ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  fzind2 Unicode version

Theorem fzind2 10165
Description: Induction on the integers from  M to  N inclusive. The first four hypotheses give us the substitution instances we need; the last two are the basis and the induction step. Version of fzind 9298 using integer range definitions. (Contributed by Mario Carneiro, 6-Feb-2016.)
Hypotheses
Ref Expression
fzind2.1  |-  ( x  =  M  ->  ( ph 
<->  ps ) )
fzind2.2  |-  ( x  =  y  ->  ( ph 
<->  ch ) )
fzind2.3  |-  ( x  =  ( y  +  1 )  ->  ( ph 
<->  th ) )
fzind2.4  |-  ( x  =  K  ->  ( ph 
<->  ta ) )
fzind2.5  |-  ( N  e.  ( ZZ>= `  M
)  ->  ps )
fzind2.6  |-  ( y  e.  ( M..^ N
)  ->  ( ch  ->  th ) )
Assertion
Ref Expression
fzind2  |-  ( K  e.  ( M ... N )  ->  ta )
Distinct variable groups:    x, K    x, M, y    x, N, y    ch, x    ph, y    ps, x    ta, x    th, x
Allowed substitution hints:    ph( x)    ps( y)    ch( y)    th( y)    ta( y)    K( y)

Proof of Theorem fzind2
StepHypRef Expression
1 elfz2 9943 . . 3  |-  ( K  e.  ( M ... N )  <->  ( ( M  e.  ZZ  /\  N  e.  ZZ  /\  K  e.  ZZ )  /\  ( M  <_  K  /\  K  <_  N ) ) )
2 anass 399 . . . 4  |-  ( ( ( ( M  e.  ZZ  /\  N  e.  ZZ )  /\  K  e.  ZZ )  /\  ( M  <_  K  /\  K  <_  N ) )  <->  ( ( M  e.  ZZ  /\  N  e.  ZZ )  /\  ( K  e.  ZZ  /\  ( M  <_  K  /\  K  <_  N ) ) ) )
3 df-3an 969 . . . . 5  |-  ( ( M  e.  ZZ  /\  N  e.  ZZ  /\  K  e.  ZZ )  <->  ( ( M  e.  ZZ  /\  N  e.  ZZ )  /\  K  e.  ZZ ) )
43anbi1i 454 . . . 4  |-  ( ( ( M  e.  ZZ  /\  N  e.  ZZ  /\  K  e.  ZZ )  /\  ( M  <_  K  /\  K  <_  N ) )  <->  ( ( ( M  e.  ZZ  /\  N  e.  ZZ )  /\  K  e.  ZZ )  /\  ( M  <_  K  /\  K  <_  N
) ) )
5 3anass 971 . . . . 5  |-  ( ( K  e.  ZZ  /\  M  <_  K  /\  K  <_  N )  <->  ( K  e.  ZZ  /\  ( M  <_  K  /\  K  <_  N ) ) )
65anbi2i 453 . . . 4  |-  ( ( ( M  e.  ZZ  /\  N  e.  ZZ )  /\  ( K  e.  ZZ  /\  M  <_  K  /\  K  <_  N
) )  <->  ( ( M  e.  ZZ  /\  N  e.  ZZ )  /\  ( K  e.  ZZ  /\  ( M  <_  K  /\  K  <_  N ) ) ) )
72, 4, 63bitr4i 211 . . 3  |-  ( ( ( M  e.  ZZ  /\  N  e.  ZZ  /\  K  e.  ZZ )  /\  ( M  <_  K  /\  K  <_  N ) )  <->  ( ( M  e.  ZZ  /\  N  e.  ZZ )  /\  ( K  e.  ZZ  /\  M  <_  K  /\  K  <_  N ) ) )
81, 7bitri 183 . 2  |-  ( K  e.  ( M ... N )  <->  ( ( M  e.  ZZ  /\  N  e.  ZZ )  /\  ( K  e.  ZZ  /\  M  <_  K  /\  K  <_  N ) ) )
9 fzind2.1 . . 3  |-  ( x  =  M  ->  ( ph 
<->  ps ) )
10 fzind2.2 . . 3  |-  ( x  =  y  ->  ( ph 
<->  ch ) )
11 fzind2.3 . . 3  |-  ( x  =  ( y  +  1 )  ->  ( ph 
<->  th ) )
12 fzind2.4 . . 3  |-  ( x  =  K  ->  ( ph 
<->  ta ) )
13 eluz2 9464 . . . 4  |-  ( N  e.  ( ZZ>= `  M
)  <->  ( M  e.  ZZ  /\  N  e.  ZZ  /\  M  <_  N ) )
14 fzind2.5 . . . 4  |-  ( N  e.  ( ZZ>= `  M
)  ->  ps )
1513, 14sylbir 134 . . 3  |-  ( ( M  e.  ZZ  /\  N  e.  ZZ  /\  M  <_  N )  ->  ps )
16 3anass 971 . . . 4  |-  ( ( y  e.  ZZ  /\  M  <_  y  /\  y  <  N )  <->  ( y  e.  ZZ  /\  ( M  <_  y  /\  y  <  N ) ) )
17 elfzo 10075 . . . . . . . 8  |-  ( ( y  e.  ZZ  /\  M  e.  ZZ  /\  N  e.  ZZ )  ->  (
y  e.  ( M..^ N )  <->  ( M  <_  y  /\  y  < 
N ) ) )
