Intuitionistic Logic Explorer < Previous   Next > Nearby theorems Mirrors  >  Home  >  ILE Home  >  Th. List  >  suprubex GIF version

Theorem suprubex 8721
 Description: A member of a nonempty bounded set of reals is less than or equal to the set's upper bound. (Contributed by Jim Kingdon, 18-Jan-2022.)
Hypotheses
Ref Expression
suprubex.ex (𝜑 → ∃𝑥 ∈ ℝ (∀𝑦𝐴 ¬ 𝑥 < 𝑦 ∧ ∀𝑦 ∈ ℝ (𝑦 < 𝑥 → ∃𝑧𝐴 𝑦 < 𝑧)))
suprubex.ss (𝜑𝐴 ⊆ ℝ)
suprubex.b (𝜑𝐵𝐴)
Assertion
Ref Expression
suprubex (𝜑𝐵 ≤ sup(𝐴, ℝ, < ))
Distinct variable groups:   𝑥,𝐴,𝑦,𝑧   𝜑,𝑥
Allowed substitution hints:   𝜑(𝑦,𝑧)   𝐵(𝑥,𝑦,𝑧)

Proof of Theorem suprubex
Dummy variables 𝑓 𝑔 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 suprubex.ss . . 3 (𝜑𝐴 ⊆ ℝ)
2 suprubex.b . . 3 (𝜑𝐵𝐴)
31, 2sseldd 3098 . 2 (𝜑𝐵 ∈ ℝ)
4 lttri3 7856 . . . 4 ((𝑓 ∈ ℝ ∧ 𝑔 ∈ ℝ) → (𝑓 = 𝑔 ↔ (¬ 𝑓 < 𝑔 ∧ ¬ 𝑔 < 𝑓)))
54adantl 275 . . 3 ((𝜑 ∧ (𝑓 ∈ ℝ ∧ 𝑔 ∈ ℝ)) → (𝑓 = 𝑔 ↔ (¬ 𝑓 < 𝑔 ∧ ¬ 𝑔 < 𝑓)))
6 suprubex.ex . . 3 (𝜑 → ∃𝑥 ∈ ℝ (∀𝑦𝐴 ¬ 𝑥 < 𝑦 ∧ ∀𝑦 ∈ ℝ (𝑦 < 𝑥 → ∃𝑧𝐴 𝑦 < 𝑧)))
75, 6supclti 6885 . 2 (𝜑 → sup(𝐴, ℝ, < ) ∈ ℝ)
85, 6supubti 6886 . . 3 (𝜑 → (𝐵𝐴 → ¬ sup(𝐴, ℝ, < ) < 𝐵))
92, 8mpd 13 . 2 (𝜑 → ¬ sup(𝐴, ℝ, < ) < 𝐵)
103, 7, 9nltled 7895 1 (𝜑𝐵 ≤ sup(𝐴, ℝ, < ))
 Colors of variables: wff set class Syntax hints:  ¬ wn 3   → wi 4   ∧ wa 103   ↔ wb 104   ∈ wcel 1480  ∀wral 2416  ∃wrex 2417   ⊆ wss 3071   class class class wbr 3929  supcsup 6869  ℝcr 7631   < clt 7812   ≤ cle 7813 This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-in1 603  ax-in2 604  ax-io 698  ax-5 1423  ax-7 1424  ax-gen 1425  ax-ie1 1469  ax-ie2 1470  ax-8 1482  ax-10 1483  ax-11 1484  ax-i12 1485  ax-bndl 1486  ax-4 1487  ax-13 1491  ax-14 1492  ax-17 1506  ax-i9 1510  ax-ial 1514  ax-i5r 1515  ax-ext 2121  ax-sep 4046  ax-pow 4098  ax-pr 4131  ax-un 4355  ax-setind 4452  ax-cnex 7723  ax-resscn 7724  ax-pre-ltirr 7744  ax-pre-apti 7747 This theorem depends on definitions:  df-bi 116  df-3an 964  df-tru 1334  df-fal 1337  df-nf 1437  df-sb 1736  df-eu 2002  df-mo 2003  df-clab 2126  df-cleq 2132  df-clel 2135  df-nfc 2270  df-ne 2309  df-nel 2404  df-ral 2421  df-rex 2422  df-reu 2423  df-rmo 2424  df-rab 2425  df-v 2688  df-sbc 2910  df-dif 3073  df-un 3075  df-in 3077  df-ss 3084  df-pw 3512  df-sn 3533  df-pr 3534  df-op 3536  df-uni 3737  df-br 3930  df-opab 3990  df-xp 4545  df-cnv 4547  df-iota 5088  df-riota 5730  df-sup 6871  df-pnf 7814  df-mnf 7815  df-xr 7816  df-ltxr 7817  df-le 7818 This theorem is referenced by:  suprzclex  9161
 Copyright terms: Public domain W3C validator