ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  tposf2 GIF version

Theorem tposf2 6047
Description: The domain and range of a transposition. (Contributed by NM, 10-Sep-2015.)
Assertion
Ref Expression
tposf2 (Rel 𝐴 → (𝐹:𝐴𝐵 → tpos 𝐹:𝐴𝐵))

Proof of Theorem tposf2
StepHypRef Expression
1 ffn 5174 . . . . . . 7 (𝐹:𝐴𝐵𝐹 Fn 𝐴)
2 dffn4 5252 . . . . . . 7 (𝐹 Fn 𝐴𝐹:𝐴onto→ran 𝐹)
31, 2sylib 121 . . . . . 6 (𝐹:𝐴𝐵𝐹:𝐴onto→ran 𝐹)
4 tposfo2 6046 . . . . . 6 (Rel 𝐴 → (𝐹:𝐴onto→ran 𝐹 → tpos 𝐹:𝐴onto→ran 𝐹))
53, 4syl5 32 . . . . 5 (Rel 𝐴 → (𝐹:𝐴𝐵 → tpos 𝐹:𝐴onto→ran 𝐹))
65imp 123 . . . 4 ((Rel 𝐴𝐹:𝐴𝐵) → tpos 𝐹:𝐴onto→ran 𝐹)
7 fof 5246 . . . 4 (tpos 𝐹:𝐴onto→ran 𝐹 → tpos 𝐹:𝐴⟶ran 𝐹)
86, 7syl 14 . . 3 ((Rel 𝐴𝐹:𝐴𝐵) → tpos 𝐹:𝐴⟶ran 𝐹)
9 frn 5182 . . . 4 (𝐹:𝐴𝐵 → ran 𝐹𝐵)
109adantl 272 . . 3 ((Rel 𝐴𝐹:𝐴𝐵) → ran 𝐹𝐵)
11 fss 5185 . . 3 ((tpos 𝐹:𝐴⟶ran 𝐹 ∧ ran 𝐹𝐵) → tpos 𝐹:𝐴𝐵)
128, 10, 11syl2anc 404 . 2 ((Rel 𝐴𝐹:𝐴𝐵) → tpos 𝐹:𝐴𝐵)
1312ex 114 1 (Rel 𝐴 → (𝐹:𝐴𝐵 → tpos 𝐹:𝐴𝐵))
Colors of variables: wff set class
Syntax hints:  wi 4  wa 103  wss 3000  ccnv 4450  ran crn 4452  Rel wrel 4456   Fn wfn 5023  wf 5024  ontowfo 5026  tpos ctpos 6023
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-mp 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-in1 580  ax-in2 581  ax-io 666  ax-5 1382  ax-7 1383  ax-gen 1384  ax-ie1 1428  ax-ie2 1429  ax-8 1441  ax-10 1442  ax-11 1443  ax-i12 1444  ax-bndl 1445  ax-4 1446  ax-13 1450  ax-14 1451  ax-17 1465  ax-i9 1469  ax-ial 1473  ax-i5r 1474  ax-ext 2071  ax-sep 3963  ax-nul 3971  ax-pow 4015  ax-pr 4045  ax-un 4269
This theorem depends on definitions:  df-bi 116  df-3an 927  df-tru 1293  df-fal 1296  df-nf 1396  df-sb 1694  df-eu 1952  df-mo 1953  df-clab 2076  df-cleq 2082  df-clel 2085  df-nfc 2218  df-ne 2257  df-ral 2365  df-rex 2366  df-rab 2369  df-v 2622  df-sbc 2842  df-dif 3002  df-un 3004  df-in 3006  df-ss 3013  df-nul 3288  df-pw 3435  df-sn 3456  df-pr 3457  df-op 3459  df-uni 3660  df-br 3852  df-opab 3906  df-mpt 3907  df-id 4129  df-xp 4457  df-rel 4458  df-cnv 4459  df-co 4460  df-dm 4461  df-rn 4462  df-res 4463  df-ima 4464  df-iota 4993  df-fun 5030  df-fn 5031  df-f 5032  df-fo 5034  df-fv 5036  df-tpos 6024
This theorem is referenced by:  tposf  6051
  Copyright terms: Public domain W3C validator