| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > suprubex | GIF version | ||
| Description: A member of a nonempty bounded set of reals is less than or equal to the set's upper bound. (Contributed by Jim Kingdon, 18-Jan-2022.) |
| Ref | Expression |
|---|---|
| suprubex.ex | ⊢ (𝜑 → ∃𝑥 ∈ ℝ (∀𝑦 ∈ 𝐴 ¬ 𝑥 < 𝑦 ∧ ∀𝑦 ∈ ℝ (𝑦 < 𝑥 → ∃𝑧 ∈ 𝐴 𝑦 < 𝑧))) |
| suprubex.ss | ⊢ (𝜑 → 𝐴 ⊆ ℝ) |
| suprubex.b | ⊢ (𝜑 → 𝐵 ∈ 𝐴) |
| Ref | Expression |
|---|---|
| suprubex | ⊢ (𝜑 → 𝐵 ≤ sup(𝐴, ℝ, < )) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | suprubex.ss | . . 3 ⊢ (𝜑 → 𝐴 ⊆ ℝ) | |
| 2 | suprubex.b | . . 3 ⊢ (𝜑 → 𝐵 ∈ 𝐴) | |
| 3 | 1, 2 | sseldd 3225 | . 2 ⊢ (𝜑 → 𝐵 ∈ ℝ) |
| 4 | lttri3 8234 | . . . 4 ⊢ ((𝑓 ∈ ℝ ∧ 𝑔 ∈ ℝ) → (𝑓 = 𝑔 ↔ (¬ 𝑓 < 𝑔 ∧ ¬ 𝑔 < 𝑓))) | |
| 5 | 4 | adantl 277 | . . 3 ⊢ ((𝜑 ∧ (𝑓 ∈ ℝ ∧ 𝑔 ∈ ℝ)) → (𝑓 = 𝑔 ↔ (¬ 𝑓 < 𝑔 ∧ ¬ 𝑔 < 𝑓))) |
| 6 | suprubex.ex | . . 3 ⊢ (𝜑 → ∃𝑥 ∈ ℝ (∀𝑦 ∈ 𝐴 ¬ 𝑥 < 𝑦 ∧ ∀𝑦 ∈ ℝ (𝑦 < 𝑥 → ∃𝑧 ∈ 𝐴 𝑦 < 𝑧))) | |
| 7 | 5, 6 | supclti 7173 | . 2 ⊢ (𝜑 → sup(𝐴, ℝ, < ) ∈ ℝ) |
| 8 | 5, 6 | supubti 7174 | . . 3 ⊢ (𝜑 → (𝐵 ∈ 𝐴 → ¬ sup(𝐴, ℝ, < ) < 𝐵)) |
| 9 | 2, 8 | mpd 13 | . 2 ⊢ (𝜑 → ¬ sup(𝐴, ℝ, < ) < 𝐵) |
| 10 | 3, 7, 9 | nltled 8275 | 1 ⊢ (𝜑 → 𝐵 ≤ sup(𝐴, ℝ, < )) |
| Colors of variables: wff set class |
| Syntax hints: ¬ wn 3 → wi 4 ∧ wa 104 ↔ wb 105 ∈ wcel 2200 ∀wral 2508 ∃wrex 2509 ⊆ wss 3197 class class class wbr 4083 supcsup 7157 ℝcr 8006 < clt 8189 ≤ cle 8190 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 617 ax-in2 618 ax-io 714 ax-5 1493 ax-7 1494 ax-gen 1495 ax-ie1 1539 ax-ie2 1540 ax-8 1550 ax-10 1551 ax-11 1552 ax-i12 1553 ax-bndl 1555 ax-4 1556 ax-17 1572 ax-i9 1576 ax-ial 1580 ax-i5r 1581 ax-13 2202 ax-14 2203 ax-ext 2211 ax-sep 4202 ax-pow 4258 ax-pr 4293 ax-un 4524 ax-setind 4629 ax-cnex 8098 ax-resscn 8099 ax-pre-ltirr 8119 ax-pre-apti 8122 |
| This theorem depends on definitions: df-bi 117 df-3an 1004 df-tru 1398 df-fal 1401 df-nf 1507 df-sb 1809 df-eu 2080 df-mo 2081 df-clab 2216 df-cleq 2222 df-clel 2225 df-nfc 2361 df-ne 2401 df-nel 2496 df-ral 2513 df-rex 2514 df-reu 2515 df-rmo 2516 df-rab 2517 df-v 2801 df-sbc 3029 df-dif 3199 df-un 3201 df-in 3203 df-ss 3210 df-pw 3651 df-sn 3672 df-pr 3673 df-op 3675 df-uni 3889 df-br 4084 df-opab 4146 df-xp 4725 df-cnv 4727 df-iota 5278 df-riota 5960 df-sup 7159 df-pnf 8191 df-mnf 8192 df-xr 8193 df-ltxr 8194 df-le 8195 |
| This theorem is referenced by: suprzclex 9553 |
| Copyright terms: Public domain | W3C validator |