ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  topnpropgd Unicode version

Theorem topnpropgd 12173
Description: The topology extractor function depends only on the base and topology components. (Contributed by NM, 18-Jul-2006.) (Revised by Jim Kingdon, 13-Feb-2023.)
Hypotheses
Ref Expression
topnpropd.1  |-  ( ph  ->  ( Base `  K
)  =  ( Base `  L ) )
topnpropd.2  |-  ( ph  ->  (TopSet `  K )  =  (TopSet `  L )
)
topnpropgd.k  |-  ( ph  ->  K  e.  V )
topnpropgd.l  |-  ( ph  ->  L  e.  W )
Assertion
Ref Expression
topnpropgd  |-  ( ph  ->  ( TopOpen `  K )  =  ( TopOpen `  L
) )

Proof of Theorem topnpropgd
StepHypRef Expression
1 topnpropd.2 . . 3  |-  ( ph  ->  (TopSet `  K )  =  (TopSet `  L )
)
2 topnpropd.1 . . 3  |-  ( ph  ->  ( Base `  K
)  =  ( Base `  L ) )
31, 2oveq12d 5800 . 2  |-  ( ph  ->  ( (TopSet `  K
)t  ( Base `  K
) )  =  ( (TopSet `  L )t  ( Base `  L ) ) )
4 topnpropgd.k . . 3  |-  ( ph  ->  K  e.  V )
5 eqid 2140 . . . 4  |-  ( Base `  K )  =  (
Base `  K )
6 eqid 2140 . . . 4  |-  (TopSet `  K )  =  (TopSet `  K )
75, 6topnvalg 12171 . . 3  |-  ( K  e.  V  ->  (
(TopSet `  K )t  ( Base `  K ) )  =  ( TopOpen `  K
) )
84, 7syl 14 . 2  |-  ( ph  ->  ( (TopSet `  K
)t  ( Base `  K
) )  =  (
TopOpen `  K ) )
9 topnpropgd.l . . 3  |-  ( ph  ->  L  e.  W )
10 eqid 2140 . . . 4  |-  ( Base `  L )  =  (
Base `  L )
11 eqid 2140 . . . 4  |-  (TopSet `  L )  =  (TopSet `  L )
1210, 11topnvalg 12171 . . 3  |-  ( L  e.  W  ->  (
(TopSet `  L )t  ( Base `  L ) )  =  ( TopOpen `  L
) )
139, 12syl 14 . 2  |-  ( ph  ->  ( (TopSet `  L
)t  ( Base `  L
) )  =  (
TopOpen `  L ) )
143, 8, 133eqtr3d 2181 1  |-  ( ph  ->  ( TopOpen `  K )  =  ( TopOpen `  L
) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    = wceq 1332    e. wcel 1481   ` cfv 5131  (class class class)co 5782   Basecbs 11998  TopSetcts 12066   ↾t crest 12159   TopOpenctopn 12160
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-io 699  ax-5 1424  ax-7 1425  ax-gen 1426  ax-ie1 1470  ax-ie2 1471  ax-8 1483  ax-10 1484  ax-11 1485  ax-i12 1486  ax-bndl 1487  ax-4 1488  ax-13 1492  ax-14 1493  ax-17 1507  ax-i9 1511  ax-ial 1515  ax-i5r 1516  ax-ext 2122  ax-coll 4051  ax-sep 4054  ax-pow 4106  ax-pr 4139  ax-un 4363  ax-cnex 7735  ax-resscn 7736  ax-1re 7738  ax-addrcl 7741
This theorem depends on definitions:  df-bi 116  df-3an 965  df-tru 1335  df-nf 1438  df-sb 1737  df-eu 2003  df-mo 2004  df-clab 2127  df-cleq 2133  df-clel 2136  df-nfc 2271  df-ral 2422  df-rex 2423  df-reu 2424  df-rab 2426  df-v 2691  df-sbc 2914  df-csb 3008  df-un 3080  df-in 3082  df-ss 3089  df-pw 3517  df-sn 3538  df-pr 3539  df-op 3541  df-uni 3745  df-int 3780  df-iun 3823  df-br 3938  df-opab 3998  df-mpt 3999  df-id 4223  df-xp 4553  df-rel 4554  df-cnv 4555  df-co 4556  df-dm 4557  df-rn 4558  df-res 4559  df-ima 4560  df-iota 5096  df-fun 5133  df-fn 5134  df-f 5135  df-f1 5136  df-fo 5137  df-f1o 5138  df-fv 5139  df-ov 5785  df-oprab 5786  df-mpo 5787  df-1st 6046  df-2nd 6047  df-inn 8745  df-2 8803  df-3 8804  df-4 8805  df-5 8806  df-6 8807  df-7 8808  df-8 8809  df-9 8810  df-ndx 12001  df-slot 12002  df-base 12004  df-tset 12079  df-rest 12161  df-topn 12162
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator