ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  algfx Unicode version

Theorem algfx 12006
Description: If  F reaches a fixed point when the countdown function  C reaches  0,  F remains fixed after  N steps. (Contributed by Paul Chapman, 22-Jun-2011.)
Hypotheses
Ref Expression
algcvga.1  |-  F : S
--> S
algcvga.2  |-  R  =  seq 0 ( ( F  o.  1st ) ,  ( NN0  X.  { A } ) )
algcvga.3  |-  C : S
--> NN0
algcvga.4  |-  ( z  e.  S  ->  (
( C `  ( F `  z )
)  =/=  0  -> 
( C `  ( F `  z )
)  <  ( C `  z ) ) )
algcvga.5  |-  N  =  ( C `  A
)
algfx.6  |-  ( z  e.  S  ->  (
( C `  z
)  =  0  -> 
( F `  z
)  =  z ) )
Assertion
Ref Expression
algfx  |-  ( A  e.  S  ->  ( K  e.  ( ZZ>= `  N )  ->  ( R `  K )  =  ( R `  N ) ) )
Distinct variable groups:    z, C    z, F    z, R    z, S    z, K    z, N
Allowed substitution hint:    A( z)

Proof of Theorem algfx
Dummy variables  k  m are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 algcvga.5 . . . 4  |-  N  =  ( C `  A
)
2 algcvga.3 . . . . 5  |-  C : S
--> NN0
32ffvelrni 5630 . . . 4  |-  ( A  e.  S  ->  ( C `  A )  e.  NN0 )
41, 3eqeltrid 2257 . . 3  |-  ( A  e.  S  ->  N  e.  NN0 )
54nn0zd 9332 . 2  |-  ( A  e.  S  ->  N  e.  ZZ )
6 uzval 9489 . . . . . . 7  |-  ( N  e.  ZZ  ->  ( ZZ>=
`  N )  =  { z  e.  ZZ  |  N  <_  z } )
76eleq2d 2240 . . . . . 6  |-  ( N  e.  ZZ  ->  ( K  e.  ( ZZ>= `  N )  <->  K  e.  { z  e.  ZZ  |  N  <_  z } ) )
87pm5.32i 451 . . . . 5  |-  ( ( N  e.  ZZ  /\  K  e.  ( ZZ>= `  N ) )  <->  ( N  e.  ZZ  /\  K  e. 
{ z  e.  ZZ  |  N  <_  z } ) )
9 fveqeq2 5505 . . . . . . 7  |-  ( m  =  N  ->  (
( R `  m
)  =  ( R `
 N )  <->  ( R `  N )  =  ( R `  N ) ) )
109imbi2d 229 . . . . . 6  |-  ( m  =  N  ->  (
( A  e.  S  ->  ( R `  m
)  =  ( R `
 N ) )  <-> 
( A  e.  S  ->  ( R `  N
)  =  ( R `
 N ) ) ) )
11 fveqeq2 5505 . . . . . . 7  |-  ( m  =  k  ->  (
( R `  m
)  =  ( R `
 N )  <->  ( R `  k )  =  ( R `  N ) ) )
1211imbi2d 229 . . . . . 6  |-  ( m  =  k  ->  (
( A  e.  S  ->  ( R `  m
)  =  ( R `
 N ) )  <-> 
( A  e.  S  ->  ( R `  k
)  =  ( R `
 N ) ) ) )
13 fveqeq2 5505 . . . . . . 7  |-  ( m  =  ( k  +  1 )  ->  (
( R `  m
)  =  ( R `
 N )  <->  ( R `  ( k  +  1 ) )  =  ( R `  N ) ) )
1413imbi2d 229 . . . . . 6  |-  ( m  =  ( k  +  1 )  ->  (
( A  e.  S  ->  ( R `  m
)  =  ( R `
 N ) )  <-> 
( A  e.  S  ->  ( R `  (
k  +  1 ) )  =  ( R `
 N ) ) ) )
15 fveqeq2 5505 . . . . . . 7  |-  ( m  =  K  ->  (
( R `  m
)  =  ( R `
 N )  <->  ( R `  K )  =  ( R `  N ) ) )
1615imbi2d 229 . . . . . 6  |-  ( m  =  K  ->  (
( A  e.  S  ->  ( R `  m
)  =  ( R `
 N ) )  <-> 
( A  e.  S  ->  ( R `  K
)  =  ( R `
 N ) ) ) )
17 eqidd 2171 . . . . . . 7  |-  ( A  e.  S  ->  ( R `  N )  =  ( R `  N ) )
1817a1i 9 . . . . . 6  |-  ( N  e.  ZZ  ->  ( A  e.  S  ->  ( R `  N )  =  ( R `  N ) ) )
196eleq2d 2240 . . . . . . . . 9  |-  ( N  e.  ZZ  ->  (
k  e.  ( ZZ>= `  N )  <->  k  e.  { z  e.  ZZ  |  N  <_  z } ) )
2019pm5.32i 451 . . . . . . . 8  |-  ( ( N  e.  ZZ  /\  k  e.  ( ZZ>= `  N ) )  <->  ( N  e.  ZZ  /\  k  e. 
