![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > strndxid | GIF version |
Description: The value of a structure component extractor is the value of the corresponding slot of the structure. (Contributed by AV, 13-Mar-2020.) |
Ref | Expression |
---|---|
strndxid.s | ⊢ (𝜑 → 𝑆 ∈ 𝑉) |
strndxid.e | ⊢ 𝐸 = Slot 𝑁 |
strndxid.n | ⊢ 𝑁 ∈ ℕ |
Ref | Expression |
---|---|
strndxid | ⊢ (𝜑 → (𝑆‘(𝐸‘ndx)) = (𝐸‘𝑆)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | strndxid.e | . . . 4 ⊢ 𝐸 = Slot 𝑁 | |
2 | strndxid.n | . . . 4 ⊢ 𝑁 ∈ ℕ | |
3 | 1, 2 | ndxid 12645 | . . 3 ⊢ 𝐸 = Slot (𝐸‘ndx) |
4 | strndxid.s | . . 3 ⊢ (𝜑 → 𝑆 ∈ 𝑉) | |
5 | 1, 2 | ndxarg 12644 | . . . . 5 ⊢ (𝐸‘ndx) = 𝑁 |
6 | 5, 2 | eqeltri 2266 | . . . 4 ⊢ (𝐸‘ndx) ∈ ℕ |
7 | 6 | a1i 9 | . . 3 ⊢ (𝜑 → (𝐸‘ndx) ∈ ℕ) |
8 | 3, 4, 7 | strnfvnd 12641 | . 2 ⊢ (𝜑 → (𝐸‘𝑆) = (𝑆‘(𝐸‘ndx))) |
9 | 8 | eqcomd 2199 | 1 ⊢ (𝜑 → (𝑆‘(𝐸‘ndx)) = (𝐸‘𝑆)) |
Colors of variables: wff set class |
Syntax hints: → wi 4 = wceq 1364 ∈ wcel 2164 ‘cfv 5255 ℕcn 8984 ndxcnx 12618 Slot cslot 12620 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 710 ax-5 1458 ax-7 1459 ax-gen 1460 ax-ie1 1504 ax-ie2 1505 ax-8 1515 ax-10 1516 ax-11 1517 ax-i12 1518 ax-bndl 1520 ax-4 1521 ax-17 1537 ax-i9 1541 ax-ial 1545 ax-i5r 1546 ax-13 2166 ax-14 2167 ax-ext 2175 ax-sep 4148 ax-pow 4204 ax-pr 4239 ax-un 4465 ax-cnex 7965 ax-resscn 7966 ax-1re 7968 ax-addrcl 7971 |
This theorem depends on definitions: df-bi 117 df-3an 982 df-tru 1367 df-nf 1472 df-sb 1774 df-eu 2045 df-mo 2046 df-clab 2180 df-cleq 2186 df-clel 2189 df-nfc 2325 df-ral 2477 df-rex 2478 df-v 2762 df-sbc 2987 df-un 3158 df-in 3160 df-ss 3167 df-pw 3604 df-sn 3625 df-pr 3626 df-op 3628 df-uni 3837 df-int 3872 df-br 4031 df-opab 4092 df-mpt 4093 df-id 4325 df-xp 4666 df-rel 4667 df-cnv 4668 df-co 4669 df-dm 4670 df-rn 4671 df-res 4672 df-iota 5216 df-fun 5257 df-fv 5263 df-inn 8985 df-ndx 12624 df-slot 12625 |
This theorem is referenced by: imasbas 12893 imasplusg 12894 imasmulr 12895 |
Copyright terms: Public domain | W3C validator |