| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > topnpropgd | GIF version | ||
| Description: The topology extractor function depends only on the base and topology components. (Contributed by NM, 18-Jul-2006.) (Revised by Jim Kingdon, 13-Feb-2023.) |
| Ref | Expression |
|---|---|
| topnpropd.1 | ⊢ (𝜑 → (Base‘𝐾) = (Base‘𝐿)) |
| topnpropd.2 | ⊢ (𝜑 → (TopSet‘𝐾) = (TopSet‘𝐿)) |
| topnpropgd.k | ⊢ (𝜑 → 𝐾 ∈ 𝑉) |
| topnpropgd.l | ⊢ (𝜑 → 𝐿 ∈ 𝑊) |
| Ref | Expression |
|---|---|
| topnpropgd | ⊢ (𝜑 → (TopOpen‘𝐾) = (TopOpen‘𝐿)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | topnpropd.2 | . . 3 ⊢ (𝜑 → (TopSet‘𝐾) = (TopSet‘𝐿)) | |
| 2 | topnpropd.1 | . . 3 ⊢ (𝜑 → (Base‘𝐾) = (Base‘𝐿)) | |
| 3 | 1, 2 | oveq12d 6018 | . 2 ⊢ (𝜑 → ((TopSet‘𝐾) ↾t (Base‘𝐾)) = ((TopSet‘𝐿) ↾t (Base‘𝐿))) |
| 4 | topnpropgd.k | . . 3 ⊢ (𝜑 → 𝐾 ∈ 𝑉) | |
| 5 | eqid 2229 | . . . 4 ⊢ (Base‘𝐾) = (Base‘𝐾) | |
| 6 | eqid 2229 | . . . 4 ⊢ (TopSet‘𝐾) = (TopSet‘𝐾) | |
| 7 | 5, 6 | topnvalg 13279 | . . 3 ⊢ (𝐾 ∈ 𝑉 → ((TopSet‘𝐾) ↾t (Base‘𝐾)) = (TopOpen‘𝐾)) |
| 8 | 4, 7 | syl 14 | . 2 ⊢ (𝜑 → ((TopSet‘𝐾) ↾t (Base‘𝐾)) = (TopOpen‘𝐾)) |
| 9 | topnpropgd.l | . . 3 ⊢ (𝜑 → 𝐿 ∈ 𝑊) | |
| 10 | eqid 2229 | . . . 4 ⊢ (Base‘𝐿) = (Base‘𝐿) | |
| 11 | eqid 2229 | . . . 4 ⊢ (TopSet‘𝐿) = (TopSet‘𝐿) | |
| 12 | 10, 11 | topnvalg 13279 | . . 3 ⊢ (𝐿 ∈ 𝑊 → ((TopSet‘𝐿) ↾t (Base‘𝐿)) = (TopOpen‘𝐿)) |
| 13 | 9, 12 | syl 14 | . 2 ⊢ (𝜑 → ((TopSet‘𝐿) ↾t (Base‘𝐿)) = (TopOpen‘𝐿)) |
| 14 | 3, 8, 13 | 3eqtr3d 2270 | 1 ⊢ (𝜑 → (TopOpen‘𝐾) = (TopOpen‘𝐿)) |
| Colors of variables: wff set class |
| Syntax hints: → wi 4 = wceq 1395 ∈ wcel 2200 ‘cfv 5317 (class class class)co 6000 Basecbs 13027 TopSetcts 13111 ↾t crest 13267 TopOpenctopn 13268 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 714 ax-5 1493 ax-7 1494 ax-gen 1495 ax-ie1 1539 ax-ie2 1540 ax-8 1550 ax-10 1551 ax-11 1552 ax-i12 1553 ax-bndl 1555 ax-4 1556 ax-17 1572 ax-i9 1576 ax-ial 1580 ax-i5r 1581 ax-13 2202 ax-14 2203 ax-ext 2211 ax-coll 4198 ax-sep 4201 ax-pow 4257 ax-pr 4292 ax-un 4523 ax-cnex 8086 ax-resscn 8087 ax-1re 8089 ax-addrcl 8092 |
| This theorem depends on definitions: df-bi 117 df-3an 1004 df-tru 1398 df-nf 1507 df-sb 1809 df-eu 2080 df-mo 2081 df-clab 2216 df-cleq 2222 df-clel 2225 df-nfc 2361 df-ral 2513 df-rex 2514 df-reu 2515 df-rab 2517 df-v 2801 df-sbc 3029 df-csb 3125 df-un 3201 df-in 3203 df-ss 3210 df-pw 3651 df-sn 3672 df-pr 3673 df-op 3675 df-uni 3888 df-int 3923 df-iun 3966 df-br 4083 df-opab 4145 df-mpt 4146 df-id 4383 df-xp 4724 df-rel 4725 df-cnv 4726 df-co 4727 df-dm 4728 df-rn 4729 df-res 4730 df-ima 4731 df-iota 5277 df-fun 5319 df-fn 5320 df-f 5321 df-f1 5322 df-fo 5323 df-f1o 5324 df-fv 5325 df-ov 6003 df-oprab 6004 df-mpo 6005 df-1st 6284 df-2nd 6285 df-inn 9107 df-2 9165 df-3 9166 df-4 9167 df-5 9168 df-6 9169 df-7 9170 df-8 9171 df-9 9172 df-ndx 13030 df-slot 13031 df-base 13033 df-tset 13124 df-rest 13269 df-topn 13270 |
| This theorem is referenced by: sratopng 14405 |
| Copyright terms: Public domain | W3C validator |