ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  topnpropgd Unicode version

Theorem topnpropgd 12570
Description: The topology extractor function depends only on the base and topology components. (Contributed by NM, 18-Jul-2006.) (Revised by Jim Kingdon, 13-Feb-2023.)
Hypotheses
Ref Expression
topnpropd.1  |-  ( ph  ->  ( Base `  K
)  =  ( Base `  L ) )
topnpropd.2  |-  ( ph  ->  (TopSet `  K )  =  (TopSet `  L )
)
topnpropgd.k  |-  ( ph  ->  K  e.  V )
topnpropgd.l  |-  ( ph  ->  L  e.  W )
Assertion
Ref Expression
topnpropgd  |-  ( ph  ->  ( TopOpen `  K )  =  ( TopOpen `  L
) )

Proof of Theorem topnpropgd
StepHypRef Expression
1 topnpropd.2 . . 3  |-  ( ph  ->  (TopSet `  K )  =  (TopSet `  L )
)
2 topnpropd.1 . . 3  |-  ( ph  ->  ( Base `  K
)  =  ( Base `  L ) )
31, 2oveq12d 5860 . 2  |-  ( ph  ->  ( (TopSet `  K
)t  ( Base `  K
) )  =  ( (TopSet `  L )t  ( Base `  L ) ) )
4 topnpropgd.k . . 3  |-  ( ph  ->  K  e.  V )
5 eqid 2165 . . . 4  |-  ( Base `  K )  =  (
Base `  K )
6 eqid 2165 . . . 4  |-  (TopSet `  K )  =  (TopSet `  K )
75, 6topnvalg 12568 . . 3  |-  ( K  e.  V  ->  (
(TopSet `  K )t  ( Base `  K ) )  =  ( TopOpen `  K
) )
84, 7syl 14 . 2  |-  ( ph  ->  ( (TopSet `  K
)t  ( Base `  K
) )  =  (
TopOpen `  K ) )
9 topnpropgd.l . . 3  |-  ( ph  ->  L  e.  W )
10 eqid 2165 . . . 4  |-  ( Base `  L )  =  (
Base `  L )
11 eqid 2165 . . . 4  |-  (TopSet `  L )  =  (TopSet `  L )
1210, 11topnvalg 12568 . . 3  |-  ( L  e.  W  ->  (
(TopSet `  L )t  ( Base `  L ) )  =  ( TopOpen `  L
) )
139, 12syl 14 . 2  |-  ( ph  ->  ( (TopSet `  L
)t  ( Base `  L
) )  =  (
TopOpen `  L ) )
143, 8, 133eqtr3d 2206 1  |-  ( ph  ->  ( TopOpen `  K )  =  ( TopOpen `  L
) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    = wceq 1343    e. wcel 2136   ` cfv 5188  (class class class)co 5842   Basecbs 12394  TopSetcts 12463   ↾t crest 12556   TopOpenctopn 12557
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-io 699  ax-5 1435  ax-7 1436  ax-gen 1437  ax-ie1 1481  ax-ie2 1482  ax-8 1492  ax-10 1493  ax-11 1494  ax-i12 1495  ax-bndl 1497  ax-4 1498  ax-17 1514  ax-i9 1518  ax-ial 1522  ax-i5r 1523  ax-13 2138  ax-14 2139  ax-ext 2147  ax-coll 4097  ax-sep 4100  ax-pow 4153  ax-pr 4187  ax-un 4411  ax-cnex 7844  ax-resscn 7845  ax-1re 7847  ax-addrcl 7850
This theorem depends on definitions:  df-bi 116  df-3an 970  df-tru 1346  df-nf 1449  df-sb 1751  df-eu 2017  df-mo 2018  df-clab 2152  df-cleq 2158  df-clel 2161  df-nfc 2297  df-ral 2449  df-rex 2450  df-reu 2451  df-rab 2453  df-v 2728  df-sbc 2952  df-csb 3046  df-un 3120  df-in 3122  df-ss 3129  df-pw 3561  df-sn 3582  df-pr 3583  df-op 3585  df-uni 3790  df-int 3825  df-iun 3868  df-br 3983  df-opab 4044  df-mpt 4045  df-id 4271  df-xp 4610  df-rel 4611  df-cnv 4612  df-co 4613  df-dm 4614  df-rn 4615  df-res 4616  df-ima 4617  df-iota 5153  df-fun 5190  df-fn 5191  df-f 5192  df-f1 5193  df-fo 5194  df-f1o 5195  df-fv 5196  df-ov 5845  df-oprab 5846  df-mpo 5847  df-1st 6108  df-2nd 6109  df-inn 8858  df-2 8916  df-3 8917  df-4 8918  df-5 8919  df-6 8920  df-7 8921  df-8 8922  df-9 8923  df-ndx 12397  df-slot 12398  df-base 12400  df-tset 12476  df-rest 12558  df-topn 12559
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator