ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  topnpropgd GIF version

Theorem topnpropgd 13056
Description: The topology extractor function depends only on the base and topology components. (Contributed by NM, 18-Jul-2006.) (Revised by Jim Kingdon, 13-Feb-2023.)
Hypotheses
Ref Expression
topnpropd.1 (𝜑 → (Base‘𝐾) = (Base‘𝐿))
topnpropd.2 (𝜑 → (TopSet‘𝐾) = (TopSet‘𝐿))
topnpropgd.k (𝜑𝐾𝑉)
topnpropgd.l (𝜑𝐿𝑊)
Assertion
Ref Expression
topnpropgd (𝜑 → (TopOpen‘𝐾) = (TopOpen‘𝐿))

Proof of Theorem topnpropgd
StepHypRef Expression
1 topnpropd.2 . . 3 (𝜑 → (TopSet‘𝐾) = (TopSet‘𝐿))
2 topnpropd.1 . . 3 (𝜑 → (Base‘𝐾) = (Base‘𝐿))
31, 2oveq12d 5961 . 2 (𝜑 → ((TopSet‘𝐾) ↾t (Base‘𝐾)) = ((TopSet‘𝐿) ↾t (Base‘𝐿)))
4 topnpropgd.k . . 3 (𝜑𝐾𝑉)
5 eqid 2204 . . . 4 (Base‘𝐾) = (Base‘𝐾)
6 eqid 2204 . . . 4 (TopSet‘𝐾) = (TopSet‘𝐾)
75, 6topnvalg 13054 . . 3 (𝐾𝑉 → ((TopSet‘𝐾) ↾t (Base‘𝐾)) = (TopOpen‘𝐾))
84, 7syl 14 . 2 (𝜑 → ((TopSet‘𝐾) ↾t (Base‘𝐾)) = (TopOpen‘𝐾))
9 topnpropgd.l . . 3 (𝜑𝐿𝑊)
10 eqid 2204 . . . 4 (Base‘𝐿) = (Base‘𝐿)
11 eqid 2204 . . . 4 (TopSet‘𝐿) = (TopSet‘𝐿)
1210, 11topnvalg 13054 . . 3 (𝐿𝑊 → ((TopSet‘𝐿) ↾t (Base‘𝐿)) = (TopOpen‘𝐿))
139, 12syl 14 . 2 (𝜑 → ((TopSet‘𝐿) ↾t (Base‘𝐿)) = (TopOpen‘𝐿))
143, 8, 133eqtr3d 2245 1 (𝜑 → (TopOpen‘𝐾) = (TopOpen‘𝐿))
Colors of variables: wff set class
Syntax hints:  wi 4   = wceq 1372  wcel 2175  cfv 5270  (class class class)co 5943  Basecbs 12803  TopSetcts 12886  t crest 13042  TopOpenctopn 13043
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 710  ax-5 1469  ax-7 1470  ax-gen 1471  ax-ie1 1515  ax-ie2 1516  ax-8 1526  ax-10 1527  ax-11 1528  ax-i12 1529  ax-bndl 1531  ax-4 1532  ax-17 1548  ax-i9 1552  ax-ial 1556  ax-i5r 1557  ax-13 2177  ax-14 2178  ax-ext 2186  ax-coll 4158  ax-sep 4161  ax-pow 4217  ax-pr 4252  ax-un 4479  ax-cnex 8015  ax-resscn 8016  ax-1re 8018  ax-addrcl 8021
This theorem depends on definitions:  df-bi 117  df-3an 982  df-tru 1375  df-nf 1483  df-sb 1785  df-eu 2056  df-mo 2057  df-clab 2191  df-cleq 2197  df-clel 2200  df-nfc 2336  df-ral 2488  df-rex 2489  df-reu 2490  df-rab 2492  df-v 2773  df-sbc 2998  df-csb 3093  df-un 3169  df-in 3171  df-ss 3178  df-pw 3617  df-sn 3638  df-pr 3639  df-op 3641  df-uni 3850  df-int 3885  df-iun 3928  df-br 4044  df-opab 4105  df-mpt 4106  df-id 4339  df-xp 4680  df-rel 4681  df-cnv 4682  df-co 4683  df-dm 4684  df-rn 4685  df-res 4686  df-ima 4687  df-iota 5231  df-fun 5272  df-fn 5273  df-f 5274  df-f1 5275  df-fo 5276  df-f1o 5277  df-fv 5278  df-ov 5946  df-oprab 5947  df-mpo 5948  df-1st 6225  df-2nd 6226  df-inn 9036  df-2 9094  df-3 9095  df-4 9096  df-5 9097  df-6 9098  df-7 9099  df-8 9100  df-9 9101  df-ndx 12806  df-slot 12807  df-base 12809  df-tset 12899  df-rest 13044  df-topn 13045
This theorem is referenced by:  sratopng  14180
  Copyright terms: Public domain W3C validator