{ z  e.  ZZ  |  N  <_  z } ) )
21 eluznn0 9558 . . . . . . . . . . . . . . 15  |-  ( ( N  e.  NN0  /\  k  e.  ( ZZ>= `  N ) )  -> 
k  e.  NN0 )
224, 21sylan 281 . . . . . . . . . . . . . 14  |-  ( ( A  e.  S  /\  k  e.  ( ZZ>= `  N ) )  -> 
k  e.  NN0 )
23 nn0uz 9521 . . . . . . . . . . . . . . 15  |-  NN0  =  ( ZZ>= `  0 )
24 algcvga.2 . . . . . . . . . . . . . . 15  |-  R  =  seq 0 ( ( F  o.  1st ) ,  ( NN0  X.  { A } ) )
25 0zd 9224 . . . . . . . . . . . . . . 15  |-  ( A  e.  S  ->  0  e.  ZZ )
26 id 19 . . . . . . . . . . . . . . 15  |-  ( A  e.  S  ->  A  e.  S )
27 algcvga.1 . . . . . . . . . . . . . . . 16  |-  F : S
--> S
2827a1i 9 . . . . . . . . . . . . . . 15  |-  ( A  e.  S  ->  F : S --> S )
2923, 24, 25, 26, 28algrp1 12000 . . . . . . . . . . . . . 14  |-  ( ( A  e.  S  /\  k  e.  NN0 )  -> 
( R `  (
k  +  1 ) )  =  ( F `
 ( R `  k ) ) )
3022, 29syldan 280 . . . . . . . . . . . . 13  |-  ( ( A  e.  S  /\  k  e.  ( ZZ>= `  N ) )  -> 
( R `  (
k  +  1 ) )  =  ( F `
 ( R `  k ) ) )
3123, 24, 25, 26, 28algrf 11999 . . . . . . . . . . . . . . . 16  |-  ( A  e.  S  ->  R : NN0 --> S )
3231ffvelrnda 5631 . . . . . . . . . . . . . . 15  |-  ( ( A  e.  S  /\  k  e.  NN0 )  -> 
( R `  k
)  e.  S )
3322, 32syldan 280 . . . . . . . . . . . . . 14  |-  ( ( A  e.  S  /\  k  e.  ( ZZ>= `  N ) )  -> 
( R `  k
)  e.  S )
34 algcvga.4 . . . . . . . . . . . . . . . 16  |-  ( z  e.  S  ->  (
( C `  ( F `  z )
)  =/=  0  -> 
( C `  ( F `  z )
)  <  ( C `  z ) ) )
3527, 24, 2, 34, 1algcvga 12005 . . . . . . . . . . . . . . 15  |-  ( A  e.  S  ->  (
k  e.  ( ZZ>= `  N )  ->  ( C `  ( R `  k ) )  =  0 ) )
3635imp 123 . . . . . . . . . . . . . 14  |-  ( ( A  e.  S  /\  k  e.  ( ZZ>= `  N ) )  -> 
( C `  ( R `  k )
)  =  0 )
37 fveqeq2 5505 . . . . . . . . . . . . . . . 16  |-  ( z  =  ( R `  k )  ->  (
( C `  z
)  =  0  <->  ( C `  ( R `  k ) )  =  0 ) )
38 fveq2 5496 . . . . . . . . . . . . . . . . 17  |-  ( z  =  ( R `  k )  ->  ( F `  z )  =  ( F `  ( R `  k ) ) )
39 id 19 . . . . . . . . . . . . . . . . 17  |-  ( z  =  ( R `  k )  ->  z  =  ( R `  k ) )
4038, 39eqeq12d 2185 . . . . . . . . . . . . . . . 16  |-  ( z  =  ( R `  k )  ->  (
( F `  z
)  =  z  <->  ( F `  ( R `  k
) )  =  ( R `  k ) ) )
4137, 40imbi12d 233 . . . . . . . . . . . . . . 15  |-  ( z  =  ( R `  k )  ->  (
