ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  fzm1 Unicode version

Theorem fzm1 10257
Description: Choices for an element of a finite interval of integers. (Contributed by Jeff Madsen, 2-Sep-2009.)
Assertion
Ref Expression
fzm1  |-  ( N  e.  ( ZZ>= `  M
)  ->  ( K  e.  ( M ... N
)  <->  ( K  e.  ( M ... ( N  -  1 ) )  \/  K  =  N ) ) )

Proof of Theorem fzm1
StepHypRef Expression
1 oveq1 5974 . . . . . . 7  |-  ( N  =  M  ->  ( N ... N )  =  ( M ... N
) )
21eleq2d 2277 . . . . . 6  |-  ( N  =  M  ->  ( K  e.  ( N ... N )  <->  K  e.  ( M ... N ) ) )
3 elfz1eq 10192 . . . . . 6  |-  ( K  e.  ( N ... N )  ->  K  =  N )
42, 3biimtrrdi 164 . . . . 5  |-  ( N  =  M  ->  ( K  e.  ( M ... N )  ->  K  =  N ) )
5 olc 713 . . . . 5  |-  ( K  =  N  ->  ( K  e.  ( M ... ( N  -  1 ) )  \/  K  =  N ) )
64, 5syl6 33 . . . 4  |-  ( N  =  M  ->  ( K  e.  ( M ... N )  ->  ( K  e.  ( M ... ( N  -  1 ) )  \/  K  =  N ) ) )
76adantl 277 . . 3  |-  ( ( N  e.  ( ZZ>= `  M )  /\  N  =  M )  ->  ( K  e.  ( M ... N )  ->  ( K  e.  ( M ... ( N  -  1 ) )  \/  K  =  N ) ) )
8 noel 3472 . . . . . 6  |-  -.  K  e.  (/)
9 eluzelz 9692 . . . . . . . . . . . 12  |-  ( N  e.  ( ZZ>= `  M
)  ->  N  e.  ZZ )
109adantr 276 . . . . . . . . . . 11  |-  ( ( N  e.  ( ZZ>= `  M )  /\  N  =  M )  ->  N  e.  ZZ )
1110zred 9530 . . . . . . . . . 10  |-  ( ( N  e.  ( ZZ>= `  M )  /\  N  =  M )  ->  N  e.  RR )
1211ltm1d 9040 . . . . . . . . 9  |-  ( ( N  e.  ( ZZ>= `  M )  /\  N  =  M )  ->  ( N  -  1 )  <  N )
13 breq2 4063 . . . . . . . . . 10  |-  ( N  =  M  ->  (
( N  -  1 )  <  N  <->  ( N  -  1 )  < 
M ) )
1413adantl 277 . . . . . . . . 9  |-  ( ( N  e.  ( ZZ>= `  M )  /\  N  =  M )  ->  (
( N  -  1 )  <  N  <->  ( N  -  1 )  < 
M ) )
1512, 14mpbid 147 . . . . . . . 8  |-  ( ( N  e.  ( ZZ>= `  M )  /\  N  =  M )  ->  ( N  -  1 )  <  M )
16 eluzel2 9688 . . . . . . . . . 10  |-  ( N  e.  ( ZZ>= `  M
)  ->  M  e.  ZZ )
1716adantr 276 . . . . . . . . 9  |-  ( ( N  e.  ( ZZ>= `  M )  /\  N  =  M )  ->  M  e.  ZZ )
18 1zzd 9434 . . . . . . . . . 10  |-  ( ( N  e.  ( ZZ>= `  M )  /\  N  =  M )  ->  1  e.  ZZ )
1910, 18zsubcld 9535 . . . . . . . . 9  |-  ( ( N  e.  ( ZZ>= `  M )  /\  N  =  M )  ->  ( N  -  1 )  e.  ZZ )
20 fzn 10199 . . . . . . . . 9  |-  ( ( M  e.  ZZ  /\  ( N  -  1
)  e.  ZZ )  ->  ( ( N  -  1 )  < 
M  <->  ( M ... ( N  -  1
) )  =  (/) ) )
2117, 19, 20syl2anc 411 . . . . . . . 8  |-  ( ( N  e.  ( ZZ>= `  M )  /\  N  =  M )  ->  (
( N  -  1 )  <  M  <->  ( M ... ( N  -  1 ) )  =  (/) ) )
2215, 21mpbid 147 . . . . . . 7  |-  ( ( N  e.  ( ZZ>= `  M )  /\  N  =  M )  ->  ( M ... ( N  - 
