| Intuitionistic Logic Explorer | 
      
      
      < Previous  
      Next >
      
       Nearby theorems  | 
  ||
| Mirrors > Home > ILE Home > Th. List > suprubex | GIF version | ||
| Description: A member of a nonempty bounded set of reals is less than or equal to the set's upper bound. (Contributed by Jim Kingdon, 18-Jan-2022.) | 
| Ref | Expression | 
|---|---|
| suprubex.ex | ⊢ (𝜑 → ∃𝑥 ∈ ℝ (∀𝑦 ∈ 𝐴 ¬ 𝑥 < 𝑦 ∧ ∀𝑦 ∈ ℝ (𝑦 < 𝑥 → ∃𝑧 ∈ 𝐴 𝑦 < 𝑧))) | 
| suprubex.ss | ⊢ (𝜑 → 𝐴 ⊆ ℝ) | 
| suprubex.b | ⊢ (𝜑 → 𝐵 ∈ 𝐴) | 
| Ref | Expression | 
|---|---|
| suprubex | ⊢ (𝜑 → 𝐵 ≤ sup(𝐴, ℝ, < )) | 
| Step | Hyp | Ref | Expression | 
|---|---|---|---|
| 1 | suprubex.ss | . . 3 ⊢ (𝜑 → 𝐴 ⊆ ℝ) | |
| 2 | suprubex.b | . . 3 ⊢ (𝜑 → 𝐵 ∈ 𝐴) | |
| 3 | 1, 2 | sseldd 3184 | . 2 ⊢ (𝜑 → 𝐵 ∈ ℝ) | 
| 4 | lttri3 8106 | . . . 4 ⊢ ((𝑓 ∈ ℝ ∧ 𝑔 ∈ ℝ) → (𝑓 = 𝑔 ↔ (¬ 𝑓 < 𝑔 ∧ ¬ 𝑔 < 𝑓))) | |
| 5 | 4 | adantl 277 | . . 3 ⊢ ((𝜑 ∧ (𝑓 ∈ ℝ ∧ 𝑔 ∈ ℝ)) → (𝑓 = 𝑔 ↔ (¬ 𝑓 < 𝑔 ∧ ¬ 𝑔 < 𝑓))) | 
| 6 | suprubex.ex | . . 3 ⊢ (𝜑 → ∃𝑥 ∈ ℝ (∀𝑦 ∈ 𝐴 ¬ 𝑥 < 𝑦 ∧ ∀𝑦 ∈ ℝ (𝑦 < 𝑥 → ∃𝑧 ∈ 𝐴 𝑦 < 𝑧))) | |
| 7 | 5, 6 | supclti 7064 | . 2 ⊢ (𝜑 → sup(𝐴, ℝ, < ) ∈ ℝ) | 
| 8 | 5, 6 | supubti 7065 | . . 3 ⊢ (𝜑 → (𝐵 ∈ 𝐴 → ¬ sup(𝐴, ℝ, < ) < 𝐵)) | 
| 9 | 2, 8 | mpd 13 | . 2 ⊢ (𝜑 → ¬ sup(𝐴, ℝ, < ) < 𝐵) | 
| 10 | 3, 7, 9 | nltled 8147 | 1 ⊢ (𝜑 → 𝐵 ≤ sup(𝐴, ℝ, < )) | 
| Colors of variables: wff set class | 
| Syntax hints: ¬ wn 3 → wi 4 ∧ wa 104 ↔ wb 105 ∈ wcel 2167 ∀wral 2475 ∃wrex 2476 ⊆ wss 3157 class class class wbr 4033 supcsup 7048 ℝcr 7878 < clt 8061 ≤ cle 8062 | 
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 615 ax-in2 616 ax-io 710 ax-5 1461 ax-7 1462 ax-gen 1463 ax-ie1 1507 ax-ie2 1508 ax-8 1518 ax-10 1519 ax-11 1520 ax-i12 1521 ax-bndl 1523 ax-4 1524 ax-17 1540 ax-i9 1544 ax-ial 1548 ax-i5r 1549 ax-13 2169 ax-14 2170 ax-ext 2178 ax-sep 4151 ax-pow 4207 ax-pr 4242 ax-un 4468 ax-setind 4573 ax-cnex 7970 ax-resscn 7971 ax-pre-ltirr 7991 ax-pre-apti 7994 | 
| This theorem depends on definitions: df-bi 117 df-3an 982 df-tru 1367 df-fal 1370 df-nf 1475 df-sb 1777 df-eu 2048 df-mo 2049 df-clab 2183 df-cleq 2189 df-clel 2192 df-nfc 2328 df-ne 2368 df-nel 2463 df-ral 2480 df-rex 2481 df-reu 2482 df-rmo 2483 df-rab 2484 df-v 2765 df-sbc 2990 df-dif 3159 df-un 3161 df-in 3163 df-ss 3170 df-pw 3607 df-sn 3628 df-pr 3629 df-op 3631 df-uni 3840 df-br 4034 df-opab 4095 df-xp 4669 df-cnv 4671 df-iota 5219 df-riota 5877 df-sup 7050 df-pnf 8063 df-mnf 8064 df-xr 8065 df-ltxr 8066 df-le 8067 | 
| This theorem is referenced by: suprzclex 9424 | 
| Copyright terms: Public domain | W3C validator |