| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > suprubex | GIF version | ||
| Description: A member of a nonempty bounded set of reals is less than or equal to the set's upper bound. (Contributed by Jim Kingdon, 18-Jan-2022.) |
| Ref | Expression |
|---|---|
| suprubex.ex | ⊢ (𝜑 → ∃𝑥 ∈ ℝ (∀𝑦 ∈ 𝐴 ¬ 𝑥 < 𝑦 ∧ ∀𝑦 ∈ ℝ (𝑦 < 𝑥 → ∃𝑧 ∈ 𝐴 𝑦 < 𝑧))) |
| suprubex.ss | ⊢ (𝜑 → 𝐴 ⊆ ℝ) |
| suprubex.b | ⊢ (𝜑 → 𝐵 ∈ 𝐴) |
| Ref | Expression |
|---|---|
| suprubex | ⊢ (𝜑 → 𝐵 ≤ sup(𝐴, ℝ, < )) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | suprubex.ss | . . 3 ⊢ (𝜑 → 𝐴 ⊆ ℝ) | |
| 2 | suprubex.b | . . 3 ⊢ (𝜑 → 𝐵 ∈ 𝐴) | |
| 3 | 1, 2 | sseldd 3195 | . 2 ⊢ (𝜑 → 𝐵 ∈ ℝ) |
| 4 | lttri3 8159 | . . . 4 ⊢ ((𝑓 ∈ ℝ ∧ 𝑔 ∈ ℝ) → (𝑓 = 𝑔 ↔ (¬ 𝑓 < 𝑔 ∧ ¬ 𝑔 < 𝑓))) | |
| 5 | 4 | adantl 277 | . . 3 ⊢ ((𝜑 ∧ (𝑓 ∈ ℝ ∧ 𝑔 ∈ ℝ)) → (𝑓 = 𝑔 ↔ (¬ 𝑓 < 𝑔 ∧ ¬ 𝑔 < 𝑓))) |
| 6 | suprubex.ex | . . 3 ⊢ (𝜑 → ∃𝑥 ∈ ℝ (∀𝑦 ∈ 𝐴 ¬ 𝑥 < 𝑦 ∧ ∀𝑦 ∈ ℝ (𝑦 < 𝑥 → ∃𝑧 ∈ 𝐴 𝑦 < 𝑧))) | |
| 7 | 5, 6 | supclti 7107 | . 2 ⊢ (𝜑 → sup(𝐴, ℝ, < ) ∈ ℝ) |
| 8 | 5, 6 | supubti 7108 | . . 3 ⊢ (𝜑 → (𝐵 ∈ 𝐴 → ¬ sup(𝐴, ℝ, < ) < 𝐵)) |
| 9 | 2, 8 | mpd 13 | . 2 ⊢ (𝜑 → ¬ sup(𝐴, ℝ, < ) < 𝐵) |
| 10 | 3, 7, 9 | nltled 8200 | 1 ⊢ (𝜑 → 𝐵 ≤ sup(𝐴, ℝ, < )) |
| Colors of variables: wff set class |
| Syntax hints: ¬ wn 3 → wi 4 ∧ wa 104 ↔ wb 105 ∈ wcel 2177 ∀wral 2485 ∃wrex 2486 ⊆ wss 3167 class class class wbr 4047 supcsup 7091 ℝcr 7931 < clt 8114 ≤ cle 8115 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 615 ax-in2 616 ax-io 711 ax-5 1471 ax-7 1472 ax-gen 1473 ax-ie1 1517 ax-ie2 1518 ax-8 1528 ax-10 1529 ax-11 1530 ax-i12 1531 ax-bndl 1533 ax-4 1534 ax-17 1550 ax-i9 1554 ax-ial 1558 ax-i5r 1559 ax-13 2179 ax-14 2180 ax-ext 2188 ax-sep 4166 ax-pow 4222 ax-pr 4257 ax-un 4484 ax-setind 4589 ax-cnex 8023 ax-resscn 8024 ax-pre-ltirr 8044 ax-pre-apti 8047 |
| This theorem depends on definitions: df-bi 117 df-3an 983 df-tru 1376 df-fal 1379 df-nf 1485 df-sb 1787 df-eu 2058 df-mo 2059 df-clab 2193 df-cleq 2199 df-clel 2202 df-nfc 2338 df-ne 2378 df-nel 2473 df-ral 2490 df-rex 2491 df-reu 2492 df-rmo 2493 df-rab 2494 df-v 2775 df-sbc 3000 df-dif 3169 df-un 3171 df-in 3173 df-ss 3180 df-pw 3619 df-sn 3640 df-pr 3641 df-op 3643 df-uni 3853 df-br 4048 df-opab 4110 df-xp 4685 df-cnv 4687 df-iota 5237 df-riota 5906 df-sup 7093 df-pnf 8116 df-mnf 8117 df-xr 8118 df-ltxr 8119 df-le 8120 |
| This theorem is referenced by: suprzclex 9478 |
| Copyright terms: Public domain | W3C validator |