ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  suprubex Unicode version

Theorem suprubex 8612
Description: A member of a nonempty bounded set of reals is less than or equal to the set's upper bound. (Contributed by Jim Kingdon, 18-Jan-2022.)
Hypotheses
Ref Expression
suprubex.ex  |-  ( ph  ->  E. x  e.  RR  ( A. y  e.  A  -.  x  <  y  /\  A. y  e.  RR  (
y  <  x  ->  E. z  e.  A  y  <  z ) ) )
suprubex.ss  |-  ( ph  ->  A  C_  RR )
suprubex.b  |-  ( ph  ->  B  e.  A )
Assertion
Ref Expression
suprubex  |-  ( ph  ->  B  <_  sup ( A ,  RR ,  <  ) )
Distinct variable groups:    x, A, y, z    ph, x
Allowed substitution hints:    ph( y, z)    B( x, y, z)

Proof of Theorem suprubex
Dummy variables  f  g are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 suprubex.ss . . 3  |-  ( ph  ->  A  C_  RR )
2 suprubex.b . . 3  |-  ( ph  ->  B  e.  A )
31, 2sseldd 3062 . 2  |-  ( ph  ->  B  e.  RR )
4 lttri3 7760 . . . 4  |-  ( ( f  e.  RR  /\  g  e.  RR )  ->  ( f  =  g  <-> 
( -.  f  < 
g  /\  -.  g  <  f ) ) )
54adantl 273 . . 3  |-  ( (
ph  /\  ( f  e.  RR  /\  g  e.  RR ) )  -> 
( f  =  g  <-> 
( -.  f  < 
g  /\  -.  g  <  f ) ) )
6 suprubex.ex . . 3  |-  ( ph  ->  E. x  e.  RR  ( A. y  e.  A  -.  x  <  y  /\  A. y  e.  RR  (
y  <  x  ->  E. z  e.  A  y  <  z ) ) )
75, 6supclti 6834 . 2  |-  ( ph  ->  sup ( A ,  RR ,  <  )  e.  RR )
85, 6supubti 6835 . . 3  |-  ( ph  ->  ( B  e.  A  ->  -.  sup ( A ,  RR ,  <  )  <  B ) )
92, 8mpd 13 . 2  |-  ( ph  ->  -.  sup ( A ,  RR ,  <  )  <  B )
103, 7, 9nltled 7799 1  |-  ( ph  ->  B  <_  sup ( A ,  RR ,  <  ) )
Colors of variables: wff set class
Syntax hints:   -. wn 3    -> wi 4    /\ wa 103    <-> wb 104    e. wcel 1461   A.wral 2388   E.wrex 2389    C_ wss 3035   class class class wbr 3893   supcsup 6818   RRcr 7539    < clt 7717    <_ cle 7718
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-mp 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-in1 586  ax-in2 587  ax-io 681  ax-5 1404  ax-7 1405  ax-gen 1406  ax-ie1 1450  ax-ie2 1451  ax-8 1463  ax-10 1464  ax-11 1465  ax-i12 1466  ax-bndl 1467  ax-4 1468  ax-13 1472  ax-14 1473  ax-17 1487  ax-i9 1491  ax-ial 1495  ax-i5r 1496  ax-ext 2095  ax-sep 4004  ax-pow 4056  ax-pr 4089  ax-un 4313  ax-setind 4410  ax-cnex 7629  ax-resscn 7630  ax-pre-ltirr 7650  ax-pre-apti 7653
This theorem depends on definitions:  df-bi 116  df-3an 945  df-tru 1315  df-fal 1318  df-nf 1418  df-sb 1717  df-eu 1976  df-mo 1977  df-clab 2100  df-cleq 2106  df-clel 2109  df-nfc 2242  df-ne 2281  df-nel 2376  df-ral 2393  df-rex 2394  df-reu 2395  df-rmo 2396  df-rab 2397  df-v 2657  df-sbc 2877  df-dif 3037  df-un 3039  df-in 3041  df-ss 3048  df-pw 3476  df-sn 3497  df-pr 3498  df-op 3500  df-uni 3701  df-br 3894  df-opab 3948  df-xp 4503  df-cnv 4505  df-iota 5044  df-riota 5682  df-sup 6820  df-pnf 7719  df-mnf 7720  df-xr 7721  df-ltxr 7722  df-le 7723
This theorem is referenced by:  suprzclex  9046
  Copyright terms: Public domain W3C validator