ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  fzfig Unicode version

Theorem fzfig 10652
Description: A finite interval of integers is finite. (Contributed by Jim Kingdon, 19-May-2020.)
Assertion
Ref Expression
fzfig  |-  ( ( M  e.  ZZ  /\  N  e.  ZZ )  ->  ( M ... N
)  e.  Fin )

Proof of Theorem fzfig
StepHypRef Expression
1 eluz 9735 . . 3  |-  ( ( M  e.  ZZ  /\  N  e.  ZZ )  ->  ( N  e.  (
ZZ>= `  M )  <->  M  <_  N ) )
2 eqid 2229 . . . . . . 7  |- frec ( ( x  e.  ZZ  |->  ( x  +  1 ) ) ,  0 )  = frec ( ( x  e.  ZZ  |->  ( x  +  1 ) ) ,  0 )
32frechashgf1o 10650 . . . . . 6  |- frec ( ( x  e.  ZZ  |->  ( x  +  1 ) ) ,  0 ) : om -1-1-onto-> NN0
4 peano2uz 9778 . . . . . . 7  |-  ( N  e.  ( ZZ>= `  M
)  ->  ( N  +  1 )  e.  ( ZZ>= `  M )
)
5 uznn0sub 9754 . . . . . . 7  |-  ( ( N  +  1 )  e.  ( ZZ>= `  M
)  ->  ( ( N  +  1 )  -  M )  e. 
NN0 )
64, 5syl 14 . . . . . 6  |-  ( N  e.  ( ZZ>= `  M
)  ->  ( ( N  +  1 )  -  M )  e. 
NN0 )
7 f1ocnvdm 5905 . . . . . 6  |-  ( (frec ( ( x  e.  ZZ  |->  ( x  + 
1 ) ) ,  0 ) : om -1-1-onto-> NN0  /\  ( ( N  + 
1 )  -  M
)  e.  NN0 )  ->  ( `'frec ( ( x  e.  ZZ  |->  ( x  +  1 ) ) ,  0 ) `
 ( ( N  +  1 )  -  M ) )  e. 
om )
83, 6, 7sylancr 414 . . . . 5  |-  ( N  e.  ( ZZ>= `  M
)  ->  ( `'frec ( ( x  e.  ZZ  |->  ( x  + 
1 ) ) ,  0 ) `  (
( N  +  1 )  -  M ) )  e.  om )
9 nnfi 7034 . . . . 5  |-  ( ( `'frec ( ( x  e.  ZZ  |->  ( x  + 
1 ) ) ,  0 ) `  (
( N  +  1 )  -  M ) )  e.  om  ->  ( `'frec ( ( x  e.  ZZ  |->  ( x  + 
1 ) ) ,  0 ) `  (
( N  +  1 )  -  M ) )  e.  Fin )
108, 9syl 14 . . . 4  |-  ( N  e.  ( ZZ>= `  M
)  ->  ( `'frec ( ( x  e.  ZZ  |->  ( x  + 
1 ) ) ,  0 ) `  (
( N  +  1 )  -  M ) )  e.  Fin )
112frecfzen2 10649 . . . 4  |-  ( N  e.  ( ZZ>= `  M
)  ->  ( M ... N )  ~~  ( `'frec ( ( x  e.  ZZ  |->  ( x  + 
1 ) ) ,  0 ) `  (
( N  +  1 )  -  M ) ) )
12 enfii 7036 . . . 4  |-  ( ( ( `'frec ( ( x  e.  ZZ  |->  ( x  +  1 ) ) ,  0 ) `
 ( ( N  +  1 )  -  M ) )  e. 
Fin  /\  ( M ... N )  ~~  ( `'frec ( ( x  e.  ZZ  |->  ( x  + 
1 ) ) ,  0 ) `  (
( N  +  1 )  -  M ) ) )  ->  ( M ... N )  e. 
Fin )
1310, 11, 12syl2anc 411 . . 3  |-  ( N  e.  ( ZZ>= `  M
)  ->  ( M ... N )  e.  Fin )
141, 13biimtrrdi 164 . 2  |-  ( ( M  e.  ZZ  /\  N  e.  ZZ )  ->  ( M  <_  N  ->  ( M ... N
)  e.  Fin )
)
15 zltnle 9492 . . . . 5  |-  ( ( N  e.  ZZ  /\  M  e.  ZZ )  ->  ( N  <  M  <->  -.  M  <_  N )
)
1615ancoms 268 . . . 4  |-  ( ( M  e.  ZZ  /\  N  e.  ZZ )  ->  ( N  <  M  <->  -.  M  <_  N )
)
17 fzn 10238 . . . 4  |-  ( ( M  e.  ZZ  /\  N  e.  ZZ )  ->  ( N  <  M  <->  ( M ... N )  =  (/) ) )
1816, 17bitr3d 190 . . 3  |-  ( ( M  e.  ZZ  /\  N  e.  ZZ )  ->  ( -.  M  <_  N 
<->  ( M ... N
)  =  (/) ) )
19 0fin 7046 . . . 4  |-  (/)  e.  Fin
20 eleq1 2292 . . . 4  |-  ( ( M ... N )  =  (/)  ->  ( ( M ... N )  e.  Fin  <->  (/)  e.  Fin ) )
2119, 20mpbiri 168 . . 3  |-  ( ( M ... N )  =  (/)  ->  ( M ... N )  e. 
