Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > topnpropgd | GIF version |
Description: The topology extractor function depends only on the base and topology components. (Contributed by NM, 18-Jul-2006.) (Revised by Jim Kingdon, 13-Feb-2023.) |
Ref | Expression |
---|---|
topnpropd.1 | ⊢ (𝜑 → (Base‘𝐾) = (Base‘𝐿)) |
topnpropd.2 | ⊢ (𝜑 → (TopSet‘𝐾) = (TopSet‘𝐿)) |
topnpropgd.k | ⊢ (𝜑 → 𝐾 ∈ 𝑉) |
topnpropgd.l | ⊢ (𝜑 → 𝐿 ∈ 𝑊) |
Ref | Expression |
---|---|
topnpropgd | ⊢ (𝜑 → (TopOpen‘𝐾) = (TopOpen‘𝐿)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | topnpropd.2 | . . 3 ⊢ (𝜑 → (TopSet‘𝐾) = (TopSet‘𝐿)) | |
2 | topnpropd.1 | . . 3 ⊢ (𝜑 → (Base‘𝐾) = (Base‘𝐿)) | |
3 | 1, 2 | oveq12d 5883 | . 2 ⊢ (𝜑 → ((TopSet‘𝐾) ↾t (Base‘𝐾)) = ((TopSet‘𝐿) ↾t (Base‘𝐿))) |
4 | topnpropgd.k | . . 3 ⊢ (𝜑 → 𝐾 ∈ 𝑉) | |
5 | eqid 2175 | . . . 4 ⊢ (Base‘𝐾) = (Base‘𝐾) | |
6 | eqid 2175 | . . . 4 ⊢ (TopSet‘𝐾) = (TopSet‘𝐾) | |
7 | 5, 6 | topnvalg 12622 | . . 3 ⊢ (𝐾 ∈ 𝑉 → ((TopSet‘𝐾) ↾t (Base‘𝐾)) = (TopOpen‘𝐾)) |
8 | 4, 7 | syl 14 | . 2 ⊢ (𝜑 → ((TopSet‘𝐾) ↾t (Base‘𝐾)) = (TopOpen‘𝐾)) |
9 | topnpropgd.l | . . 3 ⊢ (𝜑 → 𝐿 ∈ 𝑊) | |
10 | eqid 2175 | . . . 4 ⊢ (Base‘𝐿) = (Base‘𝐿) | |
11 | eqid 2175 | . . . 4 ⊢ (TopSet‘𝐿) = (TopSet‘𝐿) | |
12 | 10, 11 | topnvalg 12622 | . . 3 ⊢ (𝐿 ∈ 𝑊 → ((TopSet‘𝐿) ↾t (Base‘𝐿)) = (TopOpen‘𝐿)) |
13 | 9, 12 | syl 14 | . 2 ⊢ (𝜑 → ((TopSet‘𝐿) ↾t (Base‘𝐿)) = (TopOpen‘𝐿)) |
14 | 3, 8, 13 | 3eqtr3d 2216 | 1 ⊢ (𝜑 → (TopOpen‘𝐾) = (TopOpen‘𝐿)) |
Colors of variables: wff set class |
Syntax hints: → wi 4 = wceq 1353 ∈ wcel 2146 ‘cfv 5208 (class class class)co 5865 Basecbs 12429 TopSetcts 12499 ↾t crest 12610 TopOpenctopn 12611 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 709 ax-5 1445 ax-7 1446 ax-gen 1447 ax-ie1 1491 ax-ie2 1492 ax-8 1502 ax-10 1503 ax-11 1504 ax-i12 1505 ax-bndl 1507 ax-4 1508 ax-17 1524 ax-i9 1528 ax-ial 1532 ax-i5r 1533 ax-13 2148 ax-14 2149 ax-ext 2157 ax-coll 4113 ax-sep 4116 ax-pow 4169 ax-pr 4203 ax-un 4427 ax-cnex 7877 ax-resscn 7878 ax-1re 7880 ax-addrcl 7883 |
This theorem depends on definitions: df-bi 117 df-3an 980 df-tru 1356 df-nf 1459 df-sb 1761 df-eu 2027 df-mo 2028 df-clab 2162 df-cleq 2168 df-clel 2171 df-nfc 2306 df-ral 2458 df-rex 2459 df-reu 2460 df-rab 2462 df-v 2737 df-sbc 2961 df-csb 3056 df-un 3131 df-in 3133 df-ss 3140 df-pw 3574 df-sn 3595 df-pr 3596 df-op 3598 df-uni 3806 df-int 3841 df-iun 3884 df-br 3999 df-opab 4060 df-mpt 4061 df-id 4287 df-xp 4626 df-rel 4627 df-cnv 4628 df-co 4629 df-dm 4630 df-rn 4631 df-res 4632 df-ima 4633 df-iota 5170 df-fun 5210 df-fn 5211 df-f 5212 df-f1 5213 df-fo 5214 df-f1o 5215 df-fv 5216 df-ov 5868 df-oprab 5869 df-mpo 5870 df-1st 6131 df-2nd 6132 df-inn 8893 df-2 8951 df-3 8952 df-4 8953 df-5 8954 df-6 8955 df-7 8956 df-8 8957 df-9 8958 df-ndx 12432 df-slot 12433 df-base 12435 df-tset 12512 df-rest 12612 df-topn 12613 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |