![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > tposf2 | GIF version |
Description: The domain and codomain of a transposition. (Contributed by NM, 10-Sep-2015.) |
Ref | Expression |
---|---|
tposf2 | ⊢ (Rel 𝐴 → (𝐹:𝐴⟶𝐵 → tpos 𝐹:◡𝐴⟶𝐵)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | ffn 5404 | . . . . . . 7 ⊢ (𝐹:𝐴⟶𝐵 → 𝐹 Fn 𝐴) | |
2 | dffn4 5483 | . . . . . . 7 ⊢ (𝐹 Fn 𝐴 ↔ 𝐹:𝐴–onto→ran 𝐹) | |
3 | 1, 2 | sylib 122 | . . . . . 6 ⊢ (𝐹:𝐴⟶𝐵 → 𝐹:𝐴–onto→ran 𝐹) |
4 | tposfo2 6322 | . . . . . 6 ⊢ (Rel 𝐴 → (𝐹:𝐴–onto→ran 𝐹 → tpos 𝐹:◡𝐴–onto→ran 𝐹)) | |
5 | 3, 4 | syl5 32 | . . . . 5 ⊢ (Rel 𝐴 → (𝐹:𝐴⟶𝐵 → tpos 𝐹:◡𝐴–onto→ran 𝐹)) |
6 | 5 | imp 124 | . . . 4 ⊢ ((Rel 𝐴 ∧ 𝐹:𝐴⟶𝐵) → tpos 𝐹:◡𝐴–onto→ran 𝐹) |
7 | fof 5477 | . . . 4 ⊢ (tpos 𝐹:◡𝐴–onto→ran 𝐹 → tpos 𝐹:◡𝐴⟶ran 𝐹) | |
8 | 6, 7 | syl 14 | . . 3 ⊢ ((Rel 𝐴 ∧ 𝐹:𝐴⟶𝐵) → tpos 𝐹:◡𝐴⟶ran 𝐹) |
9 | frn 5413 | . . . 4 ⊢ (𝐹:𝐴⟶𝐵 → ran 𝐹 ⊆ 𝐵) | |
10 | 9 | adantl 277 | . . 3 ⊢ ((Rel 𝐴 ∧ 𝐹:𝐴⟶𝐵) → ran 𝐹 ⊆ 𝐵) |
11 | fss 5416 | . . 3 ⊢ ((tpos 𝐹:◡𝐴⟶ran 𝐹 ∧ ran 𝐹 ⊆ 𝐵) → tpos 𝐹:◡𝐴⟶𝐵) | |
12 | 8, 10, 11 | syl2anc 411 | . 2 ⊢ ((Rel 𝐴 ∧ 𝐹:𝐴⟶𝐵) → tpos 𝐹:◡𝐴⟶𝐵) |
13 | 12 | ex 115 | 1 ⊢ (Rel 𝐴 → (𝐹:𝐴⟶𝐵 → tpos 𝐹:◡𝐴⟶𝐵)) |
Colors of variables: wff set class |
Syntax hints: → wi 4 ∧ wa 104 ⊆ wss 3154 ◡ccnv 4659 ran crn 4661 Rel wrel 4665 Fn wfn 5250 ⟶wf 5251 –onto→wfo 5253 tpos ctpos 6299 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 615 ax-in2 616 ax-io 710 ax-5 1458 ax-7 1459 ax-gen 1460 ax-ie1 1504 ax-ie2 1505 ax-8 1515 ax-10 1516 ax-11 1517 ax-i12 1518 ax-bndl 1520 ax-4 1521 ax-17 1537 ax-i9 1541 ax-ial 1545 ax-i5r 1546 ax-13 2166 ax-14 2167 ax-ext 2175 ax-sep 4148 ax-nul 4156 ax-pow 4204 ax-pr 4239 ax-un 4465 |
This theorem depends on definitions: df-bi 117 df-3an 982 df-tru 1367 df-fal 1370 df-nf 1472 df-sb 1774 df-eu 2045 df-mo 2046 df-clab 2180 df-cleq 2186 df-clel 2189 df-nfc 2325 df-ne 2365 df-ral 2477 df-rex 2478 df-rab 2481 df-v 2762 df-sbc 2987 df-dif 3156 df-un 3158 df-in 3160 df-ss 3167 df-nul 3448 df-pw 3604 df-sn 3625 df-pr 3626 df-op 3628 df-uni 3837 df-br 4031 df-opab 4092 df-mpt 4093 df-id 4325 df-xp 4666 df-rel 4667 df-cnv 4668 df-co 4669 df-dm 4670 df-rn 4671 df-res 4672 df-ima 4673 df-iota 5216 df-fun 5257 df-fn 5258 df-f 5259 df-fo 5261 df-fv 5263 df-tpos 6300 |
This theorem is referenced by: tposf 6327 |
Copyright terms: Public domain | W3C validator |