ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  fzfig Unicode version

Theorem fzfig 10430
Description: A finite interval of integers is finite. (Contributed by Jim Kingdon, 19-May-2020.)
Assertion
Ref Expression
fzfig  |-  ( ( M  e.  ZZ  /\  N  e.  ZZ )  ->  ( M ... N
)  e.  Fin )

Proof of Theorem fzfig
StepHypRef Expression
1 eluz 9541 . . 3  |-  ( ( M  e.  ZZ  /\  N  e.  ZZ )  ->  ( N  e.  (
ZZ>= `  M )  <->  M  <_  N ) )
2 eqid 2177 . . . . . . 7  |- frec ( ( x  e.  ZZ  |->  ( x  +  1 ) ) ,  0 )  = frec ( ( x  e.  ZZ  |->  ( x  +  1 ) ) ,  0 )
32frechashgf1o 10428 . . . . . 6  |- frec ( ( x  e.  ZZ  |->  ( x  +  1 ) ) ,  0 ) : om -1-1-onto-> NN0
4 peano2uz 9583 . . . . . . 7  |-  ( N  e.  ( ZZ>= `  M
)  ->  ( N  +  1 )  e.  ( ZZ>= `  M )
)
5 uznn0sub 9559 . . . . . . 7  |-  ( ( N  +  1 )  e.  ( ZZ>= `  M
)  ->  ( ( N  +  1 )  -  M )  e. 
NN0 )
64, 5syl 14 . . . . . 6  |-  ( N  e.  ( ZZ>= `  M
)  ->  ( ( N  +  1 )  -  M )  e. 
NN0 )
7 f1ocnvdm 5782 . . . . . 6  |-  ( (frec ( ( x  e.  ZZ  |->  ( x  + 
1 ) ) ,  0 ) : om -1-1-onto-> NN0  /\  ( ( N  + 
1 )  -  M
)  e.  NN0 )  ->  ( `'frec ( ( x  e.  ZZ  |->  ( x  +  1 ) ) ,  0 ) `
 ( ( N  +  1 )  -  M ) )  e. 
om )
83, 6, 7sylancr 414 . . . . 5  |-  ( N  e.  ( ZZ>= `  M
)  ->  ( `'frec ( ( x  e.  ZZ  |->  ( x  + 
1 ) ) ,  0 ) `  (
( N  +  1 )  -  M ) )  e.  om )
9 nnfi 6872 . . . . 5  |-  ( ( `'frec ( ( x  e.  ZZ  |->  ( x  + 
1 ) ) ,  0 ) `  (
( N  +  1 )  -  M ) )  e.  om  ->  ( `'frec ( ( x  e.  ZZ  |->  ( x  + 
1 ) ) ,  0 ) `  (
( N  +  1 )  -  M ) )  e.  Fin )
108, 9syl 14 . . . 4  |-  ( N  e.  ( ZZ>= `  M
)  ->  ( `'frec ( ( x  e.  ZZ  |->  ( x  + 
1 ) ) ,  0 ) `  (
( N  +  1 )  -  M ) )  e.  Fin )
112frecfzen2 10427 . . . 4  |-  ( N  e.  ( ZZ>= `  M
)  ->  ( M ... N )  ~~  ( `'frec ( ( x  e.  ZZ  |->  ( x  + 
1 ) ) ,  0 ) `  (
( N  +  1 )  -  M ) ) )
12 enfii 6874 . . . 4  |-  ( ( ( `'frec ( ( x  e.  ZZ  |->  ( x  +  1 ) ) ,  0 ) `
 ( ( N  +  1 )  -  M ) )  e. 
Fin  /\  ( M ... N )  ~~  ( `'frec ( ( x  e.  ZZ  |->  ( x  + 
1 ) ) ,  0 ) `  (
( N  +  1 )  -  M ) ) )  ->  ( M ... N )  e. 
Fin )
1310, 11, 12syl2anc 411 . . 3  |-  ( N  e.  ( ZZ>= `  M
)  ->  ( M ... N )  e.  Fin )
141, 13syl6bir 164 . 2  |-  ( ( M  e.  ZZ  /\  N  e.  ZZ )  ->  ( M  <_  N  ->  ( M ... N
)  e.  Fin )
)
15 zltnle 9299 . . . . 5  |-  ( ( N  e.  ZZ  /\  M  e.  ZZ )  ->  ( N  <  M  <->  -.  M  <_  N )
)
1615ancoms 268 . . . 4  |-  ( ( M  e.  ZZ  /\  N  e.  ZZ )  ->  ( N  <  M  <->  -.  M  <_  N )
)
17 fzn 10042 . . . 4  |-  ( ( M  e.  ZZ  /\  N  e.  ZZ )  ->  ( N  <  M  <->  ( M ... N )  =  (/) ) )
1816, 17bitr3d 190 . . 3  |-  ( ( M  e.  ZZ  /\  N  e.  ZZ )  ->  ( -.  M  <_  N 
<->  ( M ... N
)  =  (/) ) )
19 0fin 6884 . . . 4  |-  (/)  e.  Fin
20 eleq1 2240 . . . 4  |-  ( ( M ... N )  =  (/)  ->  ( ( M ... N )  e.  Fin  <->  (/)  e.  Fin ) )
2119, 20mpbiri 168 . . 3  |-  ( ( M ... N )  =  (/)  ->  ( M ... N )  e. 
