![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > topnpropgd | GIF version |
Description: The topology extractor function depends only on the base and topology components. (Contributed by NM, 18-Jul-2006.) (Revised by Jim Kingdon, 13-Feb-2023.) |
Ref | Expression |
---|---|
topnpropd.1 | ⊢ (𝜑 → (Base‘𝐾) = (Base‘𝐿)) |
topnpropd.2 | ⊢ (𝜑 → (TopSet‘𝐾) = (TopSet‘𝐿)) |
topnpropgd.k | ⊢ (𝜑 → 𝐾 ∈ 𝑉) |
topnpropgd.l | ⊢ (𝜑 → 𝐿 ∈ 𝑊) |
Ref | Expression |
---|---|
topnpropgd | ⊢ (𝜑 → (TopOpen‘𝐾) = (TopOpen‘𝐿)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | topnpropd.2 | . . 3 ⊢ (𝜑 → (TopSet‘𝐾) = (TopSet‘𝐿)) | |
2 | topnpropd.1 | . . 3 ⊢ (𝜑 → (Base‘𝐾) = (Base‘𝐿)) | |
3 | 1, 2 | oveq12d 5909 | . 2 ⊢ (𝜑 → ((TopSet‘𝐾) ↾t (Base‘𝐾)) = ((TopSet‘𝐿) ↾t (Base‘𝐿))) |
4 | topnpropgd.k | . . 3 ⊢ (𝜑 → 𝐾 ∈ 𝑉) | |
5 | eqid 2189 | . . . 4 ⊢ (Base‘𝐾) = (Base‘𝐾) | |
6 | eqid 2189 | . . . 4 ⊢ (TopSet‘𝐾) = (TopSet‘𝐾) | |
7 | 5, 6 | topnvalg 12728 | . . 3 ⊢ (𝐾 ∈ 𝑉 → ((TopSet‘𝐾) ↾t (Base‘𝐾)) = (TopOpen‘𝐾)) |
8 | 4, 7 | syl 14 | . 2 ⊢ (𝜑 → ((TopSet‘𝐾) ↾t (Base‘𝐾)) = (TopOpen‘𝐾)) |
9 | topnpropgd.l | . . 3 ⊢ (𝜑 → 𝐿 ∈ 𝑊) | |
10 | eqid 2189 | . . . 4 ⊢ (Base‘𝐿) = (Base‘𝐿) | |
11 | eqid 2189 | . . . 4 ⊢ (TopSet‘𝐿) = (TopSet‘𝐿) | |
12 | 10, 11 | topnvalg 12728 | . . 3 ⊢ (𝐿 ∈ 𝑊 → ((TopSet‘𝐿) ↾t (Base‘𝐿)) = (TopOpen‘𝐿)) |
13 | 9, 12 | syl 14 | . 2 ⊢ (𝜑 → ((TopSet‘𝐿) ↾t (Base‘𝐿)) = (TopOpen‘𝐿)) |
14 | 3, 8, 13 | 3eqtr3d 2230 | 1 ⊢ (𝜑 → (TopOpen‘𝐾) = (TopOpen‘𝐿)) |
Colors of variables: wff set class |
Syntax hints: → wi 4 = wceq 1364 ∈ wcel 2160 ‘cfv 5231 (class class class)co 5891 Basecbs 12486 TopSetcts 12567 ↾t crest 12716 TopOpenctopn 12717 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 710 ax-5 1458 ax-7 1459 ax-gen 1460 ax-ie1 1504 ax-ie2 1505 ax-8 1515 ax-10 1516 ax-11 1517 ax-i12 1518 ax-bndl 1520 ax-4 1521 ax-17 1537 ax-i9 1541 ax-ial 1545 ax-i5r 1546 ax-13 2162 ax-14 2163 ax-ext 2171 ax-coll 4133 ax-sep 4136 ax-pow 4189 ax-pr 4224 ax-un 4448 ax-cnex 7921 ax-resscn 7922 ax-1re 7924 ax-addrcl 7927 |
This theorem depends on definitions: df-bi 117 df-3an 982 df-tru 1367 df-nf 1472 df-sb 1774 df-eu 2041 df-mo 2042 df-clab 2176 df-cleq 2182 df-clel 2185 df-nfc 2321 df-ral 2473 df-rex 2474 df-reu 2475 df-rab 2477 df-v 2754 df-sbc 2978 df-csb 3073 df-un 3148 df-in 3150 df-ss 3157 df-pw 3592 df-sn 3613 df-pr 3614 df-op 3616 df-uni 3825 df-int 3860 df-iun 3903 df-br 4019 df-opab 4080 df-mpt 4081 df-id 4308 df-xp 4647 df-rel 4648 df-cnv 4649 df-co 4650 df-dm 4651 df-rn 4652 df-res 4653 df-ima 4654 df-iota 5193 df-fun 5233 df-fn 5234 df-f 5235 df-f1 5236 df-fo 5237 df-f1o 5238 df-fv 5239 df-ov 5894 df-oprab 5895 df-mpo 5896 df-1st 6159 df-2nd 6160 df-inn 8939 df-2 8997 df-3 8998 df-4 8999 df-5 9000 df-6 9001 df-7 9002 df-8 9003 df-9 9004 df-ndx 12489 df-slot 12490 df-base 12492 df-tset 12580 df-rest 12718 df-topn 12719 |
This theorem is referenced by: sratopng 13730 |
Copyright terms: Public domain | W3C validator |