ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  uzval Unicode version

Theorem uzval 9489
Description: The value of the upper integers function. (Contributed by NM, 5-Sep-2005.) (Revised by Mario Carneiro, 3-Nov-2013.)
Assertion
Ref Expression
uzval  |-  ( N  e.  ZZ  ->  ( ZZ>=
`  N )  =  { k  e.  ZZ  |  N  <_  k } )
Distinct variable group:    k, N

Proof of Theorem uzval
Dummy variable  j is distinct from all other variables.
StepHypRef Expression
1 breq1 3992 . . 3  |-  ( j  =  N  ->  (
j  <_  k  <->  N  <_  k ) )
21rabbidv 2719 . 2  |-  ( j  =  N  ->  { k  e.  ZZ  |  j  <_  k }  =  { k  e.  ZZ  |  N  <_  k } )
3 df-uz 9488 . 2  |-  ZZ>=  =  ( j  e.  ZZ  |->  { k  e.  ZZ  | 
j  <_  k }
)
4 zex 9221 . . 3  |-  ZZ  e.  _V
54rabex 4133 . 2  |-  { k  e.  ZZ  |  N  <_  k }  e.  _V
62, 3, 5fvmpt 5573 1  |-  ( N  e.  ZZ  ->  ( ZZ>=
`  N )  =  { k  e.  ZZ  |  N  <_  k } )
Colors of variables: wff set class
Syntax hints:    -> wi 4    = wceq 1348    e. wcel 2141   {crab 2452   class class class wbr 3989   ` cfv 5198    <_ cle 7955   ZZcz 9212   ZZ>=cuz 9487
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-io 704  ax-5 1440  ax-7 1441  ax-gen 1442  ax-ie1 1486  ax-ie2 1487  ax-8 1497  ax-10 1498  ax-11 1499  ax-i12 1500  ax-bndl 1502  ax-4 1503  ax-17 1519  ax-i9 1523  ax-ial 1527  ax-i5r 1528  ax-14 2144  ax-ext 2152  ax-sep 4107  ax-pow 4160  ax-pr 4194  ax-cnex 7865  ax-resscn 7866
This theorem depends on definitions:  df-bi 116  df-3or 974  df-3an 975  df-tru 1351  df-nf 1454  df-sb 1756  df-eu 2022  df-mo 2023  df-clab 2157  df-cleq 2163  df-clel 2166  df-nfc 2301  df-ral 2453  df-rex 2454  df-rab 2457  df-v 2732  df-sbc 2956  df-un 3125  df-in 3127  df-ss 3134  df-pw 3568  df-sn 3589  df-pr 3590  df-op 3592  df-uni 3797  df-br 3990  df-opab 4051  df-mpt 4052  df-id 4278  df-xp 4617  df-rel 4618  df-cnv 4619  df-co 4620  df-dm 4621  df-iota 5160  df-fun 5200  df-fv 5206  df-ov 5856  df-neg 8093  df-z 9213  df-uz 9488
This theorem is referenced by:  eluz1  9491  nn0uz  9521  nnuz  9522  algfx  12006
  Copyright terms: Public domain W3C validator