1 ) )  =  (/) )
2322eleq2d 2277 . . . . . 6  |-  ( ( N  e.  ( ZZ>= `  M )  /\  N  =  M )  ->  ( K  e.  ( M ... ( N  -  1 ) )  <->  K  e.  (/) ) )
248, 23mtbiri 677 . . . . 5  |-  ( ( N  e.  ( ZZ>= `  M )  /\  N  =  M )  ->  -.  K  e.  ( M ... ( N  -  1 ) ) )
2524pm2.21d 620 . . . 4  |-  ( ( N  e.  ( ZZ>= `  M )  /\  N  =  M )  ->  ( K  e.  ( M ... ( N  -  1 ) )  ->  K  e.  ( M ... N
) ) )
26 eluzfz2 10189 . . . . . . 7  |-  ( N  e.  ( ZZ>= `  M
)  ->  N  e.  ( M ... N ) )
2726ad2antrr 488 . . . . . 6  |-  ( ( ( N  e.  (
ZZ>= `  M )  /\  N  =  M )  /\  K  =  N
)  ->  N  e.  ( M ... N ) )
28 eleq1 2270 . . . . . . 7  |-  ( K  =  N  ->  ( K  e.  ( M ... N )  <->  N  e.  ( M ... N ) ) )
2928adantl 277 . . . . . 6  |-  ( ( ( N  e.  (
ZZ>= `  M )  /\  N  =  M )  /\  K  =  N
)  ->  ( K  e.  ( M ... N
)  <->  N  e.  ( M ... N ) ) )
3027, 29mpbird 167 . . . . 5  |-  ( ( ( N  e.  (
ZZ>= `  M )  /\  N  =  M )  /\  K  =  N
)  ->  K  e.  ( M ... N ) )
3130ex 115 . . . 4  |-  ( ( N  e.  ( ZZ>= `  M )  /\  N  =  M )  ->  ( K  =  N  ->  K  e.  ( M ... N ) ) )
3225, 31jaod 719 . . 3  |-  ( ( N  e.  ( ZZ>= `  M )  /\  N  =  M )  ->  (
( K  e.  ( M ... ( N  -  1 ) )  \/  K  =  N )  ->  K  e.  ( M ... N ) ) )
337, 32impbid 129 . 2  |-  ( ( N  e.  ( ZZ>= `  M )  /\  N  =  M )  ->  ( K  e.  ( M ... N )  <->  ( K  e.  ( M ... ( N  -  1 ) )  \/  K  =  N ) ) )
34 elfzp1 10229 . . . 4  |-  ( ( N  -  1 )  e.  ( ZZ>= `  M
)  ->  ( K  e.  ( M ... (
( N  -  1 )  +  1 ) )  <->  ( K  e.  ( M ... ( N  -  1 ) )  \/  K  =  ( ( N  - 
1 )  +  1 ) ) ) )
3534adantl 277 . . 3  |-  ( ( N  e.  ( ZZ>= `  M )  /\  ( N  -  1 )  e.  ( ZZ>= `  M
) )  ->  ( K  e.  ( M ... ( ( N  - 
1 )  +  1 ) )  <->  ( K  e.  ( M ... ( N  -  1 ) )  \/  K  =  ( ( N  - 
1 )  +  1 ) ) ) )
369adantr 276 . . . . . . 7  |-  ( ( N  e.  ( ZZ>= `  M )  /\  ( N  -  1 )  e.  ( ZZ>= `  M
) )  ->  N  e.  ZZ )
3736zcnd 9531 . . . . . 6  |-  ( ( N  e.  ( ZZ>= `  M )  /\  ( N  -  1 )  e.  ( ZZ>= `  M
) )  ->  N  e.  CC )
38 npcan1 8485 . . . . . 6  |-  ( N  e.  CC  ->  (
( N  -  1 )  +  1 )  =  N )
3937, 38syl 14 . . . . 5  |-  ( ( N  e.  ( ZZ>= `  M )  /\  ( N  -  1 )  e.  ( ZZ>= `  M
) )  ->  (
( N  -  1 )  +  1 )  =  N )
4039oveq2d 5983 . . . 4  |-  ( ( N  e.  ( ZZ>= `  M )  /\  ( N  -  1 )  e.  ( ZZ>= `  M
) )  ->  ( M ... ( ( N  -  1 )  +  1 ) )  =  ( M ... N
) )
4140eleq2d 2277 . . 3  |-  ( ( N  e.  ( ZZ>= `  M )  /\  ( N  -  1 )  e.  ( ZZ>= `  M
) )  ->  ( K  e.  ( M ... ( ( N  - 
1 )  +  1 ) )  <->  K  e.  ( M ... N ) ) )
4239eqeq2d 2219 . . . 4  |-  ( ( N  e.  ( ZZ>= `  M )  /\  ( N  -  1 )  e.  ( ZZ>= `  M
) )  ->  ( K  =  ( ( N  -  1 )  +  1 )  <->  K  =  N ) )
