Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > nnuz | Unicode version |
Description: Positive integers expressed as an upper set of integers. (Contributed by NM, 2-Sep-2005.) |
Ref | Expression |
---|---|
nnuz |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | nnzrab 9170 | . 2 | |
2 | 1z 9172 | . . 3 | |
3 | uzval 9420 | . . 3 | |
4 | 2, 3 | ax-mp 5 | . 2 |
5 | 1, 4 | eqtr4i 2178 | 1 |
Colors of variables: wff set class |
Syntax hints: wceq 1332 wcel 2125 crab 2436 class class class wbr 3961 cfv 5163 c1 7712 cle 7892 cn 8812 cz 9146 cuz 9418 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-in1 604 ax-in2 605 ax-io 699 ax-5 1424 ax-7 1425 ax-gen 1426 ax-ie1 1470 ax-ie2 1471 ax-8 1481 ax-10 1482 ax-11 1483 ax-i12 1484 ax-bndl 1486 ax-4 1487 ax-17 1503 ax-i9 1507 ax-ial 1511 ax-i5r 1512 ax-13 2127 ax-14 2128 ax-ext 2136 ax-sep 4078 ax-pow 4130 ax-pr 4164 ax-un 4388 ax-setind 4490 ax-cnex 7802 ax-resscn 7803 ax-1cn 7804 ax-1re 7805 ax-icn 7806 ax-addcl 7807 ax-addrcl 7808 ax-mulcl 7809 ax-addcom 7811 ax-addass 7813 ax-distr 7815 ax-i2m1 7816 ax-0lt1 7817 ax-0id 7819 ax-rnegex 7820 ax-cnre 7822 ax-pre-ltirr 7823 ax-pre-ltwlin 7824 ax-pre-lttrn 7825 ax-pre-ltadd 7827 |
This theorem depends on definitions: df-bi 116 df-3or 964 df-3an 965 df-tru 1335 df-fal 1338 df-nf 1438 df-sb 1740 df-eu 2006 df-mo 2007 df-clab 2141 df-cleq 2147 df-clel 2150 df-nfc 2285 df-ne 2325 df-nel 2420 df-ral 2437 df-rex 2438 df-reu 2439 df-rab 2441 df-v 2711 df-sbc 2934 df-dif 3100 df-un 3102 df-in 3104 df-ss 3111 df-pw 3541 df-sn 3562 df-pr 3563 df-op 3565 df-uni 3769 df-int 3804 df-br 3962 df-opab 4022 df-mpt 4023 df-id 4248 df-xp 4585 df-rel 4586 df-cnv 4587 df-co 4588 df-dm 4589 df-iota 5128 df-fun 5165 df-fv 5171 df-riota 5770 df-ov 5817 df-oprab 5818 df-mpo 5819 df-pnf 7893 df-mnf 7894 df-xr 7895 df-ltxr 7896 df-le 7897 df-sub 8027 df-neg 8028 df-inn 8813 df-z 9147 df-uz 9419 |
This theorem is referenced by: elnnuz 9454 eluz2nn 9456 uznnssnn 9467 eluznn 9489 fzssnn 9948 fseq1p1m1 9974 fz01or 9991 nnsplit 10014 elfzo1 10067 exp3vallem 10398 exp3val 10399 facnn 10578 fac0 10579 bcm1k 10611 bcval5 10614 bcpasc 10617 seq3coll 10690 recvguniq 10872 resqrexlemf 10884 climuni 11167 climrecvg1n 11222 climcvg1nlem 11223 summodclem3 11254 summodclem2a 11255 fsum3 11261 sum0 11262 isumz 11263 fsumcl2lem 11272 fsumadd 11280 fsummulc2 11322 isumnn0nn 11367 divcnv 11371 trireciplem 11374 trirecip 11375 expcnvap0 11376 expcnv 11378 geo2lim 11390 geoisum1 11393 geoisum1c 11394 cvgratnnlemnexp 11398 cvgratnnlemseq 11400 cvgratnnlemrate 11404 cvgratnn 11405 mertenslem2 11410 prodmodclem3 11449 prodmodclem2a 11450 fprodseq 11457 prod0 11459 prod1dc 11460 fprodssdc 11464 fprodmul 11465 ege2le3 11545 gcdsupex 11813 gcdsupcl 11814 lcmval 11912 lcmcllem 11916 lcmledvds 11919 isprm3 11967 phicl2 12058 phibndlem 12060 ennnfonelemjn 12090 lmtopcnp 12597 cvgcmp2nlemabs 13552 cvgcmp2n 13553 trilpolemcl 13557 trilpolemisumle 13558 trilpolemgt1 13559 trilpolemeq1 13560 trilpolemlt1 13561 nconstwlpolem0 13582 nconstwlpolemgt0 13583 |
Copyright terms: Public domain | W3C validator |