ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  fzm1 Unicode version

Theorem fzm1 10056
Description: Choices for an element of a finite interval of integers. (Contributed by Jeff Madsen, 2-Sep-2009.)
Assertion
Ref Expression
fzm1  |-  ( N  e.  ( ZZ>= `  M
)  ->  ( K  e.  ( M ... N
)  <->  ( K  e.  ( M ... ( N  -  1 ) )  \/  K  =  N ) ) )

Proof of Theorem fzm1
StepHypRef Expression
1 oveq1 5860 . . . . . . 7  |-  ( N  =  M  ->  ( N ... N )  =  ( M ... N
) )
21eleq2d 2240 . . . . . 6  |-  ( N  =  M  ->  ( K  e.  ( N ... N )  <->  K  e.  ( M ... N ) ) )
3 elfz1eq 9991 . . . . . 6  |-  ( K  e.  ( N ... N )  ->  K  =  N )
42, 3syl6bir 163 . . . . 5  |-  ( N  =  M  ->  ( K  e.  ( M ... N )  ->  K  =  N ) )
5 olc 706 . . . . 5  |-  ( K  =  N  ->  ( K  e.  ( M ... ( N  -  1 ) )  \/  K  =  N ) )
64, 5syl6 33 . . . 4  |-  ( N  =  M  ->  ( K  e.  ( M ... N )  ->  ( K  e.  ( M ... ( N  -  1 ) )  \/  K  =  N ) ) )
76adantl 275 . . 3  |-  ( ( N  e.  ( ZZ>= `  M )  /\  N  =  M )  ->  ( K  e.  ( M ... N )  ->  ( K  e.  ( M ... ( N  -  1 ) )  \/  K  =  N ) ) )
8 noel 3418 . . . . . 6  |-  -.  K  e.  (/)
9 eluzelz 9496 . . . . . . . . . . . 12  |-  ( N  e.  ( ZZ>= `  M
)  ->  N  e.  ZZ )
109adantr 274 . . . . . . . . . . 11  |-  ( ( N  e.  ( ZZ>= `  M )  /\  N  =  M )  ->  N  e.  ZZ )
1110zred 9334 . . . . . . . . . 10  |-  ( ( N  e.  ( ZZ>= `  M )  /\  N  =  M )  ->  N  e.  RR )
1211ltm1d 8848 . . . . . . . . 9  |-  ( ( N  e.  ( ZZ>= `  M )  /\  N  =  M )  ->  ( N  -  1 )  <  N )
13 breq2 3993 . . . . . . . . . 10  |-  ( N  =  M  ->  (
( N  -  1 )  <  N  <->  ( N  -  1 )  < 
M ) )
1413adantl 275 . . . . . . . . 9  |-  ( ( N  e.  ( ZZ>= `  M )  /\  N  =  M )  ->  (
( N  -  1 )  <  N  <->  ( N  -  1 )  < 
M ) )
1512, 14mpbid 146 . . . . . . . 8  |-  ( ( N  e.  ( ZZ>= `  M )  /\  N  =  M )  ->  ( N  -  1 )  <  M )
16 eluzel2 9492 . . . . . . . . . 10  |-  ( N  e.  ( ZZ>= `  M
)  ->  M  e.  ZZ )
1716adantr 274 . . . . . . . . 9  |-  ( ( N  e.  ( ZZ>= `  M )  /\  N  =  M )  ->  M  e.  ZZ )
18 1zzd 9239 . . . . . . . . . 10  |-  ( ( N  e.  ( ZZ>= `  M )  /\  N  =  M )  ->  1  e.  ZZ )
1910, 18zsubcld 9339 . . . . . . . . 9  |-  ( ( N  e.  ( ZZ>= `  M )  /\  N  =  M )  ->  ( N  -  1 )  e.  ZZ )
20 fzn 9998 . . . . . . . . 9  |-  ( ( M  e.  ZZ  /\  ( N  -  1
)  e.  ZZ )  ->  ( ( N  -  1 )  < 
M  <->  ( M ... ( N  -  1
) )  =  (/) ) )
2117, 19, 20syl2anc 409 . . . . . . . 8  |-  ( ( N  e.  ( ZZ>= `  M )  /\  N  =  M )  ->  (
( N  -  1 )  <  M  <->  ( M ... ( N  -  1 ) )  =  (/) ) )
2215, 21mpbid 146 . . . . . . 7  |-  ( ( N  e.  ( ZZ>= `  M )  /\  N  =  M )  ->  ( M ... ( N  - 
1 ) )  =  (/) )