Fin )
2218, 21syl6bi 163 . 2  |-  ( ( M  e.  ZZ  /\  N  e.  ZZ )  ->  ( -.  M  <_  N  ->  ( M ... N )  e.  Fin ) )
23 zdcle 9329 . . 3  |-  ( ( M  e.  ZZ  /\  N  e.  ZZ )  -> DECID  M  <_  N )
24 df-dc 835 . . 3  |-  (DECID  M  <_  N 
<->  ( M  <_  N  \/  -.  M  <_  N
) )
2523, 24sylib 122 . 2  |-  ( ( M  e.  ZZ  /\  N  e.  ZZ )  ->  ( M  <_  N  \/  -.  M  <_  N
) )
2614, 22, 25mpjaod 718 1  |-  ( ( M  e.  ZZ  /\  N  e.  ZZ )  ->  ( M ... N
)  e.  Fin )
Colors of variables: wff set class
Syntax hints:   -. wn 3    -> wi 4    /\ wa 104    <-> wb 105    \/ wo 708  DECID wdc 834    = wceq 1353    e. wcel 2148   (/)c0 3423   class class class wbr 4004    |-> cmpt 4065   omcom 4590   `'ccnv 4626   -1-1-onto->wf1o 5216   ` cfv 5217  (class class class)co 5875  freccfrec 6391    ~~ cen 6738   Fincfn 6740   0cc0 7811   1c1 7812    + caddc 7814    < clt 7992    <_ cle 7993    - cmin 8128   NN0cn0 9176   ZZcz 9253   ZZ>=cuz 9528   ...cfz 10008
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 614  ax-in2 615  ax-io 709  ax-5 1447  ax-7 1448  ax-gen 1449  ax-ie1 1493  ax-ie2 1494  ax-8 1504  ax-10 1505  ax-11 1506  ax-i12 1507  ax-bndl 1509  ax-4 1510  ax-17 1526  ax-i9 1530  ax-ial 1534  ax-i5r 1535  ax-13 2150  ax-14 2151  ax-ext 2159  ax-coll 4119  ax-sep 4122  ax-nul 4130  ax-pow 4175  ax-pr 4210  ax-un 4434  ax-setind 4537  ax-iinf 4588  ax-cnex 7902  ax-resscn 7903  ax-1cn 7904  ax-1re 7905  ax-icn 7906  ax-addcl 7907  ax-addrcl 7908  ax-mulcl 7909  ax-addcom 7911  ax-addass 7913  ax-distr 7915  ax-i2m1 7916  ax-0lt1 7917  ax-0id 7919  ax-rnegex 7920  ax-cnre 7922  ax-pre-ltirr 7923  ax-pre-ltwlin 7924  ax-pre-lttrn 7925  ax-pre-apti 7926  ax-pre-ltadd 7927
This theorem depends on definitions:  df-bi 117  df-dc 835  df-3or 979  df-3an 980  df-tru 1356  df-fal 1359  df-nf 1461  df-sb 1763  df-eu 2029  df-mo 2030  df-clab 2164  df-cleq 2170  df-clel 2173  df-nfc 2308  df-ne 2348  df-nel 2443  df-ral 2460  df-rex 2461  df-reu 2462  df-rab 2464  df-v 2740  df-sbc 2964  df-csb 3059  df-dif 3132  df-un 3134  df-in 3136  df-ss 3143  df-nul 3424  df-pw 3578  df-sn 3599  df-pr 3600  df-op 3602  df-uni 3811  df-int 3846  df-iun 3889  df-br 4005  df-opab 4066  df-mpt 4067  df-tr 4103  df-id 4294  df-iord 4367  df-on 4369  df-ilim 4370  df-suc 4372  df-iom 4591  df-xp 4633  df-rel 4634  df-cnv 4635  df-co 4636  df-dm 4637  df-rn 4638  df-res 4639  df-ima 4640  df-iota 5179  df-fun 5219  df-fn 5220  df-f 5221  df-f1 5222  df-fo 5223  df-f1o 5224  df-fv 5225  df-riota 5831  df-ov 5878  df-oprab 5879  df-mpo 5880  df-1st 6141  df-2nd 6142  df-recs 6306  df-frec 6392  df-1o 6417  df-er 6535  df-en 6741  df-fin 6743  df-pnf 7994  df-mnf 7995  df-xr 7996  df-ltxr 7997  df-le 7998  df-sub 8130  df-neg 8131  df-inn 8920  df-n0 9177  df-z 9254  df-uz 9529  df-fz 10009
This theorem is referenced by:  fzfigd  10431  fzofig  10432  isfinite4im  10772  phibnd  12217
  Copyright terms: Public domain W3C validator