ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  algfx Unicode version

Theorem algfx 12220
Description: If  F reaches a fixed point when the countdown function  C reaches  0,  F remains fixed after  N steps. (Contributed by Paul Chapman, 22-Jun-2011.)
Hypotheses
Ref Expression
algcvga.1  |-  F : S
--> S
algcvga.2  |-  R  =  seq 0 ( ( F  o.  1st ) ,  ( NN0  X.  { A } ) )
algcvga.3  |-  C : S
--> NN0
algcvga.4  |-  ( z  e.  S  ->  (
( C `  ( F `  z )
)  =/=  0  -> 
( C `  ( F `  z )
)  <  ( C `  z ) ) )
algcvga.5  |-  N  =  ( C `  A
)
algfx.6  |-  ( z  e.  S  ->  (
( C `  z
)  =  0  -> 
( F `  z
)  =  z ) )
Assertion
Ref Expression
algfx  |-  ( A  e.  S  ->  ( K  e.  ( ZZ>= `  N )  ->  ( R `  K )  =  ( R `  N ) ) )
Distinct variable groups:    z, C    z, F    z, R    z, S    z, K    z, N
Allowed substitution hint:    A( z)

Proof of Theorem algfx
Dummy variables  k  m are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 algcvga.5 . . . 4  |-  N  =  ( C `  A
)
2 algcvga.3 . . . . 5  |-  C : S
--> NN0
32ffvelcdmi 5696 . . . 4  |-  ( A  e.  S  ->  ( C `  A )  e.  NN0 )
41, 3eqeltrid 2283 . . 3  |-  ( A  e.  S  ->  N  e.  NN0 )
54nn0zd 9446 . 2  |-  ( A  e.  S  ->  N  e.  ZZ )
6 uzval 9603 . . . . . . 7  |-  ( N  e.  ZZ  ->  ( ZZ>=
`  N )  =  { z  e.  ZZ  |  N  <_  z } )
76eleq2d 2266 . . . . . 6  |-  ( N  e.  ZZ  ->  ( K  e.  ( ZZ>= `  N )  <->  K  e.  { z  e.  ZZ  |  N  <_  z } ) )
87pm5.32i 454 . . . . 5  |-  ( ( N  e.  ZZ  /\  K  e.  ( ZZ>= `  N ) )  <->  ( N  e.  ZZ  /\  K  e. 
{ z  e.  ZZ  |  N  <_  z } ) )
9 fveqeq2 5567 . . . . . . 7  |-  ( m  =  N  ->  (
( R `  m
)  =  ( R `
 N )  <->  ( R `  N )  =  ( R `  N ) ) )
109imbi2d 230 . . . . . 6  |-  ( m  =  N  ->  (
( A  e.  S  ->  ( R `  m
)  =  ( R `
 N ) )  <-> 
( A  e.  S  ->  ( R `  N
)  =  ( R `
 N ) ) ) )
11 fveqeq2 5567 . . . . . . 7  |-  ( m  =  k  ->  (
( R `  m
)  =  ( R `
 N )  <->  ( R `  k )  =  ( R `  N ) ) )
1211imbi2d 230 . . . . . 6  |-  ( m  =  k  ->  (
( A  e.  S  ->  ( R `  m
)  =  ( R `
 N ) )  <-> 
( A  e.  S  ->  ( R `  k
)  =  ( R `
 N ) ) ) )
13 fveqeq2 5567 . . . . . . 7  |-  ( m  =  ( k  +  1 )  ->  (
( R `  m
)  =  ( R `
 N )  <->  ( R `  ( k  +  1 ) )  =  ( R `  N ) ) )
1413imbi2d 230 . . . . . 6  |-  ( m  =  ( k  +  1 )  ->  (
( A  e.  S  ->  ( R `  m
)  =  ( R `
 N ) )  <-> 
( A  e.  S  ->  ( R `  (
k  +  1 ) )  =  ( R `
 N ) ) ) )
15 fveqeq2 5567 . . . . . . 7  |-  ( m  =  K  ->  (
( R `  m
)  =  ( R `
 N )  <->  ( R `  K )  =  ( R `  N ) ) )
1615imbi2d 230 . . . . . 6  |-  ( m  =  K  ->  (
( A  e.  S  ->  ( R `  m
)  =  ( R `
 N ) )  <-> 
( A  e.  S  ->  ( R `  K
)  =  ( R `
 N ) ) ) )
17 eqidd 2197 . . . . . . 7  |-  ( A  e.  S  ->  ( R `  N )  =  ( R `  N ) )
1817a1i 9 . . . . . 6  |-  ( N  e.  ZZ  ->  ( A  e.  S  ->  ( R `  N )  =  ( R `  N ) ) )
196eleq2d 2266 . . . . . . . . 9  |-  ( N  e.  ZZ  ->  (
k  e.  ( ZZ>= `  N )  <->  k  e.  { z  e.  ZZ  |  N  <_  z } ) )
2019pm5.32i 454 . . . . . . . 8  |-  ( ( N  e.  ZZ  /\  k  e.  ( ZZ>= `  N ) )  <->  ( N  e.  ZZ  /\  k  e. 
