| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > algfx | Unicode version | ||
| Description: If |
| Ref | Expression |
|---|---|
| algcvga.1 |
|
| algcvga.2 |
|
| algcvga.3 |
|
| algcvga.4 |
|
| algcvga.5 |
|
| algfx.6 |
|
| Ref | Expression |
|---|---|
| algfx |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | algcvga.5 |
. . . 4
| |
| 2 | algcvga.3 |
. . . . 5
| |
| 3 | 2 | ffvelcdmi 5696 |
. . . 4
|
| 4 | 1, 3 | eqeltrid 2283 |
. . 3
|
| 5 | 4 | nn0zd 9446 |
. 2
|
| 6 | uzval 9603 |
. . . . . . 7
| |
| 7 | 6 | eleq2d 2266 |
. . . . . 6
|
| 8 | 7 | pm5.32i 454 |
. . . . 5
|
| 9 | fveqeq2 5567 |
. . . . . . 7
| |
| 10 | 9 | imbi2d 230 |
. . . . . 6
|
| 11 | fveqeq2 5567 |
. . . . . . 7
| |
| 12 | 11 | imbi2d 230 |
. . . . . 6
|
| 13 | fveqeq2 5567 |
. . . . . . 7
| |
| 14 | 13 | imbi2d 230 |
. . . . . 6
|
| 15 | fveqeq2 5567 |
. . . . . . 7
| |
| 16 | 15 | imbi2d 230 |
. . . . . 6
|
| 17 | eqidd 2197 |
. . . . . . 7
| |
| 18 | 17 | a1i 9 |
. . . . . 6
|
| 19 | 6 | eleq2d 2266 |
. . . . . . . . 9
|
| 20 | 19 | pm5.32i 454 |
. . . . . . . 8
|
| 21 | eluznn0 9673 |
. . . . . . . . . . . . . . 15
| |
| 22 | 4, 21 | sylan 283 |
. . . . . . . . . . . . . 14
|
| 23 | nn0uz 9636 |
. . . . . . . . . . . . . . 15
| |
| 24 | algcvga.2 |
. . . . . . . . . . . . . . 15
| |
| 25 | 0zd 9338 |
. . . . . . . . . . . . . . 15
| |
| 26 | id 19 |
. . . . . . . . . . . . . . 15
| |
| 27 | algcvga.1 |
. . . . . . . . . . . . . . . 16
| |
| 28 | 27 | a1i 9 |
. . . . . . . . . . . . . . 15
|
| 29 | 23, 24, 25, 26, 28 | algrp1 12214 |
. . . . . . . . . . . . . 14
|
| 30 | 22, 29 | syldan 282 |
. . . . . . . . . . . . 13
|
| 31 | 23, 24, 25, 26, 28 | algrf 12213 |
. . . . . . . . . . . . . . . 16
|
| 32 | 31 | ffvelcdmda 5697 |
. . . . . . . . . . . . . . 15
|
| 33 | 22, 32 | syldan 282 |
. . . . . . . . . . . . . 14
|
| 34 | algcvga.4 |
. . . . . . . . . . . . . . . 16
| |
| 35 | 27, 24, 2, 34, 1 | algcvga 12219 |
. . . . . . . . . . . . . . 15
|
| 36 | 35 | imp 124 |
. . . . . . . . . . . . . 14
|
| 37 | fveqeq2 5567 |
. . . . . . . . . . . . . . . 16
| |
| 38 | fveq2 5558 |
. . . . . . . . . . . . . . . . 17
| |
| 39 | id 19 |
. . . . . . . . . . . . . . . . 17
| |
| 40 | 38, 39 | eqeq12d 2211 |
. . . . . . . . . . . . . . . 16
|
| 41 | 37, 40 | imbi12d 234 |
. . . . . . . . . . . . . . 15
|
| 42 | algfx.6 |
. . . . . . . . . . . . . . 15
| |
