| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > topnpropgd | GIF version | ||
| Description: The topology extractor function depends only on the base and topology components. (Contributed by NM, 18-Jul-2006.) (Revised by Jim Kingdon, 13-Feb-2023.) |
| Ref | Expression |
|---|---|
| topnpropd.1 | ⊢ (𝜑 → (Base‘𝐾) = (Base‘𝐿)) |
| topnpropd.2 | ⊢ (𝜑 → (TopSet‘𝐾) = (TopSet‘𝐿)) |
| topnpropgd.k | ⊢ (𝜑 → 𝐾 ∈ 𝑉) |
| topnpropgd.l | ⊢ (𝜑 → 𝐿 ∈ 𝑊) |
| Ref | Expression |
|---|---|
| topnpropgd | ⊢ (𝜑 → (TopOpen‘𝐾) = (TopOpen‘𝐿)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | topnpropd.2 | . . 3 ⊢ (𝜑 → (TopSet‘𝐾) = (TopSet‘𝐿)) | |
| 2 | topnpropd.1 | . . 3 ⊢ (𝜑 → (Base‘𝐾) = (Base‘𝐿)) | |
| 3 | 1, 2 | oveq12d 5943 | . 2 ⊢ (𝜑 → ((TopSet‘𝐾) ↾t (Base‘𝐾)) = ((TopSet‘𝐿) ↾t (Base‘𝐿))) |
| 4 | topnpropgd.k | . . 3 ⊢ (𝜑 → 𝐾 ∈ 𝑉) | |
| 5 | eqid 2196 | . . . 4 ⊢ (Base‘𝐾) = (Base‘𝐾) | |
| 6 | eqid 2196 | . . . 4 ⊢ (TopSet‘𝐾) = (TopSet‘𝐾) | |
| 7 | 5, 6 | topnvalg 12953 | . . 3 ⊢ (𝐾 ∈ 𝑉 → ((TopSet‘𝐾) ↾t (Base‘𝐾)) = (TopOpen‘𝐾)) |
| 8 | 4, 7 | syl 14 | . 2 ⊢ (𝜑 → ((TopSet‘𝐾) ↾t (Base‘𝐾)) = (TopOpen‘𝐾)) |
| 9 | topnpropgd.l | . . 3 ⊢ (𝜑 → 𝐿 ∈ 𝑊) | |
| 10 | eqid 2196 | . . . 4 ⊢ (Base‘𝐿) = (Base‘𝐿) | |
| 11 | eqid 2196 | . . . 4 ⊢ (TopSet‘𝐿) = (TopSet‘𝐿) | |
| 12 | 10, 11 | topnvalg 12953 | . . 3 ⊢ (𝐿 ∈ 𝑊 → ((TopSet‘𝐿) ↾t (Base‘𝐿)) = (TopOpen‘𝐿)) |
| 13 | 9, 12 | syl 14 | . 2 ⊢ (𝜑 → ((TopSet‘𝐿) ↾t (Base‘𝐿)) = (TopOpen‘𝐿)) |
| 14 | 3, 8, 13 | 3eqtr3d 2237 | 1 ⊢ (𝜑 → (TopOpen‘𝐾) = (TopOpen‘𝐿)) |
| Colors of variables: wff set class |
| Syntax hints: → wi 4 = wceq 1364 ∈ wcel 2167 ‘cfv 5259 (class class class)co 5925 Basecbs 12703 TopSetcts 12786 ↾t crest 12941 TopOpenctopn 12942 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 710 ax-5 1461 ax-7 1462 ax-gen 1463 ax-ie1 1507 ax-ie2 1508 ax-8 1518 ax-10 1519 ax-11 1520 ax-i12 1521 ax-bndl 1523 ax-4 1524 ax-17 1540 ax-i9 1544 ax-ial 1548 ax-i5r 1549 ax-13 2169 ax-14 2170 ax-ext 2178 ax-coll 4149 ax-sep 4152 ax-pow 4208 ax-pr 4243 ax-un 4469 ax-cnex 7987 ax-resscn 7988 ax-1re 7990 ax-addrcl 7993 |
| This theorem depends on definitions: df-bi 117 df-3an 982 df-tru 1367 df-nf 1475 df-sb 1777 df-eu 2048 df-mo 2049 df-clab 2183 df-cleq 2189 df-clel 2192 df-nfc 2328 df-ral 2480 df-rex 2481 df-reu 2482 df-rab 2484 df-v 2765 df-sbc 2990 df-csb 3085 df-un 3161 df-in 3163 df-ss 3170 df-pw 3608 df-sn 3629 df-pr 3630 df-op 3632 df-uni 3841 df-int 3876 df-iun 3919 df-br 4035 df-opab 4096 df-mpt 4097 df-id 4329 df-xp 4670 df-rel 4671 df-cnv 4672 df-co 4673 df-dm 4674 df-rn 4675 df-res 4676 df-ima 4677 df-iota 5220 df-fun 5261 df-fn 5262 df-f 5263 df-f1 5264 df-fo 5265 df-f1o 5266 df-fv 5267 df-ov 5928 df-oprab 5929 df-mpo 5930 df-1st 6207 df-2nd 6208 df-inn 9008 df-2 9066 df-3 9067 df-4 9068 df-5 9069 df-6 9070 df-7 9071 df-8 9072 df-9 9073 df-ndx 12706 df-slot 12707 df-base 12709 df-tset 12799 df-rest 12943 df-topn 12944 |
| This theorem is referenced by: sratopng 14079 |
| Copyright terms: Public domain | W3C validator |