| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > tposf2 | GIF version | ||
| Description: The domain and codomain of a transposition. (Contributed by NM, 10-Sep-2015.) |
| Ref | Expression |
|---|---|
| tposf2 | ⊢ (Rel 𝐴 → (𝐹:𝐴⟶𝐵 → tpos 𝐹:◡𝐴⟶𝐵)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ffn 5472 | . . . . . . 7 ⊢ (𝐹:𝐴⟶𝐵 → 𝐹 Fn 𝐴) | |
| 2 | dffn4 5553 | . . . . . . 7 ⊢ (𝐹 Fn 𝐴 ↔ 𝐹:𝐴–onto→ran 𝐹) | |
| 3 | 1, 2 | sylib 122 | . . . . . 6 ⊢ (𝐹:𝐴⟶𝐵 → 𝐹:𝐴–onto→ran 𝐹) |
| 4 | tposfo2 6411 | . . . . . 6 ⊢ (Rel 𝐴 → (𝐹:𝐴–onto→ran 𝐹 → tpos 𝐹:◡𝐴–onto→ran 𝐹)) | |
| 5 | 3, 4 | syl5 32 | . . . . 5 ⊢ (Rel 𝐴 → (𝐹:𝐴⟶𝐵 → tpos 𝐹:◡𝐴–onto→ran 𝐹)) |
| 6 | 5 | imp 124 | . . . 4 ⊢ ((Rel 𝐴 ∧ 𝐹:𝐴⟶𝐵) → tpos 𝐹:◡𝐴–onto→ran 𝐹) |
| 7 | fof 5547 | . . . 4 ⊢ (tpos 𝐹:◡𝐴–onto→ran 𝐹 → tpos 𝐹:◡𝐴⟶ran 𝐹) | |
| 8 | 6, 7 | syl 14 | . . 3 ⊢ ((Rel 𝐴 ∧ 𝐹:𝐴⟶𝐵) → tpos 𝐹:◡𝐴⟶ran 𝐹) |
| 9 | frn 5481 | . . . 4 ⊢ (𝐹:𝐴⟶𝐵 → ran 𝐹 ⊆ 𝐵) | |
| 10 | 9 | adantl 277 | . . 3 ⊢ ((Rel 𝐴 ∧ 𝐹:𝐴⟶𝐵) → ran 𝐹 ⊆ 𝐵) |
| 11 | fss 5484 | . . 3 ⊢ ((tpos 𝐹:◡𝐴⟶ran 𝐹 ∧ ran 𝐹 ⊆ 𝐵) → tpos 𝐹:◡𝐴⟶𝐵) | |
| 12 | 8, 10, 11 | syl2anc 411 | . 2 ⊢ ((Rel 𝐴 ∧ 𝐹:𝐴⟶𝐵) → tpos 𝐹:◡𝐴⟶𝐵) |
| 13 | 12 | ex 115 | 1 ⊢ (Rel 𝐴 → (𝐹:𝐴⟶𝐵 → tpos 𝐹:◡𝐴⟶𝐵)) |
| Colors of variables: wff set class |
| Syntax hints: → wi 4 ∧ wa 104 ⊆ wss 3197 ◡ccnv 4717 ran crn 4719 Rel wrel 4723 Fn wfn 5312 ⟶wf 5313 –onto→wfo 5315 tpos ctpos 6388 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 617 ax-in2 618 ax-io 714 ax-5 1493 ax-7 1494 ax-gen 1495 ax-ie1 1539 ax-ie2 1540 ax-8 1550 ax-10 1551 ax-11 1552 ax-i12 1553 ax-bndl 1555 ax-4 1556 ax-17 1572 ax-i9 1576 ax-ial 1580 ax-i5r 1581 ax-13 2202 ax-14 2203 ax-ext 2211 ax-sep 4201 ax-nul 4209 ax-pow 4257 ax-pr 4292 ax-un 4523 |
| This theorem depends on definitions: df-bi 117 df-3an 1004 df-tru 1398 df-fal 1401 df-nf 1507 df-sb 1809 df-eu 2080 df-mo 2081 df-clab 2216 df-cleq 2222 df-clel 2225 df-nfc 2361 df-ne 2401 df-ral 2513 df-rex 2514 df-rab 2517 df-v 2801 df-sbc 3029 df-dif 3199 df-un 3201 df-in 3203 df-ss 3210 df-nul 3492 df-pw 3651 df-sn 3672 df-pr 3673 df-op 3675 df-uni 3888 df-br 4083 df-opab 4145 df-mpt 4146 df-id 4383 df-xp 4724 df-rel 4725 df-cnv 4726 df-co 4727 df-dm 4728 df-rn 4729 df-res 4730 df-ima 4731 df-iota 5277 df-fun 5319 df-fn 5320 df-f 5321 df-fo 5323 df-fv 5325 df-tpos 6389 |
| This theorem is referenced by: tposf 6416 |
| Copyright terms: Public domain | W3C validator |