{ z  e.  ZZ  |  N  <_  z } ) )
21 eluznn0 9673 . . . . . . . . . . . . . . 15  |-  ( ( N  e.  NN0  /\  k  e.  ( ZZ>= `  N ) )  -> 
k  e.  NN0 )
224, 21sylan 283 . . . . . . . . . . . . . 14  |-  ( ( A  e.  S  /\  k  e.  ( ZZ>= `  N ) )  -> 
k  e.  NN0 )
23 nn0uz 9636 . . . . . . . . . . . . . . 15  |-  NN0  =  ( ZZ>= `  0 )
24 algcvga.2 . . . . . . . . . . . . . . 15  |-  R  =  seq 0 ( ( F  o.  1st ) ,  ( NN0  X.  { A } ) )
25 0zd 9338 . . . . . . . . . . . . . . 15  |-  ( A  e.  S  ->  0  e.  ZZ )
26 id 19 . . . . . . . . . . . . . . 15  |-  ( A  e.  S  ->  A  e.  S )
27 algcvga.1 . . . . . . . . . . . . . . . 16  |-  F : S
--> S
2827a1i 9 . . . . . . . . . . . . . . 15  |-  ( A  e.  S  ->  F : S --> S )
2923, 24, 25, 26, 28algrp1 12214 . . . . . . . . . . . . . 14  |-  ( ( A  e.  S  /\  k  e.  NN0 )  -> 
( R `  (
k  +  1 ) )  =  ( F `
 ( R `  k ) ) )
3022, 29syldan 282 . . . . . . . . . . . . 13  |-  ( ( A  e.  S  /\  k  e.  ( ZZ>= `  N ) )  -> 
( R `  (
k  +  1 ) )  =  ( F `
 ( R `  k ) ) )
3123, 24, 25, 26, 28algrf 12213 . . . . . . . . . . . . . . . 16  |-  ( A  e.  S  ->  R : NN0 --> S )
3231ffvelcdmda 5697 . . . . . . . . . . . . . . 15  |-  ( ( A  e.  S  /\  k  e.  NN0 )  -> 
( R `  k
)  e.  S )
3322, 32syldan 282 . . . . . . . . . . . . . 14  |-  ( ( A  e.  S  /\  k  e.  ( ZZ>= `  N ) )  -> 
( R `  k
)  e.  S )
34 algcvga.4 . . . . . . . . . . . . . . . 16  |-  ( z  e.  S  ->  (
( C `  ( F `  z )
)  =/=  0  -> 
( C `  ( F `  z )
)  <  ( C `  z ) ) )
3527, 24, 2, 34, 1algcvga 12219 . . . . . . . . . . . . . . 15  |-  ( A  e.  S  ->  (
k  e.  ( ZZ>= `  N )  ->  ( C `  ( R `  k ) )  =  0 ) )
3635imp 124 . . . . . . . . . . . . . 14  |-  ( ( A  e.  S  /\  k  e.  ( ZZ>= `  N ) )  -> 
( C `  ( R `  k )
)  =  0 )
37 fveqeq2 5567 . . . . . . . . . . . . . . . 16  |-  ( z  =  ( R `  k )  ->  (
( C `  z
)  =  0  <->  ( C `  ( R `  k ) )  =  0 ) )
38 fveq2 5558 . . . . . . . . . . . . . . . . 17  |-  ( z  =  ( R `  k )  ->  ( F `  z )  =  ( F `  ( R `  k ) ) )
39 id 19 . . . . . . . . . . . . . . . . 17  |-  ( z  =  ( R `  k )  ->  z  =  ( R `  k ) )
4038, 39eqeq12d 2211 . . . . . . . . . . . . . . . 16  |-  ( z  =  ( R `  k )  ->  (
( F `  z
)  =  z  <->  ( F `  ( R `  k
) )  =  ( R `  k ) ) )
4137, 40imbi12d 234 . . . . . . . . . . . . . . 15  |-  ( z  =  ( R `  k )  ->  (
