ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  uzval Unicode version

Theorem uzval 9468
Description: The value of the upper integers function. (Contributed by NM, 5-Sep-2005.) (Revised by Mario Carneiro, 3-Nov-2013.)
Assertion
Ref Expression
uzval  |-  ( N  e.  ZZ  ->  ( ZZ>=
`  N )  =  { k  e.  ZZ  |  N  <_  k } )
Distinct variable group:    k, N

Proof of Theorem uzval
Dummy variable  j is distinct from all other variables.
StepHypRef Expression
1 breq1 3985 . . 3  |-  ( j  =  N  ->  (
j  <_  k  <->  N  <_  k ) )
21rabbidv 2715 . 2  |-  ( j  =  N  ->  { k  e.  ZZ  |  j  <_  k }  =  { k  e.  ZZ  |  N  <_  k } )
3 df-uz 9467 . 2  |-  ZZ>=  =  ( j  e.  ZZ  |->  { k  e.  ZZ  | 
j  <_  k }
)
4 zex 9200 . . 3  |-  ZZ  e.  _V
54rabex 4126 . 2  |-  { k  e.  ZZ  |  N  <_  k }  e.  _V
62, 3, 5fvmpt 5563 1  |-  ( N  e.  ZZ  ->  ( ZZ>=
`  N )  =  { k  e.  ZZ  |  N  <_  k } )
Colors of variables: wff set class
Syntax hints:    -> wi 4    = wceq 1343    e. wcel 2136   {crab 2448   class class class wbr 3982   ` cfv 5188    <_ cle 7934   ZZcz 9191   ZZ>=cuz 9466
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-io 699  ax-5 1435  ax-7 1436  ax-gen 1437  ax-ie1 1481  ax-ie2 1482  ax-8 1492  ax-10 1493  ax-11 1494  ax-i12 1495  ax-bndl 1497  ax-4 1498  ax-17 1514  ax-i9 1518  ax-ial 1522  ax-i5r 1523  ax-14 2139  ax-ext 2147  ax-sep 4100  ax-pow 4153  ax-pr 4187  ax-cnex 7844  ax-resscn 7845
This theorem depends on definitions:  df-bi 116  df-3or 969  df-3an 970  df-tru 1346  df-nf 1449  df-sb 1751  df-eu 2017  df-mo 2018  df-clab 2152  df-cleq 2158  df-clel 2161  df-nfc 2297  df-ral 2449  df-rex 2450  df-rab 2453  df-v 2728  df-sbc 2952  df-un 3120  df-in 3122  df-ss 3129  df-pw 3561  df-sn 3582  df-pr 3583  df-op 3585  df-uni 3790  df-br 3983  df-opab 4044  df-mpt 4045  df-id 4271  df-xp 4610  df-rel 4611  df-cnv 4612  df-co 4613  df-dm 4614  df-iota 5153  df-fun 5190  df-fv 5196  df-ov 5845  df-neg 8072  df-z 9192  df-uz 9467
This theorem is referenced by:  eluz1  9470  nn0uz  9500  nnuz  9501  algfx  11984
  Copyright terms: Public domain W3C validator