| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > strndxid | GIF version | ||
| Description: The value of a structure component extractor is the value of the corresponding slot of the structure. (Contributed by AV, 13-Mar-2020.) |
| Ref | Expression |
|---|---|
| strndxid.s | ⊢ (𝜑 → 𝑆 ∈ 𝑉) |
| strndxid.e | ⊢ 𝐸 = Slot 𝑁 |
| strndxid.n | ⊢ 𝑁 ∈ ℕ |
| Ref | Expression |
|---|---|
| strndxid | ⊢ (𝜑 → (𝑆‘(𝐸‘ndx)) = (𝐸‘𝑆)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | strndxid.e | . . . 4 ⊢ 𝐸 = Slot 𝑁 | |
| 2 | strndxid.n | . . . 4 ⊢ 𝑁 ∈ ℕ | |
| 3 | 1, 2 | ndxid 12727 | . . 3 ⊢ 𝐸 = Slot (𝐸‘ndx) |
| 4 | strndxid.s | . . 3 ⊢ (𝜑 → 𝑆 ∈ 𝑉) | |
| 5 | 1, 2 | ndxarg 12726 | . . . . 5 ⊢ (𝐸‘ndx) = 𝑁 |
| 6 | 5, 2 | eqeltri 2269 | . . . 4 ⊢ (𝐸‘ndx) ∈ ℕ |
| 7 | 6 | a1i 9 | . . 3 ⊢ (𝜑 → (𝐸‘ndx) ∈ ℕ) |
| 8 | 3, 4, 7 | strnfvnd 12723 | . 2 ⊢ (𝜑 → (𝐸‘𝑆) = (𝑆‘(𝐸‘ndx))) |
| 9 | 8 | eqcomd 2202 | 1 ⊢ (𝜑 → (𝑆‘(𝐸‘ndx)) = (𝐸‘𝑆)) |
| Colors of variables: wff set class |
| Syntax hints: → wi 4 = wceq 1364 ∈ wcel 2167 ‘cfv 5259 ℕcn 9007 ndxcnx 12700 Slot cslot 12702 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 710 ax-5 1461 ax-7 1462 ax-gen 1463 ax-ie1 1507 ax-ie2 1508 ax-8 1518 ax-10 1519 ax-11 1520 ax-i12 1521 ax-bndl 1523 ax-4 1524 ax-17 1540 ax-i9 1544 ax-ial 1548 ax-i5r 1549 ax-13 2169 ax-14 2170 ax-ext 2178 ax-sep 4152 ax-pow 4208 ax-pr 4243 ax-un 4469 ax-cnex 7987 ax-resscn 7988 ax-1re 7990 ax-addrcl 7993 |
| This theorem depends on definitions: df-bi 117 df-3an 982 df-tru 1367 df-nf 1475 df-sb 1777 df-eu 2048 df-mo 2049 df-clab 2183 df-cleq 2189 df-clel 2192 df-nfc 2328 df-ral 2480 df-rex 2481 df-v 2765 df-sbc 2990 df-un 3161 df-in 3163 df-ss 3170 df-pw 3608 df-sn 3629 df-pr 3630 df-op 3632 df-uni 3841 df-int 3876 df-br 4035 df-opab 4096 df-mpt 4097 df-id 4329 df-xp 4670 df-rel 4671 df-cnv 4672 df-co 4673 df-dm 4674 df-rn 4675 df-res 4676 df-iota 5220 df-fun 5261 df-fv 5267 df-inn 9008 df-ndx 12706 df-slot 12707 |
| This theorem is referenced by: imasbas 13009 imasplusg 13010 imasmulr 13011 |
| Copyright terms: Public domain | W3C validator |