| 43 | 41, 42 | vtoclga 2830 |
. . . . . . . . . . . . . 14
|
| 44 | 33, 36, 43 | sylc 62 |
. . . . . . . . . . . . 13
|
| 45 | 30, 44 | eqtrd 2229 |
. . . . . . . . . . . 12
|
| 46 | 45 | eqeq1d 2205 |
. . . . . . . . . . 11
|
| 47 | 46 | biimprd 158 |
. . . . . . . . . 10
|
| 48 | 47 | expcom 116 |
. . . . . . . . 9
|
| 49 | 48 | adantl 277 |
. . . . . . . 8
|
| 50 | 20, 49 | sylbir 135 |
. . . . . . 7
|
| 51 | 50 | a2d 26 |
. . . . . 6
|
| 52 | 10, 12, 14, 16, 18, 51 | uzind3 9439 |
. . . . 5
|
| 53 | 8, 52 | sylbi 121 |
. . . 4
|
| 54 | 53 | ex 115 |
. . 3
|
| 55 | 54 | com3r 79 |
. 2
|
| 56 | 5, 55 | mpd 13 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 615 ax-in2 616 ax-io 710 ax-5 1461 ax-7 1462 ax-gen 1463 ax-ie1 1507 ax-ie2 1508 ax-8 1518 ax-10 1519 ax-11 1520 ax-i12 1521 ax-bndl 1523 ax-4 1524 ax-17 1540 ax-i9 1544 ax-ial 1548 ax-i5r 1549 ax-13 2169 ax-14 2170 ax-ext 2178 ax-coll 4148 ax-sep 4151 ax-nul 4159 ax-pow 4207 ax-pr 4242 ax-un 4468 ax-setind 4573 ax-iinf 4624 ax-cnex 7970 ax-resscn 7971 ax-1cn 7972 ax-1re 7973 ax-icn 7974 ax-addcl 7975 ax-addrcl 7976 ax-mulcl 7977 ax-addcom 7979 ax-addass 7981 ax-distr 7983 ax-i2m1 7984 ax-0lt1 7985 ax-0id 7987 ax-rnegex 7988 ax-cnre 7990 ax-pre-ltirr 7991 ax-pre-ltwlin 7992 ax-pre-lttrn 7993 ax-pre-apti 7994 ax-pre-ltadd 7995 |
| This theorem depends on definitions: df-bi 117 df-stab 832 df-dc 836 df-3or 981 df-3an 982 df-tru 1367 df-fal 1370 df-nf 1475 df-sb 1777 df-eu 2048 df-mo 2049 df-clab 2183 df-cleq 2189 df-clel 2192 df-nfc 2328 df-ne 2368 df-nel 2463 df-ral 2480 df-rex 2481 df-reu 2482 df-rab 2484 df-v 2765 df-sbc 2990 df-csb 3085 df-dif 3159 df-un 3161 df-in 3163 df-ss 3170 df-nul 3451 df-pw 3607 df-sn 3628 df-pr 3629 df-op 3631 df-uni 3840 df-int 3875 df-iun 3918 df-br 4034 df-opab 4095 df-mpt 4096 df-tr 4132 df-id 4328 df-iord 4401 df-on 4403 df-ilim 4404 df-suc 4406 df-iom 4627 df-xp 4669 df-rel 4670 df-cnv 4671 df-co 4672 df-dm 4673 df-rn 4674 df-res 4675 df-ima 4676 df-iota 5219 df-fun 5260 df-fn 5261 df-f 5262 df-f1 5263 df-fo 5264 df-f1o 5265 df-fv 5266 df-riota 5877 df-ov 5925 df-oprab 5926 df-mpo 5927 df-1st 6198 df-2nd 6199 df-recs 6363 df-frec 6449 df-pnf 8063 df-mnf 8064 df-xr 8065 df-ltxr 8066 df-le 8067 df-sub 8199 df-neg 8200 df-inn 8991 df-n0 9250 df-z 9327 df-uz 9602 df-seqfrec 10540 |
| This theorem is referenced by: (None) |
| Copyright terms: Public domain | W3C validator |