ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  topnpropgd GIF version

Theorem topnpropgd 13200
Description: The topology extractor function depends only on the base and topology components. (Contributed by NM, 18-Jul-2006.) (Revised by Jim Kingdon, 13-Feb-2023.)
Hypotheses
Ref Expression
topnpropd.1 (𝜑 → (Base‘𝐾) = (Base‘𝐿))
topnpropd.2 (𝜑 → (TopSet‘𝐾) = (TopSet‘𝐿))
topnpropgd.k (𝜑𝐾𝑉)
topnpropgd.l (𝜑𝐿𝑊)
Assertion
Ref Expression
topnpropgd (𝜑 → (TopOpen‘𝐾) = (TopOpen‘𝐿))

Proof of Theorem topnpropgd
StepHypRef Expression
1 topnpropd.2 . . 3 (𝜑 → (TopSet‘𝐾) = (TopSet‘𝐿))
2 topnpropd.1 . . 3 (𝜑 → (Base‘𝐾) = (Base‘𝐿))
31, 2oveq12d 5985 . 2 (𝜑 → ((TopSet‘𝐾) ↾t (Base‘𝐾)) = ((TopSet‘𝐿) ↾t (Base‘𝐿)))
4 topnpropgd.k . . 3 (𝜑𝐾𝑉)
5 eqid 2207 . . . 4 (Base‘𝐾) = (Base‘𝐾)
6 eqid 2207 . . . 4 (TopSet‘𝐾) = (TopSet‘𝐾)
75, 6topnvalg 13198 . . 3 (𝐾𝑉 → ((TopSet‘𝐾) ↾t (Base‘𝐾)) = (TopOpen‘𝐾))
84, 7syl 14 . 2 (𝜑 → ((TopSet‘𝐾) ↾t (Base‘𝐾)) = (TopOpen‘𝐾))
9 topnpropgd.l . . 3 (𝜑𝐿𝑊)
10 eqid 2207 . . . 4 (Base‘𝐿) = (Base‘𝐿)
11 eqid 2207 . . . 4 (TopSet‘𝐿) = (TopSet‘𝐿)
1210, 11topnvalg 13198 . . 3 (𝐿𝑊 → ((TopSet‘𝐿) ↾t (Base‘𝐿)) = (TopOpen‘𝐿))
139, 12syl 14 . 2 (𝜑 → ((TopSet‘𝐿) ↾t (Base‘𝐿)) = (TopOpen‘𝐿))
143, 8, 133eqtr3d 2248 1 (𝜑 → (TopOpen‘𝐾) = (TopOpen‘𝐿))
Colors of variables: wff set class
Syntax hints:  wi 4   = wceq 1373  wcel 2178  cfv 5290  (class class class)co 5967  Basecbs 12947  TopSetcts 13030  t crest 13186  TopOpenctopn 13187
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 711  ax-5 1471  ax-7 1472  ax-gen 1473  ax-ie1 1517  ax-ie2 1518  ax-8 1528  ax-10 1529  ax-11 1530  ax-i12 1531  ax-bndl 1533  ax-4 1534  ax-17 1550  ax-i9 1554  ax-ial 1558  ax-i5r 1559  ax-13 2180  ax-14 2181  ax-ext 2189  ax-coll 4175  ax-sep 4178  ax-pow 4234  ax-pr 4269  ax-un 4498  ax-cnex 8051  ax-resscn 8052  ax-1re 8054  ax-addrcl 8057
This theorem depends on definitions:  df-bi 117  df-3an 983  df-tru 1376  df-nf 1485  df-sb 1787  df-eu 2058  df-mo 2059  df-clab 2194  df-cleq 2200  df-clel 2203  df-nfc 2339  df-ral 2491  df-rex 2492  df-reu 2493  df-rab 2495  df-v 2778  df-sbc 3006  df-csb 3102  df-un 3178  df-in 3180  df-ss 3187  df-pw 3628  df-sn 3649  df-pr 3650  df-op 3652  df-uni 3865  df-int 3900  df-iun 3943  df-br 4060  df-opab 4122  df-mpt 4123  df-id 4358  df-xp 4699  df-rel 4700  df-cnv 4701  df-co 4702  df-dm 4703  df-rn 4704  df-res 4705  df-ima 4706  df-iota 5251  df-fun 5292  df-fn 5293  df-f 5294  df-f1 5295  df-fo 5296  df-f1o 5297  df-fv 5298  df-ov 5970  df-oprab 5971  df-mpo 5972  df-1st 6249  df-2nd 6250  df-inn 9072  df-2 9130  df-3 9131  df-4 9132  df-5 9133  df-6 9134  df-7 9135  df-8 9136  df-9 9137  df-ndx 12950  df-slot 12951  df-base 12953  df-tset 13043  df-rest 13188  df-topn 13189
This theorem is referenced by:  sratopng  14324
  Copyright terms: Public domain W3C validator