ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  suprubex GIF version

Theorem suprubex 8978
Description: A member of a nonempty bounded set of reals is less than or equal to the set's upper bound. (Contributed by Jim Kingdon, 18-Jan-2022.)
Hypotheses
Ref Expression
suprubex.ex (𝜑 → ∃𝑥 ∈ ℝ (∀𝑦𝐴 ¬ 𝑥 < 𝑦 ∧ ∀𝑦 ∈ ℝ (𝑦 < 𝑥 → ∃𝑧𝐴 𝑦 < 𝑧)))
suprubex.ss (𝜑𝐴 ⊆ ℝ)
suprubex.b (𝜑𝐵𝐴)
Assertion
Ref Expression
suprubex (𝜑𝐵 ≤ sup(𝐴, ℝ, < ))
Distinct variable groups:   𝑥,𝐴,𝑦,𝑧   𝜑,𝑥
Allowed substitution hints:   𝜑(𝑦,𝑧)   𝐵(𝑥,𝑦,𝑧)

Proof of Theorem suprubex
Dummy variables 𝑓 𝑔 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 suprubex.ss . . 3 (𝜑𝐴 ⊆ ℝ)
2 suprubex.b . . 3 (𝜑𝐵𝐴)
31, 2sseldd 3184 . 2 (𝜑𝐵 ∈ ℝ)
4 lttri3 8106 . . . 4 ((𝑓 ∈ ℝ ∧ 𝑔 ∈ ℝ) → (𝑓 = 𝑔 ↔ (¬ 𝑓 < 𝑔 ∧ ¬ 𝑔 < 𝑓)))
54adantl 277 . . 3 ((𝜑 ∧ (𝑓 ∈ ℝ ∧ 𝑔 ∈ ℝ)) → (𝑓 = 𝑔 ↔ (¬ 𝑓 < 𝑔 ∧ ¬ 𝑔 < 𝑓)))
6 suprubex.ex . . 3 (𝜑 → ∃𝑥 ∈ ℝ (∀𝑦𝐴 ¬ 𝑥 < 𝑦 ∧ ∀𝑦 ∈ ℝ (𝑦 < 𝑥 → ∃𝑧𝐴 𝑦 < 𝑧)))
75, 6supclti 7064 . 2 (𝜑 → sup(𝐴, ℝ, < ) ∈ ℝ)
85, 6supubti 7065 . . 3 (𝜑 → (𝐵𝐴 → ¬ sup(𝐴, ℝ, < ) < 𝐵))
92, 8mpd 13 . 2 (𝜑 → ¬ sup(𝐴, ℝ, < ) < 𝐵)
103, 7, 9nltled 8147 1 (𝜑𝐵 ≤ sup(𝐴, ℝ, < ))
Colors of variables: wff set class
Syntax hints:  ¬ wn 3  wi 4  wa 104  wb 105  wcel 2167  wral 2475  wrex 2476  wss 3157   class class class wbr 4033  supcsup 7048  cr 7878   < clt 8061  cle 8062
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 710  ax-5 1461  ax-7 1462  ax-gen 1463  ax-ie1 1507  ax-ie2 1508  ax-8 1518  ax-10 1519  ax-11 1520  ax-i12 1521  ax-bndl 1523  ax-4 1524  ax-17 1540  ax-i9 1544  ax-ial 1548  ax-i5r 1549  ax-13 2169  ax-14 2170  ax-ext 2178  ax-sep 4151  ax-pow 4207  ax-pr 4242  ax-un 4468  ax-setind 4573  ax-cnex 7970  ax-resscn 7971  ax-pre-ltirr 7991  ax-pre-apti 7994
This theorem depends on definitions:  df-bi 117  df-3an 982  df-tru 1367  df-fal 1370  df-nf 1475  df-sb 1777  df-eu 2048  df-mo 2049  df-clab 2183  df-cleq 2189  df-clel 2192  df-nfc 2328  df-ne 2368  df-nel 2463  df-ral 2480  df-rex 2481  df-reu 2482  df-rmo 2483  df-rab 2484  df-v 2765  df-sbc 2990  df-dif 3159  df-un 3161  df-in 3163  df-ss 3170  df-pw 3607  df-sn 3628  df-pr 3629  df-op 3631  df-uni 3840  df-br 4034  df-opab 4095  df-xp 4669  df-cnv 4671  df-iota 5219  df-riota 5877  df-sup 7050  df-pnf 8063  df-mnf 8064  df-xr 8065  df-ltxr 8066  df-le 8067
This theorem is referenced by:  suprzclex  9424
  Copyright terms: Public domain W3C validator