![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > tposf2 | GIF version |
Description: The domain and codomain of a transposition. (Contributed by NM, 10-Sep-2015.) |
Ref | Expression |
---|---|
tposf2 | β’ (Rel π΄ β (πΉ:π΄βΆπ΅ β tpos πΉ:β‘π΄βΆπ΅)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | ffn 5367 | . . . . . . 7 β’ (πΉ:π΄βΆπ΅ β πΉ Fn π΄) | |
2 | dffn4 5446 | . . . . . . 7 β’ (πΉ Fn π΄ β πΉ:π΄βontoβran πΉ) | |
3 | 1, 2 | sylib 122 | . . . . . 6 β’ (πΉ:π΄βΆπ΅ β πΉ:π΄βontoβran πΉ) |
4 | tposfo2 6270 | . . . . . 6 β’ (Rel π΄ β (πΉ:π΄βontoβran πΉ β tpos πΉ:β‘π΄βontoβran πΉ)) | |
5 | 3, 4 | syl5 32 | . . . . 5 β’ (Rel π΄ β (πΉ:π΄βΆπ΅ β tpos πΉ:β‘π΄βontoβran πΉ)) |
6 | 5 | imp 124 | . . . 4 β’ ((Rel π΄ β§ πΉ:π΄βΆπ΅) β tpos πΉ:β‘π΄βontoβran πΉ) |
7 | fof 5440 | . . . 4 β’ (tpos πΉ:β‘π΄βontoβran πΉ β tpos πΉ:β‘π΄βΆran πΉ) | |
8 | 6, 7 | syl 14 | . . 3 β’ ((Rel π΄ β§ πΉ:π΄βΆπ΅) β tpos πΉ:β‘π΄βΆran πΉ) |
9 | frn 5376 | . . . 4 β’ (πΉ:π΄βΆπ΅ β ran πΉ β π΅) | |
10 | 9 | adantl 277 | . . 3 β’ ((Rel π΄ β§ πΉ:π΄βΆπ΅) β ran πΉ β π΅) |
11 | fss 5379 | . . 3 β’ ((tpos πΉ:β‘π΄βΆran πΉ β§ ran πΉ β π΅) β tpos πΉ:β‘π΄βΆπ΅) | |
12 | 8, 10, 11 | syl2anc 411 | . 2 β’ ((Rel π΄ β§ πΉ:π΄βΆπ΅) β tpos πΉ:β‘π΄βΆπ΅) |
13 | 12 | ex 115 | 1 β’ (Rel π΄ β (πΉ:π΄βΆπ΅ β tpos πΉ:β‘π΄βΆπ΅)) |
Colors of variables: wff set class |
Syntax hints: β wi 4 β§ wa 104 β wss 3131 β‘ccnv 4627 ran crn 4629 Rel wrel 4633 Fn wfn 5213 βΆwf 5214 βontoβwfo 5216 tpos ctpos 6247 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 614 ax-in2 615 ax-io 709 ax-5 1447 ax-7 1448 ax-gen 1449 ax-ie1 1493 ax-ie2 1494 ax-8 1504 ax-10 1505 ax-11 1506 ax-i12 1507 ax-bndl 1509 ax-4 1510 ax-17 1526 ax-i9 1530 ax-ial 1534 ax-i5r 1535 ax-13 2150 ax-14 2151 ax-ext 2159 ax-sep 4123 ax-nul 4131 ax-pow 4176 ax-pr 4211 ax-un 4435 |
This theorem depends on definitions: df-bi 117 df-3an 980 df-tru 1356 df-fal 1359 df-nf 1461 df-sb 1763 df-eu 2029 df-mo 2030 df-clab 2164 df-cleq 2170 df-clel 2173 df-nfc 2308 df-ne 2348 df-ral 2460 df-rex 2461 df-rab 2464 df-v 2741 df-sbc 2965 df-dif 3133 df-un 3135 df-in 3137 df-ss 3144 df-nul 3425 df-pw 3579 df-sn 3600 df-pr 3601 df-op 3603 df-uni 3812 df-br 4006 df-opab 4067 df-mpt 4068 df-id 4295 df-xp 4634 df-rel 4635 df-cnv 4636 df-co 4637 df-dm 4638 df-rn 4639 df-res 4640 df-ima 4641 df-iota 5180 df-fun 5220 df-fn 5221 df-f 5222 df-fo 5224 df-fv 5226 df-tpos 6248 |
This theorem is referenced by: tposf 6275 |
Copyright terms: Public domain | W3C validator |