| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > algfx | Unicode version | ||
| Description: If |
| Ref | Expression |
|---|---|
| algcvga.1 |
|
| algcvga.2 |
|
| algcvga.3 |
|
| algcvga.4 |
|
| algcvga.5 |
|
| algfx.6 |
|
| Ref | Expression |
|---|---|
| algfx |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | algcvga.5 |
. . . 4
| |
| 2 | algcvga.3 |
. . . . 5
| |
| 3 | 2 | ffvelcdmi 5762 |
. . . 4
|
| 4 | 1, 3 | eqeltrid 2316 |
. . 3
|
| 5 | 4 | nn0zd 9555 |
. 2
|
| 6 | uzval 9712 |
. . . . . . 7
| |
| 7 | 6 | eleq2d 2299 |
. . . . . 6
|
| 8 | 7 | pm5.32i 454 |
. . . . 5
|
| 9 | fveqeq2 5632 |
. . . . . . 7
| |
| 10 | 9 | imbi2d 230 |
. . . . . 6
|
| 11 | fveqeq2 5632 |
. . . . . . 7
| |
| 12 | 11 | imbi2d 230 |
. . . . . 6
|
| 13 | fveqeq2 5632 |
. . . . . . 7
| |
| 14 | 13 | imbi2d 230 |
. . . . . 6
|
| 15 | fveqeq2 5632 |
. . . . . . 7
| |
| 16 | 15 | imbi2d 230 |
. . . . . 6
|
| 17 | eqidd 2230 |
. . . . . . 7
| |
| 18 | 17 | a1i 9 |
. . . . . 6
|
| 19 | 6 | eleq2d 2299 |
. . . . . . . . 9
|
| 20 | 19 | pm5.32i 454 |
. . . . . . . 8
|
| 21 | eluznn0 9782 |
. . . . . . . . . . . . . . 15
| |
| 22 | 4, 21 | sylan 283 |
. . . . . . . . . . . . . 14
|
| 23 | nn0uz 9745 |
. . . . . . . . . . . . . . 15
| |
| 24 | algcvga.2 |
. . . . . . . . . . . . . . 15
| |
| 25 | 0zd 9446 |
. . . . . . . . . . . . . . 15
| |
| 26 | id 19 |
. . . . . . . . . . . . . . 15
| |
| 27 | algcvga.1 |
. . . . . . . . . . . . . . . 16
| |
| 28 | 27 | a1i 9 |
. . . . . . . . . . . . . . 15
|
| 29 | 23, 24, 25, 26, 28 | algrp1 12554 |
. . . . . . . . . . . . . 14
|
| 30 | 22, 29 | syldan 282 |
. . . . . . . . . . . . 13
|
| 31 | 23, 24, 25, 26, 28 | algrf 12553 |
. . . . . . . . . . . . . . . 16
|
| 32 | 31 | ffvelcdmda 5763 |
. . . . . . . . . . . . . . 15
|
| 33 | 22, 32 | syldan 282 |
. . . . . . . . . . . . . 14
|
| 34 | algcvga.4 |
. . . . . . . . . . . . . . . 16
| |
| 35 | 27, 24, 2, 34, 1 | algcvga 12559 |
. . . . . . . . . . . . . . 15
|
| 36 | 35 | imp 124 |
. . . . . . . . . . . . . 14
|
| 37 | fveqeq2 5632 |
. . . . . . . . . . . . . . . 16
| |
| 38 | fveq2 5623 |
. . . . . . . . . . . . . . . . 17
| |
| 39 | id 19 |
. . . . . . . . . . . . . . . . 17
| |
| 40 | 38, 39 | eqeq12d 2244 |
. . . . . . . . . . . . . . . 16
|
| 41 | 37, 40 | imbi12d 234 |
. . . . . . . . . . . . . . 15
|
| 42 | algfx.6 |
. . . . . . . . . . . . . . 15
| |
| 43 | 41, 42 | vtoclga 2867 |