18 fzind2.6 . . . . . . . 8  |-  ( y  e.  ( M..^ N
)  ->  ( ch  ->  th ) )
1917, 18syl6bir 163 . . . . . . 7  |-  ( ( y  e.  ZZ  /\  M  e.  ZZ  /\  N  e.  ZZ )  ->  (
( M  <_  y  /\  y  <  N )  ->  ( ch  ->  th ) ) )
20193coml 1199 . . . . . 6  |-  ( ( M  e.  ZZ  /\  N  e.  ZZ  /\  y  e.  ZZ )  ->  (
( M  <_  y  /\  y  <  N )  ->  ( ch  ->  th ) ) )
21203expa 1192 . . . . 5  |-  ( ( ( M  e.  ZZ  /\  N  e.  ZZ )  /\  y  e.  ZZ )  ->  ( ( M  <_  y  /\  y  <  N )  ->  ( ch  ->  th ) ) )
2221impr 377 . . . 4  |-  ( ( ( M  e.  ZZ  /\  N  e.  ZZ )  /\  ( y  e.  ZZ  /\  ( M  <_  y  /\  y  <  N ) ) )  ->  ( ch  ->  th ) )
2316, 22sylan2b 285 . . 3  |-  ( ( ( M  e.  ZZ  /\  N  e.  ZZ )  /\  ( y  e.  ZZ  /\  M  <_ 
y  /\  y  <  N ) )  ->  ( ch  ->  th ) )
249, 10, 11, 12, 15, 23fzind 9298 . 2  |-  ( ( ( M  e.  ZZ  /\  N  e.  ZZ )  /\  ( K  e.  ZZ  /\  M  <_  K  /\  K  <_  N
) )  ->  ta )
258, 24sylbi 120 1  |-  ( K  e.  ( M ... N )  ->  ta )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 103    <-> wb 104    /\ w3a 967    = wceq 1342    e. wcel 2135   class class class wbr 3977   ` cfv 5183  (class class class)co 5837   1c1 7746    + caddc 7748    < clt 7925    <_ cle 7926   ZZcz 9183   ZZ>=cuz 9458   ...cfz 9936  ..^cfzo 10068
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-in1 604  ax-in2 605  ax-io 699  ax-5 1434  ax-7 1435  ax-gen 1436  ax-ie1 1480  ax-ie2 1481  ax-8 1491  ax-10 1492  ax-11 1493  ax-i12 1494  ax-bndl 1496  ax-4 1497  ax-17 1513  ax-i9 1517  ax-ial 1521  ax-i5r 1522  ax-13 2137  ax-14 2138  ax-ext 2146  ax-sep 4095  ax-pow 4148  ax-pr 4182  ax-un 4406  ax-setind 4509  ax-cnex 7836  ax-resscn 7837  ax-1cn 7838  ax-1re 7839  ax-icn 7840  ax-addcl 7841  ax-addrcl 7842  ax-mulcl 7843  ax-addcom 7845  ax-addass 7847  ax-distr 7849  ax-i2m1 7850  ax-0lt1 7851  ax-0id 7853  ax-rnegex 7854  ax-cnre 7856  ax-pre-ltirr 7857  ax-pre-ltwlin 7858  ax-pre-lttrn 7859  ax-pre-ltadd 7861
This theorem depends on definitions:  df-bi 116  df-3or 968  df-3an 969  df-tru 1345  df-fal 1348  df-nf 1448  df-sb 1750  df-eu 2016  df-mo 2017  df-clab 2151  df-cleq 2157  df-clel 2160  df-nfc 2295  df-ne 2335  df-nel 2430  df-ral 2447  df-rex 2448  df-reu 2449  df-rab 2451  df-v 2724  df-sbc 2948  df-csb 3042  df-dif 3114  df-un 3116  df-in 3118  df-ss 3125  df-pw 3556  df-sn 3577  df-pr 3578  df-op 3580  df-uni 3785  df-int 3820  df-iun 3863  df-br 3978  df-opab 4039  df-mpt 4040  df-id 4266  df-xp 4605  df-rel 4606  df-cnv 4607  df-co 4608  df-dm 4609  df-rn 4610  df-res 4611  df-ima 4612  df-iota 5148  df-fun 5185  df-fn 5186  df-f 5187  df-fv 5191  df-riota 5793  df-ov 5840  df-oprab 5841  df-mpo 5842  df-1st 6101  df-2nd 6102  df-pnf 7927  df-mnf 7928  df-xr 7929  df-ltxr 7930  df-le 7931  df-sub 8063  df-neg 8064  df-inn 8850  df-n0 9107  df-z 9184  df-uz 9459  df-fz 9937  df-fzo 10069
This theorem is referenced by:  exfzdc  10166  seq3clss  10393  seq3caopr3  10407  seq3f1olemp  10428  seq3id3  10433  ser3ge0  10443  prodfap0  11476  prodfrecap  11477  eulerthlemrprm  12150  eulerthlema  12151  nninfdclemlt  12347
  Copyright terms: Public domain W3C validator