ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  fzind2 Unicode version

Theorem fzind2 10225
Description: Induction on the integers from  M to  N inclusive. The first four hypotheses give us the substitution instances we need; the last two are the basis and the induction step. Version of fzind 9357 using integer range definitions. (Contributed by Mario Carneiro, 6-Feb-2016.)
Hypotheses
Ref Expression
fzind2.1  |-  ( x  =  M  ->  ( ph 
<->  ps ) )
fzind2.2  |-  ( x  =  y  ->  ( ph 
<->  ch ) )
fzind2.3  |-  ( x  =  ( y  +  1 )  ->  ( ph 
<->  th ) )
fzind2.4  |-  ( x  =  K  ->  ( ph 
<->  ta ) )
fzind2.5  |-  ( N  e.  ( ZZ>= `  M
)  ->  ps )
fzind2.6  |-  ( y  e.  ( M..^ N
)  ->  ( ch  ->  th ) )
Assertion
Ref Expression
fzind2  |-  ( K  e.  ( M ... N )  ->  ta )
Distinct variable groups:    x, K    x, M, y    x, N, y    ch, x    ph, y    ps, x    ta, x    th, x
Allowed substitution hints:    ph( x)    ps( y)    ch( y)    th( y)    ta( y)    K( y)

Proof of Theorem fzind2
StepHypRef Expression
1 elfz2 10002 . . 3  |-  ( K  e.  ( M ... N )  <->  ( ( M  e.  ZZ  /\  N  e.  ZZ  /\  K  e.  ZZ )  /\  ( M  <_  K  /\  K  <_  N ) ) )
2 anass 401 . . . 4  |-  ( ( ( ( M  e.  ZZ  /\  N  e.  ZZ )  /\  K  e.  ZZ )  /\  ( M  <_  K  /\  K  <_  N ) )  <->  ( ( M  e.  ZZ  /\  N  e.  ZZ )  /\  ( K  e.  ZZ  /\  ( M  <_  K  /\  K  <_  N ) ) ) )
3 df-3an 980 . . . . 5  |-  ( ( M  e.  ZZ  /\  N  e.  ZZ  /\  K  e.  ZZ )  <->  ( ( M  e.  ZZ  /\  N  e.  ZZ )  /\  K  e.  ZZ ) )
43anbi1i 458 . . . 4  |-  ( ( ( M  e.  ZZ  /\  N  e.  ZZ  /\  K  e.  ZZ )  /\  ( M  <_  K  /\  K  <_  N ) )  <->  ( ( ( M  e.  ZZ  /\  N  e.  ZZ )  /\  K  e.  ZZ )  /\  ( M  <_  K  /\  K  <_  N
) ) )
5 3anass 982 . . . . 5  |-  ( ( K  e.  ZZ  /\  M  <_  K  /\  K  <_  N )  <->  ( K  e.  ZZ  /\  ( M  <_  K  /\  K  <_  N ) ) )
65anbi2i 457 . . . 4  |-  ( ( ( M  e.  ZZ  /\  N  e.  ZZ )  /\  ( K  e.  ZZ  /\  M  <_  K  /\  K  <_  N
) )  <->  ( ( M  e.  ZZ  /\  N  e.  ZZ )  /\  ( K  e.  ZZ  /\  ( M  <_  K  /\  K  <_  N ) ) ) )
72, 4, 63bitr4i 212 . . 3  |-  ( ( ( M  e.  ZZ  /\  N  e.  ZZ  /\  K  e.  ZZ )  /\  ( M  <_  K  /\  K  <_  N ) )  <->  ( ( M  e.  ZZ  /\  N  e.  ZZ )  /\  ( K  e.  ZZ  /\  M  <_  K  /\  K  <_  N ) ) )
81, 7bitri 184 . 2  |-  ( K  e.  ( M ... N )  <->  ( ( M  e.  ZZ  /\  N  e.  ZZ )  /\  ( K  e.  ZZ  /\  M  <_  K  /\  K  <_  N ) ) )
9 fzind2.1 . . 3  |-  ( x  =  M  ->  ( ph 
<->  ps ) )
10 fzind2.2 . . 3  |-  ( x  =  y  ->  ( ph 
<->  ch ) )
11 fzind2.3 . . 3  |-  ( x  =  ( y  +  1 )  ->  ( ph 
<->  th ) )
12 fzind2.4 . . 3  |-  ( x  =  K  ->  ( ph 
<->  ta ) )
13 eluz2 9523 . . . 4  |-  ( N  e.  ( ZZ>= `  M
)  <->  ( M  e.  ZZ  /\  N  e.  ZZ  /\  M  <_  N ) )
14 fzind2.5 . . . 4  |-  ( N  e.  ( ZZ>= `  M
)  ->  ps )
1513, 14sylbir 135 . . 3  |-  ( ( M  e.  ZZ  /\  N  e.  ZZ  /\  M  <_  N )  ->  ps )
16 3anass 982 . . . 4  |-  ( ( y  e.  ZZ  /\  M  <_  y  /\  y  <  N )  <->  ( y  e.  ZZ  /\  ( M  <_  y  /\  y  <  N ) ) )
17 elfzo 10135 . . . . . . . 8  |-  ( ( y  e.  ZZ  /\  M  e.  ZZ  /\  N  e.  ZZ )  ->  (
y  e.  ( M..^ N )  <->  ( M  <_  y  /\  y  < 
N ) ) )
