ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  tpstop Unicode version

Theorem tpstop 13932
Description: The topology extractor on a topological space is a topology. (Contributed by FL, 27-Jun-2014.)
Hypothesis
Ref Expression
tpstop.j  |-  J  =  ( TopOpen `  K )
Assertion
Ref Expression
tpstop  |-  ( K  e.  TopSp  ->  J  e.  Top )

Proof of Theorem tpstop
StepHypRef Expression
1 eqid 2189 . . 3  |-  ( Base `  K )  =  (
Base `  K )
2 tpstop.j . . 3  |-  J  =  ( TopOpen `  K )
31, 2istps2 13930 . 2  |-  ( K  e.  TopSp 
<->  ( J  e.  Top  /\  ( Base `  K
)  =  U. J
) )
43simplbi 274 1  |-  ( K  e.  TopSp  ->  J  e.  Top )
Colors of variables: wff set class
Syntax hints:    -> wi 4    = wceq 1364    e. wcel 2160   U.cuni 3824   ` cfv 5231   Basecbs 12480   TopOpenctopn 12711   Topctop 13894   TopSpctps 13927
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 710  ax-5 1458  ax-7 1459  ax-gen 1460  ax-ie1 1504  ax-ie2 1505  ax-8 1515  ax-10 1516  ax-11 1517  ax-i12 1518  ax-bndl 1520  ax-4 1521  ax-17 1537  ax-i9 1541  ax-ial 1545  ax-i5r 1546  ax-13 2162  ax-14 2163  ax-ext 2171  ax-coll 4133  ax-sep 4136  ax-pow 4189  ax-pr 4224  ax-un 4448  ax-cnex 7920  ax-resscn 7921  ax-1re 7923  ax-addrcl 7926
This theorem depends on definitions:  df-bi 117  df-3an 982  df-tru 1367  df-fal 1370  df-nf 1472  df-sb 1774  df-eu 2041  df-mo 2042  df-clab 2176  df-cleq 2182  df-clel 2185  df-nfc 2321  df-ral 2473  df-rex 2474  df-reu 2475  df-rab 2477  df-v 2754  df-sbc 2978  df-csb 3073  df-dif 3146  df-un 3148  df-in 3150  df-ss 3157  df-nul 3438  df-pw 3592  df-sn 3613  df-pr 3614  df-op 3616  df-uni 3825  df-int 3860  df-iun 3903  df-br 4019  df-opab 4080  df-mpt 4081  df-id 4308  df-xp 4647  df-rel 4648  df-cnv 4649  df-co 4650  df-dm 4651  df-rn 4652  df-res 4653  df-ima 4654  df-iota 5193  df-fun 5233  df-fn 5234  df-f 5235  df-f1 5236  df-fo 5237  df-f1o 5238  df-fv 5239  df-ov 5894  df-oprab 5895  df-mpo 5896  df-1st 6159  df-2nd 6160  df-inn 8938  df-2 8996  df-3 8997  df-4 8998  df-5 8999  df-6 9000  df-7 9001  df-8 9002  df-9 9003  df-ndx 12483  df-slot 12484  df-base 12486  df-tset 12574  df-rest 12712  df-topn 12713  df-top 13895  df-topon 13908  df-topsp 13928
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator