ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  tpsuni GIF version

Theorem tpsuni 12632
Description: The base set of a topological space. (Contributed by FL, 27-Jun-2014.)
Hypotheses
Ref Expression
istps.a 𝐴 = (Base‘𝐾)
istps.j 𝐽 = (TopOpen‘𝐾)
Assertion
Ref Expression
tpsuni (𝐾 ∈ TopSp → 𝐴 = 𝐽)

Proof of Theorem tpsuni
StepHypRef Expression
1 istps.a . . 3 𝐴 = (Base‘𝐾)
2 istps.j . . 3 𝐽 = (TopOpen‘𝐾)
31, 2istps2 12631 . 2 (𝐾 ∈ TopSp ↔ (𝐽 ∈ Top ∧ 𝐴 = 𝐽))
43simprbi 273 1 (𝐾 ∈ TopSp → 𝐴 = 𝐽)
Colors of variables: wff set class
Syntax hints:  wi 4   = wceq 1343  wcel 2136   cuni 3788  cfv 5187  Basecbs 12390  TopOpenctopn 12552  Topctop 12595  TopSpctps 12628
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-in1 604  ax-in2 605  ax-io 699  ax-5 1435  ax-7 1436  ax-gen 1437  ax-ie1 1481  ax-ie2 1482  ax-8 1492  ax-10 1493  ax-11 1494  ax-i12 1495  ax-bndl 1497  ax-4 1498  ax-17 1514  ax-i9 1518  ax-ial 1522  ax-i5r 1523  ax-13 2138  ax-14 2139  ax-ext 2147  ax-coll 4096  ax-sep 4099  ax-pow 4152  ax-pr 4186  ax-un 4410  ax-cnex 7840  ax-resscn 7841  ax-1re 7843  ax-addrcl 7846
This theorem depends on definitions:  df-bi 116  df-3an 970  df-tru 1346  df-fal 1349  df-nf 1449  df-sb 1751  df-eu 2017  df-mo 2018  df-clab 2152  df-cleq 2158  df-clel 2161  df-nfc 2296  df-ral 2448  df-rex 2449  df-reu 2450  df-rab 2452  df-v 2727  df-sbc 2951  df-csb 3045  df-dif 3117  df-un 3119  df-in 3121  df-ss 3128  df-nul 3409  df-pw 3560  df-sn 3581  df-pr 3582  df-op 3584  df-uni 3789  df-int 3824  df-iun 3867  df-br 3982  df-opab 4043  df-mpt 4044  df-id 4270  df-xp 4609  df-rel 4610  df-cnv 4611  df-co 4612  df-dm 4613  df-rn 4614  df-res 4615  df-ima 4616  df-iota 5152  df-fun 5189  df-fn 5190  df-f 5191  df-f1 5192  df-fo 5193  df-f1o 5194  df-fv 5195  df-ov 5844  df-oprab 5845  df-mpo 5846  df-1st 6105  df-2nd 6106  df-inn 8854  df-2 8912  df-3 8913  df-4 8914  df-5 8915  df-6 8916  df-7 8917  df-8 8918  df-9 8919  df-ndx 12393  df-slot 12394  df-base 12396  df-tset 12471  df-rest 12553  df-topn 12554  df-top 12596  df-topon 12609  df-topsp 12629
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator