![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > suprubex | GIF version |
Description: A member of a nonempty bounded set of reals is less than or equal to the set's upper bound. (Contributed by Jim Kingdon, 18-Jan-2022.) |
Ref | Expression |
---|---|
suprubex.ex | ⊢ (𝜑 → ∃𝑥 ∈ ℝ (∀𝑦 ∈ 𝐴 ¬ 𝑥 < 𝑦 ∧ ∀𝑦 ∈ ℝ (𝑦 < 𝑥 → ∃𝑧 ∈ 𝐴 𝑦 < 𝑧))) |
suprubex.ss | ⊢ (𝜑 → 𝐴 ⊆ ℝ) |
suprubex.b | ⊢ (𝜑 → 𝐵 ∈ 𝐴) |
Ref | Expression |
---|---|
suprubex | ⊢ (𝜑 → 𝐵 ≤ sup(𝐴, ℝ, < )) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | suprubex.ss | . . 3 ⊢ (𝜑 → 𝐴 ⊆ ℝ) | |
2 | suprubex.b | . . 3 ⊢ (𝜑 → 𝐵 ∈ 𝐴) | |
3 | 1, 2 | sseldd 3181 | . 2 ⊢ (𝜑 → 𝐵 ∈ ℝ) |
4 | lttri3 8101 | . . . 4 ⊢ ((𝑓 ∈ ℝ ∧ 𝑔 ∈ ℝ) → (𝑓 = 𝑔 ↔ (¬ 𝑓 < 𝑔 ∧ ¬ 𝑔 < 𝑓))) | |
5 | 4 | adantl 277 | . . 3 ⊢ ((𝜑 ∧ (𝑓 ∈ ℝ ∧ 𝑔 ∈ ℝ)) → (𝑓 = 𝑔 ↔ (¬ 𝑓 < 𝑔 ∧ ¬ 𝑔 < 𝑓))) |
6 | suprubex.ex | . . 3 ⊢ (𝜑 → ∃𝑥 ∈ ℝ (∀𝑦 ∈ 𝐴 ¬ 𝑥 < 𝑦 ∧ ∀𝑦 ∈ ℝ (𝑦 < 𝑥 → ∃𝑧 ∈ 𝐴 𝑦 < 𝑧))) | |
7 | 5, 6 | supclti 7059 | . 2 ⊢ (𝜑 → sup(𝐴, ℝ, < ) ∈ ℝ) |
8 | 5, 6 | supubti 7060 | . . 3 ⊢ (𝜑 → (𝐵 ∈ 𝐴 → ¬ sup(𝐴, ℝ, < ) < 𝐵)) |
9 | 2, 8 | mpd 13 | . 2 ⊢ (𝜑 → ¬ sup(𝐴, ℝ, < ) < 𝐵) |
10 | 3, 7, 9 | nltled 8142 | 1 ⊢ (𝜑 → 𝐵 ≤ sup(𝐴, ℝ, < )) |
Colors of variables: wff set class |
Syntax hints: ¬ wn 3 → wi 4 ∧ wa 104 ↔ wb 105 ∈ wcel 2164 ∀wral 2472 ∃wrex 2473 ⊆ wss 3154 class class class wbr 4030 supcsup 7043 ℝcr 7873 < clt 8056 ≤ cle 8057 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 615 ax-in2 616 ax-io 710 ax-5 1458 ax-7 1459 ax-gen 1460 ax-ie1 1504 ax-ie2 1505 ax-8 1515 ax-10 1516 ax-11 1517 ax-i12 1518 ax-bndl 1520 ax-4 1521 ax-17 1537 ax-i9 1541 ax-ial 1545 ax-i5r 1546 ax-13 2166 ax-14 2167 ax-ext 2175 ax-sep 4148 ax-pow 4204 ax-pr 4239 ax-un 4465 ax-setind 4570 ax-cnex 7965 ax-resscn 7966 ax-pre-ltirr 7986 ax-pre-apti 7989 |
This theorem depends on definitions: df-bi 117 df-3an 982 df-tru 1367 df-fal 1370 df-nf 1472 df-sb 1774 df-eu 2045 df-mo 2046 df-clab 2180 df-cleq 2186 df-clel 2189 df-nfc 2325 df-ne 2365 df-nel 2460 df-ral 2477 df-rex 2478 df-reu 2479 df-rmo 2480 df-rab 2481 df-v 2762 df-sbc 2987 df-dif 3156 df-un 3158 df-in 3160 df-ss 3167 df-pw 3604 df-sn 3625 df-pr 3626 df-op 3628 df-uni 3837 df-br 4031 df-opab 4092 df-xp 4666 df-cnv 4668 df-iota 5216 df-riota 5874 df-sup 7045 df-pnf 8058 df-mnf 8059 df-xr 8060 df-ltxr 8061 df-le 8062 |
This theorem is referenced by: suprzclex 9418 |
Copyright terms: Public domain | W3C validator |