ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  uzval Unicode version

Theorem uzval 9503
Description: The value of the upper integers function. (Contributed by NM, 5-Sep-2005.) (Revised by Mario Carneiro, 3-Nov-2013.)
Assertion
Ref Expression
uzval  |-  ( N  e.  ZZ  ->  ( ZZ>=
`  N )  =  { k  e.  ZZ  |  N  <_  k } )
Distinct variable group:    k, N

Proof of Theorem uzval
Dummy variable  j is distinct from all other variables.
StepHypRef Expression
1 breq1 4001 . . 3  |-  ( j  =  N  ->  (
j  <_  k  <->  N  <_  k ) )
21rabbidv 2724 . 2  |-  ( j  =  N  ->  { k  e.  ZZ  |  j  <_  k }  =  { k  e.  ZZ  |  N  <_  k } )
3 df-uz 9502 . 2  |-  ZZ>=  =  ( j  e.  ZZ  |->  { k  e.  ZZ  | 
j  <_  k }
)
4 zex 9235 . . 3  |-  ZZ  e.  _V
54rabex 4142 . 2  |-  { k  e.  ZZ  |  N  <_  k }  e.  _V
62, 3, 5fvmpt 5585 1  |-  ( N  e.  ZZ  ->  ( ZZ>=
`  N )  =  { k  e.  ZZ  |  N  <_  k } )
Colors of variables: wff set class
Syntax hints:    -> wi 4    = wceq 1353    e. wcel 2146   {crab 2457   class class class wbr 3998   ` cfv 5208    <_ cle 7967   ZZcz 9226   ZZ>=cuz 9501
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 709  ax-5 1445  ax-7 1446  ax-gen 1447  ax-ie1 1491  ax-ie2 1492  ax-8 1502  ax-10 1503  ax-11 1504  ax-i12 1505  ax-bndl 1507  ax-4 1508  ax-17 1524  ax-i9 1528  ax-ial 1532  ax-i5r 1533  ax-14 2149  ax-ext 2157  ax-sep 4116  ax-pow 4169  ax-pr 4203  ax-cnex 7877  ax-resscn 7878
This theorem depends on definitions:  df-bi 117  df-3or 979  df-3an 980  df-tru 1356  df-nf 1459  df-sb 1761  df-eu 2027  df-mo 2028  df-clab 2162  df-cleq 2168  df-clel 2171  df-nfc 2306  df-ral 2458  df-rex 2459  df-rab 2462  df-v 2737  df-sbc 2961  df-un 3131  df-in 3133  df-ss 3140  df-pw 3574  df-sn 3595  df-pr 3596  df-op 3598  df-uni 3806  df-br 3999  df-opab 4060  df-mpt 4061  df-id 4287  df-xp 4626  df-rel 4627  df-cnv 4628  df-co 4629  df-dm 4630  df-iota 5170  df-fun 5210  df-fv 5216  df-ov 5868  df-neg 8105  df-z 9227  df-uz 9502
This theorem is referenced by:  eluz1  9505  nn0uz  9535  nnuz  9536  algfx  12019
  Copyright terms: Public domain W3C validator