( ( C `  z )  =  0  ->  ( F `  z )  =  z )  <->  ( ( C `
 ( R `  k ) )  =  0  ->  ( F `  ( R `  k
) )  =  ( R `  k ) ) ) )
42 algfx.6 . . . . . . . . . . . . . . 15  |-  ( z  e.  S  ->  (
( C `  z
)  =  0  -> 
( F `  z
)  =  z ) )
4341, 42vtoclga 2830 . . . . . . . . . . . . . 14  |-  ( ( R `  k )  e.  S  ->  (
( C `  ( R `  k )
)  =  0  -> 
( F `  ( R `  k )
)  =  ( R `
 k ) ) )
4433, 36, 43sylc 62 . . . . . . . . . . . . 13  |-  ( ( A  e.  S  /\  k  e.  ( ZZ>= `  N ) )  -> 
( F `  ( R `  k )
)  =  ( R `
 k ) )
4530, 44eqtrd 2229 . . . . . . . . . . . 12  |-  ( ( A  e.  S  /\  k  e.  ( ZZ>= `  N ) )  -> 
( R `  (
k  +  1 ) )  =  ( R `
 k ) )
4645eqeq1d 2205 . . . . . . . . . . 11  |-  ( ( A  e.  S  /\  k  e.  ( ZZ>= `  N ) )  -> 
( ( R `  ( k  +  1 ) )  =  ( R `  N )  <-> 
( R `  k
)  =  ( R `
 N ) ) )
4746biimprd 158 . . . . . . . . . 10  |-  ( ( A  e.  S  /\  k  e.  ( ZZ>= `  N ) )  -> 
( ( R `  k )  =  ( R `  N )  ->  ( R `  ( k  +  1 ) )  =  ( R `  N ) ) )
4847expcom 116 . . . . . . . . 9  |-  ( k  e.  ( ZZ>= `  N
)  ->  ( A  e.  S  ->  ( ( R `  k )  =  ( R `  N )  ->  ( R `  ( k  +  1 ) )  =  ( R `  N ) ) ) )
4948adantl 277 . . . . . . . 8  |-  ( ( N  e.  ZZ  /\  k  e.  ( ZZ>= `  N ) )  -> 
( A  e.  S  ->  ( ( R `  k )  =  ( R `  N )  ->  ( R `  ( k  +  1 ) )  =  ( R `  N ) ) ) )
5020, 49sylbir 135 . . . . . . 7  |-  ( ( N  e.  ZZ  /\  k  e.  { z  e.  ZZ  |  N  <_ 
z } )  -> 
( A  e.  S  ->  ( ( R `  k )  =  ( R `  N )  ->  ( R `  ( k  +  1 ) )  =  ( R `  N ) ) ) )
5150a2d 26 . . . . . 6  |-  ( ( N  e.  ZZ  /\  k  e.  { z  e.  ZZ  |  N  <_ 
z } )  -> 
( ( A  e.  S  ->  ( R `  k )  =  ( R `  N ) )  ->  ( A  e.  S  ->  ( R `
 ( k  +  1 ) )  =  ( R `  N
) ) ) )
5210, 12, 14, 16, 18, 51uzind3 9439 . . . . 5  |-  ( ( N  e.  ZZ  /\  K  e.  { z  e.  ZZ  |  N  <_ 
z } )  -> 
( A  e.  S  ->  ( R `  K
)  =  ( R `
 N ) ) )
538, 52sylbi 121 . . . 4  |-  ( ( N  e.  ZZ  /\  K  e.  ( ZZ>= `  N ) )  -> 
( A  e.  S  ->  ( R `  K
)  =  ( R `
 N ) ) )
5453ex 115 . . 3  |-  ( N  e.  ZZ  ->  ( K  e.  ( ZZ>= `  N )  ->  ( A  e.  S  ->  ( R `  K )  =  ( R `  N ) ) ) )
5554com3r 79 . 2  |-  ( A  e.  S  ->  ( N  e.  ZZ  ->  ( K  e.  ( ZZ>= `  N )  ->  ( R `  K )  =  ( R `  N ) ) ) )