2322eleq2d 2240 . . . . . 6  |-  ( ( N  e.  ( ZZ>= `  M )  /\  N  =  M )  ->  ( K  e.  ( M ... ( N  -  1 ) )  <->  K  e.  (/) ) )
248, 23mtbiri 670 . . . . 5  |-  ( ( N  e.  ( ZZ>= `  M )  /\  N  =  M )  ->  -.  K  e.  ( M ... ( N  -  1 ) ) )
2524pm2.21d 614 . . . 4  |-  ( ( N  e.  ( ZZ>= `  M )  /\  N  =  M )  ->  ( K  e.  ( M ... ( N  -  1 ) )  ->  K  e.  ( M ... N
) ) )
26 eluzfz2 9988 . . . . . . 7  |-  ( N  e.  ( ZZ>= `  M
)  ->  N  e.  ( M ... N ) )
2726ad2antrr 485 . . . . . 6  |-  ( ( ( N  e.  (
ZZ>= `  M )  /\  N  =  M )  /\  K  =  N
)  ->  N  e.  ( M ... N ) )
28 eleq1 2233 . . . . . . 7  |-  ( K  =  N  ->  ( K  e.  ( M ... N )  <->  N  e.  ( M ... N ) ) )
2928adantl 275 . . . . . 6  |-  ( ( ( N  e.  (
ZZ>= `  M )  /\  N  =  M )  /\  K  =  N
)  ->  ( K  e.  ( M ... N
)  <->  N  e.  ( M ... N ) ) )
3027, 29mpbird 166 . . . . 5  |-  ( ( ( N  e.  (
ZZ>= `  M )  /\  N  =  M )  /\  K  =  N
)  ->  K  e.  ( M ... N ) )
3130ex 114 . . . 4  |-  ( ( N  e.  ( ZZ>= `  M )  /\  N  =  M )  ->  ( K  =  N  ->  K  e.  ( M ... N ) ) )
3225, 31jaod 712 . . 3  |-  ( ( N  e.  ( ZZ>= `  M )  /\  N  =  M )  ->  (
( K  e.  ( M ... ( N  -  1 ) )  \/  K  =  N )  ->  K  e.  ( M ... N ) ) )
337, 32impbid 128 . 2  |-  ( ( N  e.  ( ZZ>= `  M )  /\  N  =  M )  ->  ( K  e.  ( M ... N )  <->  ( K  e.  ( M ... ( N  -  1 ) )  \/  K  =  N ) ) )
34 elfzp1 10028 . . . 4  |-  ( ( N  -  1 )  e.  ( ZZ>= `  M
)  ->  ( K  e.  ( M ... (
( N  -  1 )  +  1 ) )  <->  ( K  e.  ( M ... ( N  -  1 ) )  \/  K  =  ( ( N  - 
1 )  +  1 ) ) ) )
3534adantl 275 . . 3  |-  ( ( N  e.  ( ZZ>= `  M )  /\  ( N  -  1 )  e.  ( ZZ>= `  M
) )  ->  ( K  e.  ( M ... ( ( N  - 
1 )  +  1 ) )  <->  ( K  e.  ( M ... ( N  -  1 ) )  \/  K  =  ( ( N  - 
1 )  +  1 ) ) ) )
369adantr 274 . . . . . . 7  |-  ( ( N  e.  ( ZZ>= `  M )  /\  ( N  -  1 )  e.  ( ZZ>= `  M
) )  ->  N  e.  ZZ )
3736zcnd 9335 . . . . . 6  |-  ( ( N  e.  ( ZZ>= `  M )  /\  ( N  -  1 )  e.  ( ZZ>= `  M
) )  ->  N  e.  CC )
38 npcan1 8297 . . . . . 6  |-  ( N  e.  CC  ->  (
( N  -  1 )  +  1 )  =  N )
3937, 38syl 14 . . . . 5  |-  ( ( N  e.  ( ZZ>= `  M )  /\  ( N  -  1 )  e.  ( ZZ>= `  M
) )  ->  (
( N  -  1 )  +  1 )  =  N )
4039oveq2d 5869 . . . 4  |-  ( ( N  e.  ( ZZ>= `  M )  /\  ( N  -  1 )  e.  ( ZZ>= `  M
) )  ->  ( M ... ( ( N  -  1 )  +  1 ) )  =  ( M ... N
) )
4140eleq2d 2240 . . 3  |-  ( ( N  e.  ( ZZ>= `  M )  /\  ( N  -  1 )  e.  ( ZZ>= `  M
) )  ->  ( K  e.  ( M ... ( ( N  - 
1 )  +  1 ) )  <->  K  e.  ( M ... N ) ) )
4239eqeq2d 2182 . . . 4  |-  ( ( N  e.  ( ZZ>= `  M )  /\  ( N  -  1 )  e.  ( ZZ>= `  M
) )  ->  ( K  =  ( ( N  -  1 )  +  1 )  <->  K  =  N ) )