4342orbi2d 792 . . 3  |-  ( ( N  e.  ( ZZ>= `  M )  /\  ( N  -  1 )  e.  ( ZZ>= `  M
) )  ->  (
( K  e.  ( M ... ( N  -  1 ) )  \/  K  =  ( ( N  -  1 )  +  1 ) )  <->  ( K  e.  ( M ... ( N  -  1 ) )  \/  K  =  N ) ) )
4435, 41, 433bitr3d 218 . 2  |-  ( ( N  e.  ( ZZ>= `  M )  /\  ( N  -  1 )  e.  ( ZZ>= `  M
) )  ->  ( K  e.  ( M ... N )  <->  ( K  e.  ( M ... ( N  -  1 ) )  \/  K  =  N ) ) )
45 uzm1 9714 . 2  |-  ( N  e.  ( ZZ>= `  M
)  ->  ( N  =  M  \/  ( N  -  1 )  e.  ( ZZ>= `  M
) ) )
4633, 44, 45mpjaodan 800 1  |-  ( N  e.  ( ZZ>= `  M
)  ->  ( K  e.  ( M ... N
)  <->  ( K  e.  ( M ... ( N  -  1 ) )  \/  K  =  N ) ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 104    <-> wb 105    \/ wo 710    = wceq 1373    e. wcel 2178   (/)c0 3468   class class class wbr 4059   ` cfv 5290  (class class class)co 5967   CCcc 7958   1c1 7961    + caddc 7963    < clt 8142    - cmin 8278   ZZcz 9407   ZZ>=cuz 9683   ...cfz 10165
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 711  ax-5 1471  ax-7 1472  ax-gen 1473  ax-ie1 1517  ax-ie2 1518  ax-8 1528  ax-10 1529  ax-11 1530  ax-i12 1531  ax-bndl 1533  ax-4 1534  ax-17 1550  ax-i9 1554  ax-ial 1558  ax-i5r 1559  ax-13 2180  ax-14 2181  ax-ext 2189  ax-sep 4178  ax-pow 4234  ax-pr 4269  ax-un 4498  ax-setind 4603  ax-cnex 8051  ax-resscn 8052  ax-1cn 8053  ax-1re 8054  ax-icn 8055  ax-addcl 8056  ax-addrcl 8057  ax-mulcl 8058  ax-addcom 8060  ax-addass 8062  ax-distr 8064  ax-i2m1 8065  ax-0lt1 8066  ax-0id 8068  ax-rnegex 8069  ax-cnre 8071  ax-pre-ltirr 8072  ax-pre-ltwlin 8073  ax-pre-lttrn 8074  ax-pre-apti 8075  ax-pre-ltadd 8076
This theorem depends on definitions:  df-bi 117  df-3or 982  df-3an 983  df-tru 1376  df-fal 1379  df-nf 1485  df-sb 1787  df-eu 2058  df-mo 2059  df-clab 2194  df-cleq 2200  df-clel 2203  df-nfc 2339  df-ne 2379  df-nel 2474  df-ral 2491  df-rex 2492  df-reu 2493  df-rab 2495  df-v 2778  df-sbc 3006  df-dif 3176  df-un 3178  df-in 3180  df-ss 3187  df-nul 3469  df-pw 3628  df-sn 3649  df-pr 3650  df-op 3652  df-uni 3865  df-int 3900  df-br 4060  df-opab 4122  df-mpt 4123  df-id 4358  df-xp 4699  df-rel 4700  df-cnv 4701  df-co 4702  df-dm 4703  df-rn 4704  df-res 4705  df-ima 4706  df-iota 5251  df-fun 5292  df-fn 5293  df-f 5294  df-fv 5298  df-riota 5922  df-ov 5970  df-oprab 5971  df-mpo 5972  df-pnf 8144  df-mnf 8145  df-xr 8146  df-ltxr 8147  df-le 8148  df-sub 8280  df-neg 8281  df-inn 9072  df-n0 9331  df-z 9408  df-uz 9684  df-fz 10166
This theorem is referenced by:  bcpasc  10948  phibndlem  12653  lgsdir2lem2  15621
  Copyright terms: Public domain W3C validator