565, 55mpd 13 1  |-  ( A  e.  S  ->  ( K  e.  ( ZZ>= `  N )  ->  ( R `  K )  =  ( R `  N ) ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 104    = wceq 1364    e. wcel 2167    =/= wne 2367   {crab 2479   {csn 3622   class class class wbr 4033    X. cxp 4661    o. ccom 4667   -->wf 5254   ` cfv 5258  (class class class)co 5922   1stc1st 6196   0cc0 7879   1c1 7880    + caddc 7882    < clt 8061    <_ cle 8062   NN0cn0 9249   ZZcz 9326   ZZ>=cuz 9601    seqcseq 10539
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 710  ax-5 1461  ax-7 1462  ax-gen 1463  ax-ie1 1507  ax-ie2 1508  ax-8 1518  ax-10 1519  ax-11 1520  ax-i12 1521  ax-bndl 1523  ax-4 1524  ax-17 1540  ax-i9 1544  ax-ial 1548  ax-i5r 1549  ax-13 2169  ax-14 2170  ax-ext 2178  ax-coll 4148  ax-sep 4151  ax-nul 4159  ax-pow 4207  ax-pr 4242  ax-un 4468  ax-setind 4573  ax-iinf 4624  ax-cnex 7970  ax-resscn 7971  ax-1cn 7972  ax-1re 7973  ax-icn 7974  ax-addcl 7975  ax-addrcl 7976  ax-mulcl 7977  ax-addcom 7979  ax-addass 7981  ax-distr 7983  ax-i2m1 7984  ax-0lt1 7985  ax-0id 7987  ax-rnegex 7988  ax-cnre 7990  ax-pre-ltirr 7991  ax-pre-ltwlin 7992  ax-pre-lttrn 7993  ax-pre-apti 7994  ax-pre-ltadd 7995
This theorem depends on definitions:  df-bi 117  df-stab 832  df-dc 836  df-3or 981  df-3an 982  df-tru 1367  df-fal 1370  df-nf 1475  df-sb 1777  df-eu 2048  df-mo 2049  df-clab 2183  df-cleq 2189  df-clel 2192  df-nfc 2328  df-ne 2368  df-nel 2463  df-ral 2480  df-rex 2481  df-reu 2482  df-rab 2484  df-v 2765  df-sbc 2990  df-csb 3085  df-dif 3159  df-un 3161  df-in 3163  df-ss 3170  df-nul 3451  df-pw 3607  df-sn 3628  df-pr 3629  df-op 3631  df-uni 3840  df-int 3875  df-iun 3918  df-br 4034  df-opab 4095  df-mpt 4096  df-tr 4132  df-id 4328  df-iord 4401  df-on 4403  df-ilim 4404  df-suc 4406  df-iom 4627  df-xp 4669  df-rel 4670  df-cnv 4671  df-co 4672  df-dm 4673  df-rn 4674  df-res 4675  df-ima 4676  df-iota 5219  df-fun 5260  df-fn 5261  df-f 5262  df-f1 5263  df-fo 5264  df-f1o 5265  df-fv 5266  df-riota 5877  df-ov 5925  df-oprab 5926  df-mpo 5927  df-1st 6198  df-2nd 6199  df-recs 6363  df-frec 6449  df-pnf 8063  df-mnf 8064  df-xr 8065  df-ltxr 8066  df-le 8067  df-sub 8199  df-neg 8200  df-inn 8991  df-n0 9250  df-z 9327  df-uz 9602  df-seqfrec 10540
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator