| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > suprubex | GIF version | ||
| Description: A member of a nonempty bounded set of reals is less than or equal to the set's upper bound. (Contributed by Jim Kingdon, 18-Jan-2022.) |
| Ref | Expression |
|---|---|
| suprubex.ex | ⊢ (𝜑 → ∃𝑥 ∈ ℝ (∀𝑦 ∈ 𝐴 ¬ 𝑥 < 𝑦 ∧ ∀𝑦 ∈ ℝ (𝑦 < 𝑥 → ∃𝑧 ∈ 𝐴 𝑦 < 𝑧))) |
| suprubex.ss | ⊢ (𝜑 → 𝐴 ⊆ ℝ) |
| suprubex.b | ⊢ (𝜑 → 𝐵 ∈ 𝐴) |
| Ref | Expression |
|---|---|
| suprubex | ⊢ (𝜑 → 𝐵 ≤ sup(𝐴, ℝ, < )) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | suprubex.ss | . . 3 ⊢ (𝜑 → 𝐴 ⊆ ℝ) | |
| 2 | suprubex.b | . . 3 ⊢ (𝜑 → 𝐵 ∈ 𝐴) | |
| 3 | 1, 2 | sseldd 3205 | . 2 ⊢ (𝜑 → 𝐵 ∈ ℝ) |
| 4 | lttri3 8194 | . . . 4 ⊢ ((𝑓 ∈ ℝ ∧ 𝑔 ∈ ℝ) → (𝑓 = 𝑔 ↔ (¬ 𝑓 < 𝑔 ∧ ¬ 𝑔 < 𝑓))) | |
| 5 | 4 | adantl 277 | . . 3 ⊢ ((𝜑 ∧ (𝑓 ∈ ℝ ∧ 𝑔 ∈ ℝ)) → (𝑓 = 𝑔 ↔ (¬ 𝑓 < 𝑔 ∧ ¬ 𝑔 < 𝑓))) |
| 6 | suprubex.ex | . . 3 ⊢ (𝜑 → ∃𝑥 ∈ ℝ (∀𝑦 ∈ 𝐴 ¬ 𝑥 < 𝑦 ∧ ∀𝑦 ∈ ℝ (𝑦 < 𝑥 → ∃𝑧 ∈ 𝐴 𝑦 < 𝑧))) | |
| 7 | 5, 6 | supclti 7133 | . 2 ⊢ (𝜑 → sup(𝐴, ℝ, < ) ∈ ℝ) |
| 8 | 5, 6 | supubti 7134 | . . 3 ⊢ (𝜑 → (𝐵 ∈ 𝐴 → ¬ sup(𝐴, ℝ, < ) < 𝐵)) |
| 9 | 2, 8 | mpd 13 | . 2 ⊢ (𝜑 → ¬ sup(𝐴, ℝ, < ) < 𝐵) |
| 10 | 3, 7, 9 | nltled 8235 | 1 ⊢ (𝜑 → 𝐵 ≤ sup(𝐴, ℝ, < )) |
| Colors of variables: wff set class |
| Syntax hints: ¬ wn 3 → wi 4 ∧ wa 104 ↔ wb 105 ∈ wcel 2180 ∀wral 2488 ∃wrex 2489 ⊆ wss 3177 class class class wbr 4062 supcsup 7117 ℝcr 7966 < clt 8149 ≤ cle 8150 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 617 ax-in2 618 ax-io 713 ax-5 1473 ax-7 1474 ax-gen 1475 ax-ie1 1519 ax-ie2 1520 ax-8 1530 ax-10 1531 ax-11 1532 ax-i12 1533 ax-bndl 1535 ax-4 1536 ax-17 1552 ax-i9 1556 ax-ial 1560 ax-i5r 1561 ax-13 2182 ax-14 2183 ax-ext 2191 ax-sep 4181 ax-pow 4237 ax-pr 4272 ax-un 4501 ax-setind 4606 ax-cnex 8058 ax-resscn 8059 ax-pre-ltirr 8079 ax-pre-apti 8082 |
| This theorem depends on definitions: df-bi 117 df-3an 985 df-tru 1378 df-fal 1381 df-nf 1487 df-sb 1789 df-eu 2060 df-mo 2061 df-clab 2196 df-cleq 2202 df-clel 2205 df-nfc 2341 df-ne 2381 df-nel 2476 df-ral 2493 df-rex 2494 df-reu 2495 df-rmo 2496 df-rab 2497 df-v 2781 df-sbc 3009 df-dif 3179 df-un 3181 df-in 3183 df-ss 3190 df-pw 3631 df-sn 3652 df-pr 3653 df-op 3655 df-uni 3868 df-br 4063 df-opab 4125 df-xp 4702 df-cnv 4704 df-iota 5254 df-riota 5927 df-sup 7119 df-pnf 8151 df-mnf 8152 df-xr 8153 df-ltxr 8154 df-le 8155 |
| This theorem is referenced by: suprzclex 9513 |
| Copyright terms: Public domain | W3C validator |