( ( C `  z )  =  0  ->  ( F `  z )  =  z )  <->  ( ( C `
 ( R `  k ) )  =  0  ->  ( F `  ( R `  k
) )  =  ( R `  k ) ) ) )
42 algfx.6 . . . . . . . . . . . . . . 15  |-  ( z  e.  S  ->  (
( C `  z
)  =  0  -> 
( F `  z
)  =  z ) )
4341, 42vtoclga 2796 . . . . . . . . . . . . . 14  |-  ( ( R `  k )  e.  S  ->  (
( C `  ( R `  k )
)  =  0  -> 
( F `  ( R `  k )
)  =  ( R `
 k ) ) )
4433, 36, 43sylc 62 . . . . . . . . . . . . 13  |-  ( ( A  e.  S  /\  k  e.  ( ZZ>= `  N ) )  -> 
( F `  ( R `  k )
)  =  ( R `
 k ) )
4530, 44eqtrd 2203 . . . . . . . . . . . 12  |-  ( ( A  e.  S  /\  k  e.  ( ZZ>= `  N ) )  -> 
( R `  (
k  +  1 ) )  =  ( R `
 k ) )
4645eqeq1d 2179 . . . . . . . . . . 11  |-  ( ( A  e.  S  /\  k  e.  ( ZZ>= `  N ) )  -> 
( ( R `  ( k  +  1 ) )  =  ( R `  N )  <-> 
( R `  k
)  =  ( R `
 N ) ) )
4746biimprd 157 . . . . . . . . . 10  |-  ( ( A  e.  S  /\  k  e.  ( ZZ>= `  N ) )  -> 
( ( R `  k )  =  ( R `  N )  ->  ( R `  ( k  +  1 ) )  =  ( R `  N ) ) )
4847expcom 115 . . . . . . . . 9  |-  ( k  e.  ( ZZ>= `  N
)  ->  ( A  e.  S  ->  ( ( R `  k )  =  ( R `  N )  ->  ( R `  ( k  +  1 ) )  =  ( R `  N ) ) ) )
4948adantl 275 . . . . . . . 8  |-  ( ( N  e.  ZZ  /\  k  e.  ( ZZ>= `  N ) )  -> 
( A  e.  S  ->  ( ( R `  k )  =  ( R `  N )  ->  ( R `  ( k  +  1 ) )  =  ( R `  N ) ) ) )
5020, 49sylbir 134 . . . . . . 7  |-  ( ( N  e.  ZZ  /\  k  e.  { z  e.  ZZ  |  N  <_ 
z } )  -> 
( A  e.  S  ->  ( ( R `  k )  =  ( R `  N )  ->  ( R `  ( k  +  1 ) )  =  ( R `  N ) ) ) )
5150a2d 26 . . . . . 6  |-  ( ( N  e.  ZZ  /\  k  e.  { z  e.  ZZ  |  N  <_ 
z } )  -> 
( ( A  e.  S  ->  ( R `  k )  =  ( R `  N ) )  ->  ( A  e.  S  ->  ( R `
 ( k  +  1 ) )  =  ( R `  N
) ) ) )
5210, 12, 14, 16, 18, 51uzind3 9325 . . . . 5  |-  ( ( N  e.  ZZ  /\  K  e.  { z  e.  ZZ  |  N  <_ 
z } )  -> 
( A  e.  S  ->  ( R `  K
)  =  ( R `
 N ) ) )
538, 52sylbi 120 . . . 4  |-  ( ( N  e.  ZZ  /\  K  e.  ( ZZ>= `  N ) )  -> 
( A  e.  S  ->  ( R `  K
)  =  ( R `
 N ) ) )
5453ex 114 . . 3  |-  ( N  e.  ZZ  ->  ( K  e.  ( ZZ>= `  N )  ->  ( A  e.  S  ->  ( R `  K )  =  ( R `  N ) ) ) )
5554com3r 79 . 2  |-  ( A  e.  S  ->  ( N  e.  ZZ  ->  ( K  e.  ( ZZ>= `  N )  ->  ( R `  K )  =  ( R `  N ) ) ) )