18 fzind2.6 . . . . . . . 8  |-  ( y  e.  ( M..^ N
)  ->  ( ch  ->  th ) )
1917, 18syl6bir 164 . . . . . . 7  |-  ( ( y  e.  ZZ  /\  M  e.  ZZ  /\  N  e.  ZZ )  ->  (
( M  <_  y  /\  y  <  N )  ->  ( ch  ->  th ) ) )
20193coml 1210 . . . . . 6  |-  ( ( M  e.  ZZ  /\  N  e.  ZZ  /\  y  e.  ZZ )  ->  (
( M  <_  y  /\  y  <  N )  ->  ( ch  ->  th ) ) )
21203expa 1203 . . . . 5  |-  ( ( ( M  e.  ZZ  /\  N  e.  ZZ )  /\  y  e.  ZZ )  ->  ( ( M  <_  y  /\  y  <  N )  ->  ( ch  ->  th ) ) )
2221impr 379 . . . 4  |-  ( ( ( M  e.  ZZ  /\  N  e.  ZZ )  /\  ( y  e.  ZZ  /\  ( M  <_  y  /\  y  <  N ) ) )  ->  ( ch  ->  th ) )
2316, 22sylan2b 287 . . 3  |-  ( ( ( M  e.  ZZ  /\  N  e.  ZZ )  /\  ( y  e.  ZZ  /\  M  <_ 
y  /\  y  <  N ) )  ->  ( ch  ->  th ) )
249, 10, 11, 12, 15, 23fzind 9357 . 2  |-  ( ( ( M  e.  ZZ  /\  N  e.  ZZ )  /\  ( K  e.  ZZ  /\  M  <_  K  /\  K  <_  N
) )  ->  ta )
258, 24sylbi 121 1  |-  ( K  e.  ( M ... N )  ->  ta )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 104    <-> wb 105    /\ w3a 978    = wceq 1353    e. wcel 2148   class class class wbr 4000   ` cfv 5212  (class class class)co 5869   1c1 7803    + caddc 7805    < clt 7982    <_ cle 7983   ZZcz 9242   ZZ>=cuz 9517   ...cfz 9995  ..^cfzo 10128
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 614  ax-in2 615  ax-io 709  ax-5 1447  ax-7 1448  ax-gen 1449  ax-ie1 1493  ax-ie2 1494  ax-8 1504  ax-10 1505  ax-11 1506  ax-i12 1507  ax-bndl 1509  ax-4 1510  ax-17 1526  ax-i9 1530  ax-ial 1534  ax-i5r 1535  ax-13 2150  ax-14 2151  ax-ext 2159  ax-sep 4118  ax-pow 4171  ax-pr 4206  ax-un 4430  ax-setind 4533  ax-cnex 7893  ax-resscn 7894  ax-1cn 7895  ax-1re 7896  ax-icn 7897  ax-addcl 7898  ax-addrcl 7899  ax-mulcl 7900  ax-addcom 7902  ax-addass 7904  ax-distr 7906  ax-i2m1 7907  ax-0lt1 7908  ax-0id 7910  ax-rnegex 7911  ax-cnre 7913  ax-pre-ltirr 7914  ax-pre-ltwlin 7915  ax-pre-lttrn 7916  ax-pre-ltadd 7918
This theorem depends on definitions:  df-bi 117  df-3or 979  df-3an 980  df-tru 1356  df-fal 1359  df-nf 1461  df-sb 1763  df-eu 2029  df-mo 2030  df-clab 2164  df-cleq 2170  df-clel 2173  df-nfc 2308  df-ne 2348  df-nel 2443  df-ral 2460  df-rex 2461  df-reu 2462  df-rab 2464  df-v 2739  df-sbc 2963  df-csb 3058  df-dif 3131  df-un 3133  df-in 3135  df-ss 3142  df-pw 3576  df-sn 3597  df-pr 3598  df-op 3600  df-uni 3808  df-int 3843  df-iun 3886  df-br 4001  df-opab 4062  df-mpt 4063  df-id 4290  df-xp 4629  df-rel 4630  df-cnv 4631  df-co 4632  df-dm 4633  df-rn 4634  df-res 4635  df-ima 4636  df-iota 5174  df-fun 5214  df-fn 5215  df-f 5216  df-fv 5220  df-riota 5825  df-ov 5872  df-oprab 5873  df-mpo 5874  df-1st 6135  df-2nd 6136  df-pnf 7984  df-mnf 7985  df-xr 7986  df-ltxr 7987  df-le 7988  df-sub 8120  df-neg 8121  df-inn 8909  df-n0 9166  df-z 9243  df-uz 9518  df-fz 9996  df-fzo 10129
This theorem is referenced by:  exfzdc  10226  seq3clss  10453  seq3caopr3  10467  seq3f1olemp  10488  seq3id3  10493  ser3ge0  10503  prodfap0  11537  prodfrecap  11538  eulerthlemrprm  12212  eulerthlema  12213  nninfdclemlt  12435
  Copyright terms: Public domain W3C validator