ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  topnpropgd GIF version

Theorem topnpropgd 12730
Description: The topology extractor function depends only on the base and topology components. (Contributed by NM, 18-Jul-2006.) (Revised by Jim Kingdon, 13-Feb-2023.)
Hypotheses
Ref Expression
topnpropd.1 (𝜑 → (Base‘𝐾) = (Base‘𝐿))
topnpropd.2 (𝜑 → (TopSet‘𝐾) = (TopSet‘𝐿))
topnpropgd.k (𝜑𝐾𝑉)
topnpropgd.l (𝜑𝐿𝑊)
Assertion
Ref Expression
topnpropgd (𝜑 → (TopOpen‘𝐾) = (TopOpen‘𝐿))

Proof of Theorem topnpropgd
StepHypRef Expression
1 topnpropd.2 . . 3 (𝜑 → (TopSet‘𝐾) = (TopSet‘𝐿))
2 topnpropd.1 . . 3 (𝜑 → (Base‘𝐾) = (Base‘𝐿))
31, 2oveq12d 5909 . 2 (𝜑 → ((TopSet‘𝐾) ↾t (Base‘𝐾)) = ((TopSet‘𝐿) ↾t (Base‘𝐿)))
4 topnpropgd.k . . 3 (𝜑𝐾𝑉)
5 eqid 2189 . . . 4 (Base‘𝐾) = (Base‘𝐾)
6 eqid 2189 . . . 4 (TopSet‘𝐾) = (TopSet‘𝐾)
75, 6topnvalg 12728 . . 3 (𝐾𝑉 → ((TopSet‘𝐾) ↾t (Base‘𝐾)) = (TopOpen‘𝐾))
84, 7syl 14 . 2 (𝜑 → ((TopSet‘𝐾) ↾t (Base‘𝐾)) = (TopOpen‘𝐾))
9 topnpropgd.l . . 3 (𝜑𝐿𝑊)
10 eqid 2189 . . . 4 (Base‘𝐿) = (Base‘𝐿)
11 eqid 2189 . . . 4 (TopSet‘𝐿) = (TopSet‘𝐿)
1210, 11topnvalg 12728 . . 3 (𝐿𝑊 → ((TopSet‘𝐿) ↾t (Base‘𝐿)) = (TopOpen‘𝐿))
139, 12syl 14 . 2 (𝜑 → ((TopSet‘𝐿) ↾t (Base‘𝐿)) = (TopOpen‘𝐿))
143, 8, 133eqtr3d 2230 1 (𝜑 → (TopOpen‘𝐾) = (TopOpen‘𝐿))
Colors of variables: wff set class
Syntax hints:  wi 4   = wceq 1364  wcel 2160  cfv 5231  (class class class)co 5891  Basecbs 12486  TopSetcts 12567  t crest 12716  TopOpenctopn 12717
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 710  ax-5 1458  ax-7 1459  ax-gen 1460  ax-ie1 1504  ax-ie2 1505  ax-8 1515  ax-10 1516  ax-11 1517  ax-i12 1518  ax-bndl 1520  ax-4 1521  ax-17 1537  ax-i9 1541  ax-ial 1545  ax-i5r 1546  ax-13 2162  ax-14 2163  ax-ext 2171  ax-coll 4133  ax-sep 4136  ax-pow 4189  ax-pr 4224  ax-un 4448  ax-cnex 7921  ax-resscn 7922  ax-1re 7924  ax-addrcl 7927
This theorem depends on definitions:  df-bi 117  df-3an 982  df-tru 1367  df-nf 1472  df-sb 1774  df-eu 2041  df-mo 2042  df-clab 2176  df-cleq 2182  df-clel 2185  df-nfc 2321  df-ral 2473  df-rex 2474  df-reu 2475  df-rab 2477  df-v 2754  df-sbc 2978  df-csb 3073  df-un 3148  df-in 3150  df-ss 3157  df-pw 3592  df-sn 3613  df-pr 3614  df-op 3616  df-uni 3825  df-int 3860  df-iun 3903  df-br 4019  df-opab 4080  df-mpt 4081  df-id 4308  df-xp 4647  df-rel 4648  df-cnv 4649  df-co 4650  df-dm 4651  df-rn 4652  df-res 4653  df-ima 4654  df-iota 5193  df-fun 5233  df-fn 5234  df-f 5235  df-f1 5236  df-fo 5237  df-f1o 5238  df-fv 5239  df-ov 5894  df-oprab 5895  df-mpo 5896  df-1st 6159  df-2nd 6160  df-inn 8939  df-2 8997  df-3 8998  df-4 8999  df-5 9000  df-6 9001  df-7 9002  df-8 9003  df-9 9004  df-ndx 12489  df-slot 12490  df-base 12492  df-tset 12580  df-rest 12718  df-topn 12719
This theorem is referenced by:  sratopng  13730
  Copyright terms: Public domain W3C validator