Fin )
2218, 21biimtrdi 163 . 2  |-  ( ( M  e.  ZZ  /\  N  e.  ZZ )  ->  ( -.  M  <_  N  ->  ( M ... N )  e.  Fin ) )
23 zdcle 9523 . . 3  |-  ( ( M  e.  ZZ  /\  N  e.  ZZ )  -> DECID  M  <_  N )
24 df-dc 840 . . 3  |-  (DECID  M  <_  N 
<->  ( M  <_  N  \/  -.  M  <_  N
) )
2523, 24sylib 122 . 2  |-  ( ( M  e.  ZZ  /\  N  e.  ZZ )  ->  ( M  <_  N  \/  -.  M  <_  N
) )
2614, 22, 25mpjaod 723 1  |-  ( ( M  e.  ZZ  /\  N  e.  ZZ )  ->  ( M ... N
)  e.  Fin )
Colors of variables: wff set class
Syntax hints:   -. wn 3    -> wi 4    /\ wa 104    <-> wb 105    \/ wo 713  DECID wdc 839    = wceq 1395    e. wcel 2200   (/)c0 3491   class class class wbr 4083    |-> cmpt 4145   omcom 4682   `'ccnv 4718   -1-1-onto->wf1o 5317   ` cfv 5318  (class class class)co 6001  freccfrec 6536    ~~ cen 6885   Fincfn 6887   0cc0 7999   1c1 8000    + caddc 8002    < clt 8181    <_ cle 8182    - cmin 8317   NN0cn0 9369   ZZcz 9446   ZZ>=cuz 9722   ...cfz 10204
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 617  ax-in2 618  ax-io 714  ax-5 1493  ax-7 1494  ax-gen 1495  ax-ie1 1539  ax-ie2 1540  ax-8 1550  ax-10 1551  ax-11 1552  ax-i12 1553  ax-bndl 1555  ax-4 1556  ax-17 1572  ax-i9 1576  ax-ial 1580  ax-i5r 1581  ax-13 2202  ax-14 2203  ax-ext 2211  ax-coll 4199  ax-sep 4202  ax-nul 4210  ax-pow 4258  ax-pr 4293  ax-un 4524  ax-setind 4629  ax-iinf 4680  ax-cnex 8090  ax-resscn 8091  ax-1cn 8092  ax-1re 8093  ax-icn 8094  ax-addcl 8095  ax-addrcl 8096  ax-mulcl 8097  ax-addcom 8099  ax-addass 8101  ax-distr 8103  ax-i2m1 8104  ax-0lt1 8105  ax-0id 8107  ax-rnegex 8108  ax-cnre 8110  ax-pre-ltirr 8111  ax-pre-ltwlin 8112  ax-pre-lttrn 8113  ax-pre-apti 8114  ax-pre-ltadd 8115
This theorem depends on definitions:  df-bi 117  df-dc 840  df-3or 1003  df-3an 1004  df-tru 1398  df-fal 1401  df-nf 1507  df-sb 1809  df-eu 2080  df-mo 2081  df-clab 2216  df-cleq 2222  df-clel 2225  df-nfc 2361  df-ne 2401  df-nel 2496  df-ral 2513  df-rex 2514  df-reu 2515  df-rab 2517  df-v 2801  df-sbc 3029  df-csb 3125  df-dif 3199  df-un 3201  df-in 3203  df-ss 3210  df-nul 3492  df-pw 3651  df-sn 3672  df-pr 3673  df-op 3675  df-uni 3889  df-int 3924  df-iun 3967  df-br 4084  df-opab 4146  df-mpt 4147  df-tr 4183  df-id 4384  df-iord 4457  df-on 4459  df-ilim 4460  df-suc 4462  df-iom 4683  df-xp 4725  df-rel 4726  df-cnv 4727  df-co 4728  df-dm 4729  df-rn 4730  df-res 4731  df-ima 4732  df-iota 5278  df-fun 5320  df-fn 5321  df-f 5322  df-f1 5323  df-fo 5324  df-f1o 5325  df-fv 5326  df-riota 5954  df-ov 6004  df-oprab 6005  df-mpo 6006  df-1st 6286  df-2nd 6287  df-recs 6451  df-frec 6537  df-1o 6562  df-er 6680  df-en 6888  df-fin 6890  df-pnf 8183  df-mnf 8184  df-xr 8185  df-ltxr 8186  df-le 8187  df-sub 8319  df-neg 8320  df-inn 9111  df-n0 9370  df-z 9447  df-uz 9723  df-fz 10205
This theorem is referenced by:  fzfigd  10653  fzofig  10654  isfinite4im  11014  phibnd  12739
  Copyright terms: Public domain W3C validator