565, 55mpd 13 1  |-  ( A  e.  S  ->  ( K  e.  ( ZZ>= `  N )  ->  ( R `  K )  =  ( R `  N ) ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 103    = wceq 1348    e. wcel 2141    =/= wne 2340   {crab 2452   {csn 3583   class class class wbr 3989    X. cxp 4609    o. ccom 4615   -->wf 5194   ` cfv 5198  (class class class)co 5853   1stc1st 6117   0cc0 7774   1c1 7775    + caddc 7777    < clt 7954    <_ cle 7955   NN0cn0 9135   ZZcz 9212   ZZ>=cuz 9487    seqcseq 10401
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-in1 609  ax-in2 610  ax-io 704  ax-5 1440  ax-7 1441  ax-gen 1442  ax-ie1 1486  ax-ie2 1487  ax-8 1497  ax-10 1498  ax-11 1499  ax-i12 1500  ax-bndl 1502  ax-4 1503  ax-17 1519  ax-i9 1523  ax-ial 1527  ax-i5r 1528  ax-13 2143  ax-14 2144  ax-ext 2152  ax-coll 4104  ax-sep 4107  ax-nul 4115  ax-pow 4160  ax-pr 4194  ax-un 4418  ax-setind 4521  ax-iinf 4572  ax-cnex 7865  ax-resscn 7866  ax-1cn 7867  ax-1re 7868  ax-icn 7869  ax-addcl 7870  ax-addrcl 7871  ax-mulcl 7872  ax-addcom 7874  ax-addass 7876  ax-distr 7878  ax-i2m1 7879  ax-0lt1 7880  ax-0id 7882  ax-rnegex 7883  ax-cnre 7885  ax-pre-ltirr 7886  ax-pre-ltwlin 7887  ax-pre-lttrn 7888  ax-pre-apti 7889  ax-pre-ltadd 7890
This theorem depends on definitions:  df-bi 116  df-stab 826  df-dc 830  df-3or 974  df-3an 975  df-tru 1351  df-fal 1354  df-nf 1454  df-sb 1756  df-eu 2022  df-mo 2023  df-clab 2157  df-cleq 2163  df-clel 2166  df-nfc 2301  df-ne 2341  df-nel 2436  df-ral 2453  df-rex 2454  df-reu 2455  df-rab 2457  df-v 2732  df-sbc 2956  df-csb 3050  df-dif 3123  df-un 3125  df-in 3127  df-ss 3134  df-nul 3415  df-pw 3568  df-sn 3589  df-pr 3590  df-op 3592  df-uni 3797  df-int 3832  df-iun 3875  df-br 3990  df-opab 4051  df-mpt 4052  df-tr 4088  df-id 4278  df-iord 4351  df-on 4353  df-ilim 4354  df-suc 4356  df-iom 4575  df-xp 4617  df-rel 4618  df-cnv 4619  df-co 4620  df-dm 4621  df-rn 4622  df-res 4623  df-ima 4624  df-iota 5160  df-fun 5200  df-fn 5201  df-f 5202  df-f1 5203  df-fo 5204  df-f1o 5205  df-fv 5206  df-riota 5809  df-ov 5856  df-oprab 5857  df-mpo 5858  df-1st 6119  df-2nd 6120  df-recs 6284  df-frec 6370  df-pnf 7956  df-mnf 7957  df-xr 7958  df-ltxr 7959  df-le 7960  df-sub 8092  df-neg 8093  df-inn 8879  df-n0 9136  df-z 9213  df-uz 9488  df-seqfrec 10402
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator