Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > fzfig | Unicode version |
Description: A finite interval of integers is finite. (Contributed by Jim Kingdon, 19-May-2020.) |
Ref | Expression |
---|---|
fzfig |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | eluz 9471 | . . 3 | |
2 | eqid 2164 | . . . . . . 7 frec frec | |
3 | 2 | frechashgf1o 10354 | . . . . . 6 frec |
4 | peano2uz 9513 | . . . . . . 7 | |
5 | uznn0sub 9489 | . . . . . . 7 | |
6 | 4, 5 | syl 14 | . . . . . 6 |
7 | f1ocnvdm 5744 | . . . . . 6 frec frec | |
8 | 3, 6, 7 | sylancr 411 | . . . . 5 frec |
9 | nnfi 6830 | . . . . 5 frec frec | |
10 | 8, 9 | syl 14 | . . . 4 frec |
11 | 2 | frecfzen2 10353 | . . . 4 frec |
12 | enfii 6832 | . . . 4 frec frec | |
13 | 10, 11, 12 | syl2anc 409 | . . 3 |
14 | 1, 13 | syl6bir 163 | . 2 |
15 | zltnle 9229 | . . . . 5 | |
16 | 15 | ancoms 266 | . . . 4 |
17 | fzn 9968 | . . . 4 | |
18 | 16, 17 | bitr3d 189 | . . 3 |
19 | 0fin 6842 | . . . 4 | |
20 | eleq1 2227 | . . . 4 | |
21 | 19, 20 | mpbiri 167 | . . 3 |
22 | 18, 21 | syl6bi 162 | . 2 |
23 | zdcle 9259 | . . 3 DECID | |
24 | df-dc 825 | . . 3 DECID | |
25 | 23, 24 | sylib 121 | . 2 |
26 | 14, 22, 25 | mpjaod 708 | 1 |
Colors of variables: wff set class |
Syntax hints: wn 3 wi 4 wa 103 wb 104 wo 698 DECID wdc 824 wceq 1342 wcel 2135 c0 3405 class class class wbr 3977 cmpt 4038 com 4562 ccnv 4598 wf1o 5182 cfv 5183 (class class class)co 5837 freccfrec 6350 cen 6696 cfn 6698 cc0 7745 c1 7746 caddc 7748 clt 7925 cle 7926 cmin 8061 cn0 9106 cz 9183 cuz 9458 cfz 9936 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-in1 604 ax-in2 605 ax-io 699 ax-5 1434 ax-7 1435 ax-gen 1436 ax-ie1 1480 ax-ie2 1481 ax-8 1491 ax-10 1492 ax-11 1493 ax-i12 1494 ax-bndl 1496 ax-4 1497 ax-17 1513 ax-i9 1517 ax-ial 1521 ax-i5r 1522 ax-13 2137 ax-14 2138 ax-ext 2146 ax-coll 4092 ax-sep 4095 ax-nul 4103 ax-pow 4148 ax-pr 4182 ax-un 4406 ax-setind 4509 ax-iinf 4560 ax-cnex 7836 ax-resscn 7837 ax-1cn 7838 ax-1re 7839 ax-icn 7840 ax-addcl 7841 ax-addrcl 7842 ax-mulcl 7843 ax-addcom 7845 ax-addass 7847 ax-distr 7849 ax-i2m1 7850 ax-0lt1 7851 ax-0id 7853 ax-rnegex 7854 ax-cnre 7856 ax-pre-ltirr 7857 ax-pre-ltwlin 7858 ax-pre-lttrn 7859 ax-pre-apti 7860 ax-pre-ltadd 7861 |
This theorem depends on definitions: df-bi 116 df-dc 825 df-3or 968 df-3an 969 df-tru 1345 df-fal 1348 df-nf 1448 df-sb 1750 df-eu 2016 df-mo 2017 df-clab 2151 df-cleq 2157 df-clel 2160 df-nfc 2295 df-ne 2335 df-nel 2430 df-ral 2447 df-rex 2448 df-reu 2449 df-rab 2451 df-v 2724 df-sbc 2948 df-csb 3042 df-dif 3114 df-un 3116 df-in 3118 df-ss 3125 df-nul 3406 df-pw 3556 df-sn 3577 df-pr 3578 df-op 3580 df-uni 3785 df-int 3820 df-iun 3863 df-br 3978 df-opab 4039 df-mpt 4040 df-tr 4076 df-id 4266 df-iord 4339 df-on 4341 df-ilim 4342 df-suc 4344 df-iom 4563 df-xp 4605 df-rel 4606 df-cnv 4607 df-co 4608 df-dm 4609 df-rn 4610 df-res 4611 df-ima 4612 df-iota 5148 df-fun 5185 df-fn 5186 df-f 5187 df-f1 5188 df-fo 5189 df-f1o 5190 df-fv 5191 df-riota 5793 df-ov 5840 df-oprab 5841 df-mpo 5842 df-1st 6101 df-2nd 6102 df-recs 6265 df-frec 6351 df-1o 6376 df-er 6493 df-en 6699 df-fin 6701 df-pnf 7927 df-mnf 7928 df-xr 7929 df-ltxr 7930 df-le 7931 df-sub 8063 df-neg 8064 df-inn 8850 df-n0 9107 df-z 9184 df-uz 9459 df-fz 9937 |
This theorem is referenced by: fzfigd 10357 fzofig 10358 isfinite4im 10696 phibnd 12138 |
Copyright terms: Public domain | W3C validator |