4342orbi2d 785 . . 3  |-  ( ( N  e.  ( ZZ>= `  M )  /\  ( N  -  1 )  e.  ( ZZ>= `  M
) )  ->  (
( K  e.  ( M ... ( N  -  1 ) )  \/  K  =  ( ( N  -  1 )  +  1 ) )  <->  ( K  e.  ( M ... ( N  -  1 ) )  \/  K  =  N ) ) )
4435, 41, 433bitr3d 217 . 2  |-  ( ( N  e.  ( ZZ>= `  M )  /\  ( N  -  1 )  e.  ( ZZ>= `  M
) )  ->  ( K  e.  ( M ... N )  <->  ( K  e.  ( M ... ( N  -  1 ) )  \/  K  =  N ) ) )
45 uzm1 9517 . 2  |-  ( N  e.  ( ZZ>= `  M
)  ->  ( N  =  M  \/  ( N  -  1 )  e.  ( ZZ>= `  M
) ) )
4633, 44, 45mpjaodan 793 1  |-  ( N  e.  ( ZZ>= `  M
)  ->  ( K  e.  ( M ... N
)  <->  ( K  e.  ( M ... ( N  -  1 ) )  \/  K  =  N ) ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 103    <-> wb 104    \/ wo 703    = wceq 1348    e. wcel 2141   (/)c0 3414   class class class wbr 3989   ` cfv 5198  (class class class)co 5853   CCcc 7772   1c1 7775    + caddc 7777    < clt 7954    - cmin 8090   ZZcz 9212   ZZ>=cuz 9487   ...cfz 9965
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-in1 609  ax-in2 610  ax-io 704  ax-5 1440  ax-7 1441  ax-gen 1442  ax-ie1 1486  ax-ie2 1487  ax-8 1497  ax-10 1498  ax-11 1499  ax-i12 1500  ax-bndl 1502  ax-4 1503  ax-17 1519  ax-i9 1523  ax-ial 1527  ax-i5r 1528  ax-13 2143  ax-14 2144  ax-ext 2152  ax-sep 4107  ax-pow 4160  ax-pr 4194  ax-un 4418  ax-setind 4521  ax-cnex 7865  ax-resscn 7866  ax-1cn 7867  ax-1re 7868  ax-icn 7869  ax-addcl 7870  ax-addrcl 7871  ax-mulcl 7872  ax-addcom 7874  ax-addass 7876  ax-distr 7878  ax-i2m1 7879  ax-0lt1 7880  ax-0id 7882  ax-rnegex 7883  ax-cnre 7885  ax-pre-ltirr 7886  ax-pre-ltwlin 7887  ax-pre-lttrn 7888  ax-pre-apti 7889  ax-pre-ltadd 7890
This theorem depends on definitions:  df-bi 116  df-3or 974  df-3an 975  df-tru 1351  df-fal 1354  df-nf 1454  df-sb 1756  df-eu 2022  df-mo 2023  df-clab 2157  df-cleq 2163  df-clel 2166  df-nfc 2301  df-ne 2341  df-nel 2436  df-ral 2453  df-rex 2454  df-reu 2455  df-rab 2457  df-v 2732  df-sbc 2956  df-dif 3123  df-un 3125  df-in 3127  df-ss 3134  df-nul 3415  df-pw 3568  df-sn 3589  df-pr 3590  df-op 3592  df-uni 3797  df-int 3832  df-br 3990  df-opab 4051  df-mpt 4052  df-id 4278  df-xp 4617  df-rel 4618  df-cnv 4619  df-co 4620  df-dm 4621  df-rn 4622  df-res 4623  df-ima 4624  df-iota 5160  df-fun 5200  df-fn 5201  df-f 5202  df-fv 5206  df-riota 5809  df-ov 5856  df-oprab 5857  df-mpo 5858  df-pnf 7956  df-mnf 7957  df-xr 7958  df-ltxr 7959  df-le 7960  df-sub 8092  df-neg 8093  df-inn 8879  df-n0 9136  df-z 9213  df-uz 9488  df-fz 9966
This theorem is referenced by:  bcpasc  10700  phibndlem  12170  lgsdir2lem2  13724
  Copyright terms: Public domain W3C validator