. . . . . . . . . . . . . 14
|
| 44 | 33, 36, 43 | sylc 62 |
. . . . . . . . . . . . 13
|
| 45 | 30, 44 | eqtrd 2262 |
. . . . . . . . . . . 12
|
| 46 | 45 | eqeq1d 2238 |
. . . . . . . . . . 11
|
| 47 | 46 | biimprd 158 |
. . . . . . . . . 10
|
| 48 | 47 | expcom 116 |
. . . . . . . . 9
|
| 49 | 48 | adantl 277 |
. . . . . . . 8
|
| 50 | 20, 49 | sylbir 135 |
. . . . . . 7
|
| 51 | 50 | a2d 26 |
. . . . . 6
|
| 52 | 10, 12, 14, 16, 18, 51 | uzind3 9548 |
. . . . 5
|
| 53 | 8, 52 | sylbi 121 |
. . . 4
|
| 54 | 53 | ex 115 |
. . 3
|
| 55 | 54 | com3r 79 |
. 2
|
| 56 | 5, 55 | mpd 13 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 617 ax-in2 618 ax-io 714 ax-5 1493 ax-7 1494 ax-gen 1495 ax-ie1 1539 ax-ie2 1540 ax-8 1550 ax-10 1551 ax-11 1552 ax-i12 1553 ax-bndl 1555 ax-4 1556 ax-17 1572 ax-i9 1576 ax-ial 1580 ax-i5r 1581 ax-13 2202 ax-14 2203 ax-ext 2211 ax-coll 4198 ax-sep 4201 ax-nul 4209 ax-pow 4257 ax-pr 4292 ax-un 4521 ax-setind 4626 ax-iinf 4677 ax-cnex 8078 ax-resscn 8079 ax-1cn 8080 ax-1re 8081 ax-icn 8082 ax-addcl 8083 ax-addrcl 8084 ax-mulcl 8085 ax-addcom 8087 ax-addass 8089 ax-distr 8091 ax-i2m1 8092 ax-0lt1 8093 ax-0id 8095 ax-rnegex 8096 ax-cnre 8098 ax-pre-ltirr 8099 ax-pre-ltwlin 8100 ax-pre-lttrn 8101 ax-pre-apti 8102 ax-pre-ltadd 8103 |
| This theorem depends on definitions: df-bi 117 df-stab 836 df-dc 840 df-3or 1003 df-3an 1004 df-tru 1398 df-fal 1401 df-nf 1507 df-sb 1809 df-eu 2080 df-mo 2081 df-clab 2216 df-cleq 2222 df-clel 2225 df-nfc 2361 df-ne 2401 df-nel 2496 df-ral 2513 df-rex 2514 df-reu 2515 df-rab 2517 df-v 2801 df-sbc 3029 df-csb 3125 df-dif 3199 df-un 3201 df-in 3203 df-ss 3210 df-nul 3492 df-pw 3651 df-sn 3672 df-pr 3673 df-op 3675 df-uni 3888 df-int 3923 df-iun 3966 df-br 4083 df-opab 4145 df-mpt 4146 df-tr 4182 df-id 4381 df-iord 4454 df-on 4456 df-ilim 4457 df-suc 4459 df-iom 4680 df-xp 4722 df-rel 4723 df-cnv 4724 df-co 4725 df-dm 4726 df-rn 4727 df-res 4728 df-ima 4729 df-iota 5274 df-fun 5316 df-fn 5317 df-f 5318 df-f1 5319 df-fo 5320 df-f1o 5321 df-fv 5322 df-riota 5947 df-ov 5997 df-oprab 5998 df-mpo 5999 df-1st 6276 df-2nd 6277 df-recs 6441 df-frec 6527 df-pnf 8171 df-mnf 8172 df-xr 8173 df-ltxr 8174 df-le 8175 df-sub 8307 df-neg 8308 df-inn 9099 df-n0 9358 df-z 9435 df-uz 9711 df-seqfrec 10657 |
| This theorem is referenced by: (None) |
| Copyright terms: Public domain | W3C validator |