![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > strndxid | GIF version |
Description: The value of a structure component extractor is the value of the corresponding slot of the structure. (Contributed by AV, 13-Mar-2020.) |
Ref | Expression |
---|---|
strndxid.s | β’ (π β π β π) |
strndxid.e | β’ πΈ = Slot π |
strndxid.n | β’ π β β |
Ref | Expression |
---|---|
strndxid | β’ (π β (πβ(πΈβndx)) = (πΈβπ)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | strndxid.e | . . . 4 β’ πΈ = Slot π | |
2 | strndxid.n | . . . 4 β’ π β β | |
3 | 1, 2 | ndxid 12489 | . . 3 β’ πΈ = Slot (πΈβndx) |
4 | strndxid.s | . . 3 β’ (π β π β π) | |
5 | 1, 2 | ndxarg 12488 | . . . . 5 β’ (πΈβndx) = π |
6 | 5, 2 | eqeltri 2250 | . . . 4 β’ (πΈβndx) β β |
7 | 6 | a1i 9 | . . 3 β’ (π β (πΈβndx) β β) |
8 | 3, 4, 7 | strnfvnd 12485 | . 2 β’ (π β (πΈβπ) = (πβ(πΈβndx))) |
9 | 8 | eqcomd 2183 | 1 β’ (π β (πβ(πΈβndx)) = (πΈβπ)) |
Colors of variables: wff set class |
Syntax hints: β wi 4 = wceq 1353 β wcel 2148 βcfv 5218 βcn 8922 ndxcnx 12462 Slot cslot 12464 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 709 ax-5 1447 ax-7 1448 ax-gen 1449 ax-ie1 1493 ax-ie2 1494 ax-8 1504 ax-10 1505 ax-11 1506 ax-i12 1507 ax-bndl 1509 ax-4 1510 ax-17 1526 ax-i9 1530 ax-ial 1534 ax-i5r 1535 ax-13 2150 ax-14 2151 ax-ext 2159 ax-sep 4123 ax-pow 4176 ax-pr 4211 ax-un 4435 ax-cnex 7905 ax-resscn 7906 ax-1re 7908 ax-addrcl 7911 |
This theorem depends on definitions: df-bi 117 df-3an 980 df-tru 1356 df-nf 1461 df-sb 1763 df-eu 2029 df-mo 2030 df-clab 2164 df-cleq 2170 df-clel 2173 df-nfc 2308 df-ral 2460 df-rex 2461 df-v 2741 df-sbc 2965 df-un 3135 df-in 3137 df-ss 3144 df-pw 3579 df-sn 3600 df-pr 3601 df-op 3603 df-uni 3812 df-int 3847 df-br 4006 df-opab 4067 df-mpt 4068 df-id 4295 df-xp 4634 df-rel 4635 df-cnv 4636 df-co 4637 df-dm 4638 df-rn 4639 df-res 4640 df-iota 5180 df-fun 5220 df-fv 5226 df-inn 8923 df-ndx 12468 df-slot 12469 |
This theorem is referenced by: imasbas 12734 imasplusg 12735 imasmulr 12736 |
Copyright terms: Public domain | W3C validator |