13059 |
| Copyright terms: Public domain | W3C validator |