Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > tpsuni | GIF version |
Description: The base set of a topological space. (Contributed by FL, 27-Jun-2014.) |
Ref | Expression |
---|---|
istps.a | ⊢ 𝐴 = (Base‘𝐾) |
istps.j | ⊢ 𝐽 = (TopOpen‘𝐾) |
Ref | Expression |
---|---|
tpsuni | ⊢ (𝐾 ∈ TopSp → 𝐴 = ∪ 𝐽) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | istps.a | . . 3 ⊢ 𝐴 = (Base‘𝐾) | |
2 | istps.j | . . 3 ⊢ 𝐽 = (TopOpen‘𝐾) | |
3 | 1, 2 | istps2 12631 | . 2 ⊢ (𝐾 ∈ TopSp ↔ (𝐽 ∈ Top ∧ 𝐴 = ∪ 𝐽)) |
4 | 3 | simprbi 273 | 1 ⊢ (𝐾 ∈ TopSp → 𝐴 = ∪ 𝐽) |
Colors of variables: wff set class |
Syntax hints: → wi 4 = wceq 1343 ∈ wcel 2136 ∪ cuni 3788 ‘cfv 5187 Basecbs 12390 TopOpenctopn 12552 Topctop 12595 TopSpctps 12628 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-in1 604 ax-in2 605 ax-io 699 ax-5 1435 ax-7 1436 ax-gen 1437 ax-ie1 1481 ax-ie2 1482 ax-8 1492 ax-10 1493 ax-11 1494 ax-i12 1495 ax-bndl 1497 ax-4 1498 ax-17 1514 ax-i9 1518 ax-ial 1522 ax-i5r 1523 ax-13 2138 ax-14 2139 ax-ext 2147 ax-coll 4096 ax-sep 4099 ax-pow 4152 ax-pr 4186 ax-un 4410 ax-cnex 7840 ax-resscn 7841 ax-1re 7843 ax-addrcl 7846 |
This theorem depends on definitions: df-bi 116 df-3an 970 df-tru 1346 df-fal 1349 df-nf 1449 df-sb 1751 df-eu 2017 df-mo 2018 df-clab 2152 df-cleq 2158 df-clel 2161 df-nfc 2296 df-ral 2448 df-rex 2449 df-reu 2450 df-rab 2452 df-v 2727 df-sbc 2951 df-csb 3045 df-dif 3117 df-un 3119 df-in 3121 df-ss 3128 df-nul 3409 df-pw 3560 df-sn 3581 df-pr 3582 df-op 3584 df-uni 3789 df-int 3824 df-iun 3867 df-br 3982 df-opab 4043 df-mpt 4044 df-id 4270 df-xp 4609 df-rel 4610 df-cnv 4611 df-co 4612 df-dm 4613 df-rn 4614 df-res 4615 df-ima 4616 df-iota 5152 df-fun 5189 df-fn 5190 df-f 5191 df-f1 5192 df-fo 5193 df-f1o 5194 df-fv 5195 df-ov 5844 df-oprab 5845 df-mpo 5846 df-1st 6105 df-2nd 6106 df-inn 8854 df-2 8912 df-3 8913 df-4 8914 df-5 8915 df-6 8916 df-7 8917 df-8 8918 df-9 8919 df-ndx 12393 df-slot 12394 df-base 12396 df-tset 12471 df-rest 12553 df-topn 12554 df-top 12596 df-topon 12609 df-topsp 12629 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |