ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  tposf2 GIF version

Theorem tposf2 6236
Description: The domain and range of a transposition. (Contributed by NM, 10-Sep-2015.)
Assertion
Ref Expression
tposf2 (Rel 𝐴 → (𝐹:𝐴𝐵 → tpos 𝐹:𝐴𝐵))

Proof of Theorem tposf2
StepHypRef Expression
1 ffn 5337 . . . . . . 7 (𝐹:𝐴𝐵𝐹 Fn 𝐴)
2 dffn4 5416 . . . . . . 7 (𝐹 Fn 𝐴𝐹:𝐴onto→ran 𝐹)
31, 2sylib 121 . . . . . 6 (𝐹:𝐴𝐵𝐹:𝐴onto→ran 𝐹)
4 tposfo2 6235 . . . . . 6 (Rel 𝐴 → (𝐹:𝐴onto→ran 𝐹 → tpos 𝐹:𝐴onto→ran 𝐹))
53, 4syl5 32 . . . . 5 (Rel 𝐴 → (𝐹:𝐴𝐵 → tpos 𝐹:𝐴onto→ran 𝐹))
65imp 123 . . . 4 ((Rel 𝐴𝐹:𝐴𝐵) → tpos 𝐹:𝐴onto→ran 𝐹)
7 fof 5410 . . . 4 (tpos 𝐹:𝐴onto→ran 𝐹 → tpos 𝐹:𝐴⟶ran 𝐹)
86, 7syl 14 . . 3 ((Rel 𝐴𝐹:𝐴𝐵) → tpos 𝐹:𝐴⟶ran 𝐹)
9 frn 5346 . . . 4 (𝐹:𝐴𝐵 → ran 𝐹𝐵)
109adantl 275 . . 3 ((Rel 𝐴𝐹:𝐴𝐵) → ran 𝐹𝐵)
11 fss 5349 . . 3 ((tpos 𝐹:𝐴⟶ran 𝐹 ∧ ran 𝐹𝐵) → tpos 𝐹:𝐴𝐵)
128, 10, 11syl2anc 409 . 2 ((Rel 𝐴𝐹:𝐴𝐵) → tpos 𝐹:𝐴𝐵)
1312ex 114 1 (Rel 𝐴 → (𝐹:𝐴𝐵 → tpos 𝐹:𝐴𝐵))
Colors of variables: wff set class
Syntax hints:  wi 4  wa 103  wss 3116  ccnv 4603  ran crn 4605  Rel wrel 4609   Fn wfn 5183  wf 5184  ontowfo 5186  tpos ctpos 6212
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-in1 604  ax-in2 605  ax-io 699  ax-5 1435  ax-7 1436  ax-gen 1437  ax-ie1 1481  ax-ie2 1482  ax-8 1492  ax-10 1493  ax-11 1494  ax-i12 1495  ax-bndl 1497  ax-4 1498  ax-17 1514  ax-i9 1518  ax-ial 1522  ax-i5r 1523  ax-13 2138  ax-14 2139  ax-ext 2147  ax-sep 4100  ax-nul 4108  ax-pow 4153  ax-pr 4187  ax-un 4411
This theorem depends on definitions:  df-bi 116  df-3an 970  df-tru 1346  df-fal 1349  df-nf 1449  df-sb 1751  df-eu 2017  df-mo 2018  df-clab 2152  df-cleq 2158  df-clel 2161  df-nfc 2297  df-ne 2337  df-ral 2449  df-rex 2450  df-rab 2453  df-v 2728  df-sbc 2952  df-dif 3118  df-un 3120  df-in 3122  df-ss 3129  df-nul 3410  df-pw 3561  df-sn 3582  df-pr 3583  df-op 3585  df-uni 3790  df-br 3983  df-opab 4044  df-mpt 4045  df-id 4271  df-xp 4610  df-rel 4611  df-cnv 4612  df-co 4613  df-dm 4614  df-rn 4615  df-res 4616  df-ima 4617  df-iota 5153  df-fun 5190  df-fn 5191  df-f 5192  df-fo 5194  df-fv 5196  df-tpos 6213
This theorem is referenced by:  tposf  6240
  Copyright terms: Public domain W3C validator