ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  istps2 Unicode version

Theorem istps2 13990
Description: Express the predicate "is a topological space". (Contributed by NM, 20-Oct-2012.)
Hypotheses
Ref Expression
istps.a  |-  A  =  ( Base `  K
)
istps.j  |-  J  =  ( TopOpen `  K )
Assertion
Ref Expression
istps2  |-  ( K  e.  TopSp 
<->  ( J  e.  Top  /\  A  =  U. J
) )

Proof of Theorem istps2
StepHypRef Expression
1 istps.a . . 3  |-  A  =  ( Base `  K
)
2 istps.j . . 3  |-  J  =  ( TopOpen `  K )
31, 2istps 13989 . 2  |-  ( K  e.  TopSp 
<->  J  e.  (TopOn `  A ) )
4 istopon 13970 . 2  |-  ( J  e.  (TopOn `  A
)  <->  ( J  e. 
Top  /\  A  =  U. J ) )
53, 4bitri 184 1  |-  ( K  e.  TopSp 
<->  ( J  e.  Top  /\  A  =  U. J
) )
Colors of variables: wff set class
Syntax hints:    /\ wa 104    <-> wb 105    = wceq 1364    e. wcel 2160   U.cuni 3824   ` cfv 5235   Basecbs 12512   TopOpenctopn 12745   Topctop 13954  TopOnctopon 13967   TopSpctps 13987
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 710  ax-5 1458  ax-7 1459  ax-gen 1460  ax-ie1 1504  ax-ie2 1505  ax-8 1515  ax-10 1516  ax-11 1517  ax-i12 1518  ax-bndl 1520  ax-4 1521  ax-17 1537  ax-i9 1541  ax-ial 1545  ax-i5r 1546  ax-13 2162  ax-14 2163  ax-ext 2171  ax-coll 4133  ax-sep 4136  ax-pow 4192  ax-pr 4227  ax-un 4451  ax-cnex 7932  ax-resscn 7933  ax-1re 7935  ax-addrcl 7938
This theorem depends on definitions:  df-bi 117  df-3an 982  df-tru 1367  df-fal 1370  df-nf 1472  df-sb 1774  df-eu 2041  df-mo 2042  df-clab 2176  df-cleq 2182  df-clel 2185  df-nfc 2321  df-ral 2473  df-rex 2474  df-reu 2475  df-rab 2477  df-v 2754  df-sbc 2978  df-csb 3073  df-dif 3146  df-un 3148  df-in 3150  df-ss 3157  df-nul 3438  df-pw 3592  df-sn 3613  df-pr 3614  df-op 3616  df-uni 3825  df-int 3860  df-iun 3903  df-br 4019  df-opab 4080  df-mpt 4081  df-id 4311  df-xp 4650  df-rel 4651  df-cnv 4652  df-co 4653  df-dm 4654  df-rn 4655  df-res 4656  df-ima 4657  df-iota 5196  df-fun 5237  df-fn 5238  df-f 5239  df-f1 5240  df-fo 5241  df-f1o 5242  df-fv 5243  df-ov 5899  df-oprab 5900  df-mpo 5901  df-1st 6165  df-2nd 6166  df-inn 8950  df-2 9008  df-3 9009  df-4 9010  df-5 9011  df-6 9012  df-7 9013  df-8 9014  df-9 9015  df-ndx 12515  df-slot 12516  df-base 12518  df-tset 12608  df-rest 12746  df-topn 12747  df-top 13955  df-topon 13968  df-topsp 13988
This theorem is referenced by:  tpsuni  13991  tpstop  13992  istpsi  13996
  Copyright terms: Public domain W3C validator