| Intuitionistic Logic Explorer | 
      
      
      < Previous  
      Next >
      
       Nearby theorems  | 
  ||
| Mirrors > Home > ILE Home > Th. List > strndxid | GIF version | ||
| Description: The value of a structure component extractor is the value of the corresponding slot of the structure. (Contributed by AV, 13-Mar-2020.) | 
| Ref | Expression | 
|---|---|
| strndxid.s | ⊢ (𝜑 → 𝑆 ∈ 𝑉) | 
| strndxid.e | ⊢ 𝐸 = Slot 𝑁 | 
| strndxid.n | ⊢ 𝑁 ∈ ℕ | 
| Ref | Expression | 
|---|---|
| strndxid | ⊢ (𝜑 → (𝑆‘(𝐸‘ndx)) = (𝐸‘𝑆)) | 
| Step | Hyp | Ref | Expression | 
|---|---|---|---|
| 1 | strndxid.e | . . . 4 ⊢ 𝐸 = Slot 𝑁 | |
| 2 | strndxid.n | . . . 4 ⊢ 𝑁 ∈ ℕ | |
| 3 | 1, 2 | ndxid 12702 | . . 3 ⊢ 𝐸 = Slot (𝐸‘ndx) | 
| 4 | strndxid.s | . . 3 ⊢ (𝜑 → 𝑆 ∈ 𝑉) | |
| 5 | 1, 2 | ndxarg 12701 | . . . . 5 ⊢ (𝐸‘ndx) = 𝑁 | 
| 6 | 5, 2 | eqeltri 2269 | . . . 4 ⊢ (𝐸‘ndx) ∈ ℕ | 
| 7 | 6 | a1i 9 | . . 3 ⊢ (𝜑 → (𝐸‘ndx) ∈ ℕ) | 
| 8 | 3, 4, 7 | strnfvnd 12698 | . 2 ⊢ (𝜑 → (𝐸‘𝑆) = (𝑆‘(𝐸‘ndx))) | 
| 9 | 8 | eqcomd 2202 | 1 ⊢ (𝜑 → (𝑆‘(𝐸‘ndx)) = (𝐸‘𝑆)) | 
| Colors of variables: wff set class | 
| Syntax hints: → wi 4 = wceq 1364 ∈ wcel 2167 ‘cfv 5258 ℕcn 8990 ndxcnx 12675 Slot cslot 12677 | 
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 710 ax-5 1461 ax-7 1462 ax-gen 1463 ax-ie1 1507 ax-ie2 1508 ax-8 1518 ax-10 1519 ax-11 1520 ax-i12 1521 ax-bndl 1523 ax-4 1524 ax-17 1540 ax-i9 1544 ax-ial 1548 ax-i5r 1549 ax-13 2169 ax-14 2170 ax-ext 2178 ax-sep 4151 ax-pow 4207 ax-pr 4242 ax-un 4468 ax-cnex 7970 ax-resscn 7971 ax-1re 7973 ax-addrcl 7976 | 
| This theorem depends on definitions: df-bi 117 df-3an 982 df-tru 1367 df-nf 1475 df-sb 1777 df-eu 2048 df-mo 2049 df-clab 2183 df-cleq 2189 df-clel 2192 df-nfc 2328 df-ral 2480 df-rex 2481 df-v 2765 df-sbc 2990 df-un 3161 df-in 3163 df-ss 3170 df-pw 3607 df-sn 3628 df-pr 3629 df-op 3631 df-uni 3840 df-int 3875 df-br 4034 df-opab 4095 df-mpt 4096 df-id 4328 df-xp 4669 df-rel 4670 df-cnv 4671 df-co 4672 df-dm 4673 df-rn 4674 df-res 4675 df-iota 5219 df-fun 5260 df-fv 5266 df-inn 8991 df-ndx 12681 df-slot 12682 | 
| This theorem is referenced by: imasbas 12950 imasplusg 12951 imasmulr 12952 | 
| Copyright terms: Public domain | W3C validator |