Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > topnidg | Unicode version |
Description: Value of the topology extractor function when the topology is defined over the same set as the base. (Contributed by Mario Carneiro, 13-Aug-2015.) |
Ref | Expression |
---|---|
topnval.1 | |
topnval.2 | TopSet |
Ref | Expression |
---|---|
topnidg |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | topnval.1 | . . . 4 | |
2 | baseslid 12444 | . . . . 5 Slot | |
3 | 2 | slotex 12415 | . . . 4 |
4 | 1, 3 | eqeltrid 2251 | . . 3 |
5 | restid2 12558 | . . 3 ↾t | |
6 | 4, 5 | sylan 281 | . 2 ↾t |
7 | topnval.2 | . . . 4 TopSet | |
8 | 1, 7 | topnvalg 12561 | . . 3 ↾t |
9 | 8 | adantr 274 | . 2 ↾t |
10 | 6, 9 | eqtr3d 2199 | 1 |
Colors of variables: wff set class |
Syntax hints: wi 4 wa 103 wceq 1342 wcel 2135 cvv 2724 wss 3114 cpw 3556 cfv 5185 (class class class)co 5839 cbs 12388 TopSetcts 12456 ↾t crest 12549 ctopn 12550 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-in1 604 ax-in2 605 ax-io 699 ax-5 1434 ax-7 1435 ax-gen 1436 ax-ie1 1480 ax-ie2 1481 ax-8 1491 ax-10 1492 ax-11 1493 ax-i12 1494 ax-bndl 1496 ax-4 1497 ax-17 1513 ax-i9 1517 ax-ial 1521 ax-i5r 1522 ax-13 2137 ax-14 2138 ax-ext 2146 ax-coll 4094 ax-sep 4097 ax-pow 4150 ax-pr 4184 ax-un 4408 ax-setind 4511 ax-cnex 7838 ax-resscn 7839 ax-1re 7841 ax-addrcl 7844 |
This theorem depends on definitions: df-bi 116 df-3an 969 df-tru 1345 df-fal 1348 df-nf 1448 df-sb 1750 df-eu 2016 df-mo 2017 df-clab 2151 df-cleq 2157 df-clel 2160 df-nfc 2295 df-ne 2335 df-ral 2447 df-rex 2448 df-reu 2449 df-rab 2451 df-v 2726 df-sbc 2950 df-csb 3044 df-dif 3116 df-un 3118 df-in 3120 df-ss 3127 df-pw 3558 df-sn 3579 df-pr 3580 df-op 3582 df-uni 3787 df-int 3822 df-iun 3865 df-br 3980 df-opab 4041 df-mpt 4042 df-id 4268 df-xp 4607 df-rel 4608 df-cnv 4609 df-co 4610 df-dm 4611 df-rn 4612 df-res 4613 df-ima 4614 df-iota 5150 df-fun 5187 df-fn 5188 df-f 5189 df-f1 5190 df-fo 5191 df-f1o 5192 df-fv 5193 df-ov 5842 df-oprab 5843 df-mpo 5844 df-1st 6103 df-2nd 6104 df-inn 8852 df-2 8910 df-3 8911 df-4 8912 df-5 8913 df-6 8914 df-7 8915 df-8 8916 df-9 8917 df-ndx 12391 df-slot 12392 df-base 12394 df-tset 12469 df-rest 12551 df-topn 12552 |
This theorem is referenced by: topontopn 12633 |
Copyright terms: Public domain | W3C validator |