ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  tpsuni Unicode version

Theorem tpsuni 13403
Description: The base set of a topological space. (Contributed by FL, 27-Jun-2014.)
Hypotheses
Ref Expression
istps.a  |-  A  =  ( Base `  K
)
istps.j  |-  J  =  ( TopOpen `  K )
Assertion
Ref Expression
tpsuni  |-  ( K  e.  TopSp  ->  A  =  U. J )

Proof of Theorem tpsuni
StepHypRef Expression
1 istps.a . . 3  |-  A  =  ( Base `  K
)
2 istps.j . . 3  |-  J  =  ( TopOpen `  K )
31, 2istps2 13402 . 2  |-  ( K  e.  TopSp 
<->  ( J  e.  Top  /\  A  =  U. J
) )
43simprbi 275 1  |-  ( K  e.  TopSp  ->  A  =  U. J )
Colors of variables: wff set class
Syntax hints:    -> wi 4    = wceq 1353    e. wcel 2148   U.cuni 3809   ` cfv 5215   Basecbs 12454   TopOpenctopn 12677   Topctop 13366   TopSpctps 13399
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 614  ax-in2 615  ax-io 709  ax-5 1447  ax-7 1448  ax-gen 1449  ax-ie1 1493  ax-ie2 1494  ax-8 1504  ax-10 1505  ax-11 1506  ax-i12 1507  ax-bndl 1509  ax-4 1510  ax-17 1526  ax-i9 1530  ax-ial 1534  ax-i5r 1535  ax-13 2150  ax-14 2151  ax-ext 2159  ax-coll 4117  ax-sep 4120  ax-pow 4173  ax-pr 4208  ax-un 4432  ax-cnex 7899  ax-resscn 7900  ax-1re 7902  ax-addrcl 7905
This theorem depends on definitions:  df-bi 117  df-3an 980  df-tru 1356  df-fal 1359  df-nf 1461  df-sb 1763  df-eu 2029  df-mo 2030  df-clab 2164  df-cleq 2170  df-clel 2173  df-nfc 2308  df-ral 2460  df-rex 2461  df-reu 2462  df-rab 2464  df-v 2739  df-sbc 2963  df-csb 3058  df-dif 3131  df-un 3133  df-in 3135  df-ss 3142  df-nul 3423  df-pw 3577  df-sn 3598  df-pr 3599  df-op 3601  df-uni 3810  df-int 3845  df-iun 3888  df-br 4003  df-opab 4064  df-mpt 4065  df-id 4292  df-xp 4631  df-rel 4632  df-cnv 4633  df-co 4634  df-dm 4635  df-rn 4636  df-res 4637  df-ima 4638  df-iota 5177  df-fun 5217  df-fn 5218  df-f 5219  df-f1 5220  df-fo 5221  df-f1o 5222  df-fv 5223  df-ov 5875  df-oprab 5876  df-mpo 5877  df-1st 6138  df-2nd 6139  df-inn 8916  df-2 8974  df-3 8975  df-4 8976  df-5 8977  df-6 8978  df-7 8979  df-8 8980  df-9 8981  df-ndx 12457  df-slot 12458  df-base 12460  df-tset 12547  df-rest 12678  df-topn 12679  df-top 13367  df-topon 13380  df-topsp 13400
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator