ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  istps2 Unicode version

Theorem istps2 14505
Description: Express the predicate "is a topological space". (Contributed by NM, 20-Oct-2012.)
Hypotheses
Ref Expression
istps.a  |-  A  =  ( Base `  K
)
istps.j  |-  J  =  ( TopOpen `  K )
Assertion
Ref Expression
istps2  |-  ( K  e.  TopSp 
<->  ( J  e.  Top  /\  A  =  U. J
) )

Proof of Theorem istps2
StepHypRef Expression
1 istps.a . . 3  |-  A  =  ( Base `  K
)
2 istps.j . . 3  |-  J  =  ( TopOpen `  K )
31, 2istps 14504 . 2  |-  ( K  e.  TopSp 
<->  J  e.  (TopOn `  A ) )
4 istopon 14485 . 2  |-  ( J  e.  (TopOn `  A
)  <->  ( J  e. 
Top  /\  A  =  U. J ) )
53, 4bitri 184 1  |-  ( K  e.  TopSp 
<->  ( J  e.  Top  /\  A  =  U. J
) )
Colors of variables: wff set class
Syntax hints:    /\ wa 104    <-> wb 105    = wceq 1373    e. wcel 2176   U.cuni 3850   ` cfv 5271   Basecbs 12832   TopOpenctopn 13072   Topctop 14469  TopOnctopon 14482   TopSpctps 14502
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 711  ax-5 1470  ax-7 1471  ax-gen 1472  ax-ie1 1516  ax-ie2 1517  ax-8 1527  ax-10 1528  ax-11 1529  ax-i12 1530  ax-bndl 1532  ax-4 1533  ax-17 1549  ax-i9 1553  ax-ial 1557  ax-i5r 1558  ax-13 2178  ax-14 2179  ax-ext 2187  ax-coll 4159  ax-sep 4162  ax-pow 4218  ax-pr 4253  ax-un 4480  ax-cnex 8016  ax-resscn 8017  ax-1re 8019  ax-addrcl 8022
This theorem depends on definitions:  df-bi 117  df-3an 983  df-tru 1376  df-fal 1379  df-nf 1484  df-sb 1786  df-eu 2057  df-mo 2058  df-clab 2192  df-cleq 2198  df-clel 2201  df-nfc 2337  df-ral 2489  df-rex 2490  df-reu 2491  df-rab 2493  df-v 2774  df-sbc 2999  df-csb 3094  df-dif 3168  df-un 3170  df-in 3172  df-ss 3179  df-nul 3461  df-pw 3618  df-sn 3639  df-pr 3640  df-op 3642  df-uni 3851  df-int 3886  df-iun 3929  df-br 4045  df-opab 4106  df-mpt 4107  df-id 4340  df-xp 4681  df-rel 4682  df-cnv 4683  df-co 4684  df-dm 4685  df-rn 4686  df-res 4687  df-ima 4688  df-iota 5232  df-fun 5273  df-fn 5274  df-f 5275  df-f1 5276  df-fo 5277  df-f1o 5278  df-fv 5279  df-ov 5947  df-oprab 5948  df-mpo 5949  df-1st 6226  df-2nd 6227  df-inn 9037  df-2 9095  df-3 9096  df-4 9097  df-5 9098  df-6 9099  df-7 9100  df-8 9101  df-9 9102  df-ndx 12835  df-slot 12836  df-base 12838  df-tset 12928  df-rest 13073  df-topn 13074  df-top 14470  df-topon 14483  df-topsp 14503
This theorem is referenced by:  tpsuni  14506  tpstop  14507  istpsi  14511
  Copyright terms: Public domain W3C validator