ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  topnvalg Unicode version

Theorem topnvalg 12706
Description: Value of the topology extractor function. (Contributed by Mario Carneiro, 13-Aug-2015.) (Revised by Jim Kingdon, 11-Feb-2023.)
Hypotheses
Ref Expression
topnval.1  |-  B  =  ( Base `  W
)
topnval.2  |-  J  =  (TopSet `  W )
Assertion
Ref Expression
topnvalg  |-  ( W  e.  V  ->  ( Jt  B )  =  (
TopOpen `  W ) )

Proof of Theorem topnvalg
Dummy variable  w is distinct from all other variables.
StepHypRef Expression
1 elex 2750 . . 3  |-  ( W  e.  V  ->  W  e.  _V )
2 restfn 12698 . . . 4  |-t  Fn  ( _V  X.  _V )
3 topnval.2 . . . . 5  |-  J  =  (TopSet `  W )
4 tsetslid 12649 . . . . . 6  |-  (TopSet  = Slot  (TopSet `  ndx )  /\  (TopSet `  ndx )  e.  NN )
54slotex 12492 . . . . 5  |-  ( W  e.  V  ->  (TopSet `  W )  e.  _V )
63, 5eqeltrid 2264 . . . 4  |-  ( W  e.  V  ->  J  e.  _V )
7 topnval.1 . . . . 5  |-  B  =  ( Base `  W
)
8 baseslid 12522 . . . . . 6  |-  ( Base 
= Slot  ( Base `  ndx )  /\  ( Base `  ndx )  e.  NN )
98slotex 12492 . . . . 5  |-  ( W  e.  V  ->  ( Base `  W )  e. 
_V )
107, 9eqeltrid 2264 . . . 4  |-  ( W  e.  V  ->  B  e.  _V )
11 fnovex 5911 . . . 4  |-  ( (t  Fn  ( _V  X.  _V )  /\  J  e.  _V  /\  B  e.  _V )  ->  ( Jt  B )  e.  _V )
122, 6, 10, 11mp3an2i 1342 . . 3  |-  ( W  e.  V  ->  ( Jt  B )  e.  _V )
13 fveq2 5517 . . . . . 6  |-  ( w  =  W  ->  (TopSet `  w )  =  (TopSet `  W ) )
1413, 3eqtr4di 2228 . . . . 5  |-  ( w  =  W  ->  (TopSet `  w )  =  J )
15 fveq2 5517 . . . . . 6  |-  ( w  =  W  ->  ( Base `  w )  =  ( Base `  W
) )
1615, 7eqtr4di 2228 . . . . 5  |-  ( w  =  W  ->  ( Base `  w )  =  B )
1714, 16oveq12d 5896 . . . 4  |-  ( w  =  W  ->  (
(TopSet `  w )t  ( Base `  w ) )  =  ( Jt  B ) )
18 df-topn 12697 . . . 4  |-  TopOpen  =  ( w  e.  _V  |->  ( (TopSet `  w )t  ( Base `  w ) ) )
1917, 18fvmptg 5595 . . 3  |-  ( ( W  e.  _V  /\  ( Jt  B )  e.  _V )  ->  ( TopOpen `  W
)  =  ( Jt  B ) )
201, 12, 19syl2anc 411 . 2  |-  ( W  e.  V  ->  ( TopOpen
`  W )  =  ( Jt  B ) )
2120eqcomd 2183 1  |-  ( W  e.  V  ->  ( Jt  B )  =  (
TopOpen `  W ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    = wceq 1353    e. wcel 2148   _Vcvv 2739    X. cxp 4626    Fn wfn 5213   ` cfv 5218  (class class class)co 5878   Basecbs 12465  TopSetcts 12545   ↾t crest 12694   TopOpenctopn 12695
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 709  ax-5 1447  ax-7 1448  ax-gen 1449  ax-ie1 1493  ax-ie2 1494  ax-8 1504  ax-10 1505  ax-11 1506  ax-i12 1507  ax-bndl 1509  ax-4 1510  ax-17 1526  ax-i9 1530  ax-ial 1534  ax-i5r 1535  ax-13 2150  ax-14 2151  ax-ext 2159  ax-coll 4120  ax-sep 4123  ax-pow 4176  ax-pr 4211  ax-un 4435  ax-cnex 7905  ax-resscn 7906  ax-1re 7908  ax-addrcl 7911
This theorem depends on definitions:  df-bi 117  df-3an 980  df-tru 1356  df-nf 1461  df-sb 1763  df-eu 2029  df-mo 2030  df-clab 2164  df-cleq 2170  df-clel 2173  df-nfc 2308  df-ral 2460  df-rex 2461  df-reu 2462  df-rab 2464  df-v 2741  df-sbc 2965  df-csb 3060  df-un 3135  df-in 3137  df-ss 3144  df-pw 3579  df-sn 3600  df-pr 3601  df-op 3603  df-uni 3812  df-int 3847  df-iun 3890  df-br 4006  df-opab 4067  df-mpt 4068  df-id 4295  df-xp 4634  df-rel 4635  df-cnv 4636  df-co 4637  df-dm 4638  df-rn 4639  df-res 4640  df-ima 4641  df-iota 5180  df-fun 5220  df-fn 5221  df-f 5222  df-f1 5223  df-fo 5224  df-f1o 5225  df-fv 5226  df-ov 5881  df-oprab 5882  df-mpo 5883  df-1st 6144  df-2nd 6145  df-inn 8923  df-2 8981  df-3 8982  df-4 8983  df-5 8984  df-6 8985  df-7 8986  df-8 8987  df-9 8988  df-ndx 12468  df-slot 12469  df-base 12471  df-tset 12558  df-rest 12696  df-topn 12697
This theorem is referenced by:  topnidg  12707  topnpropgd  12708  mgptopng  13145
  Copyright terms: Public domain W3C validator