ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  algfx Unicode version

Theorem algfx 12444
Description: If  F reaches a fixed point when the countdown function  C reaches  0,  F remains fixed after  N steps. (Contributed by Paul Chapman, 22-Jun-2011.)
Hypotheses
Ref Expression
algcvga.1  |-  F : S
--> S
algcvga.2  |-  R  =  seq 0 ( ( F  o.  1st ) ,  ( NN0  X.  { A } ) )
algcvga.3  |-  C : S
--> NN0
algcvga.4  |-  ( z  e.  S  ->  (
( C `  ( F `  z )
)  =/=  0  -> 
( C `  ( F `  z )
)  <  ( C `  z ) ) )
algcvga.5  |-  N  =  ( C `  A
)
algfx.6  |-  ( z  e.  S  ->  (
( C `  z
)  =  0  -> 
( F `  z
)  =  z ) )
Assertion
Ref Expression
algfx  |-  ( A  e.  S  ->  ( K  e.  ( ZZ>= `  N )  ->  ( R `  K )  =  ( R `  N ) ) )
Distinct variable groups:    z, C    z, F    z, R    z, S    z, K    z, N
Allowed substitution hint:    A( z)

Proof of Theorem algfx
Dummy variables  k  m are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 algcvga.5 . . . 4  |-  N  =  ( C `  A
)
2 algcvga.3 . . . . 5  |-  C : S
--> NN0
32ffvelcdmi 5726 . . . 4  |-  ( A  e.  S  ->  ( C `  A )  e.  NN0 )
41, 3eqeltrid 2293 . . 3  |-  ( A  e.  S  ->  N  e.  NN0 )
54nn0zd 9508 . 2  |-  ( A  e.  S  ->  N  e.  ZZ )
6 uzval 9665 . . . . . . 7  |-  ( N  e.  ZZ  ->  ( ZZ>=
`  N )  =  { z  e.  ZZ  |  N  <_  z } )
76eleq2d 2276 . . . . . 6  |-  ( N  e.  ZZ  ->  ( K  e.  ( ZZ>= `  N )  <->  K  e.  { z  e.  ZZ  |  N  <_  z } ) )
87pm5.32i 454 . . . . 5  |-  ( ( N  e.  ZZ  /\  K  e.  ( ZZ>= `  N ) )  <->  ( N  e.  ZZ  /\  K  e. 
{ z  e.  ZZ  |  N  <_  z } ) )
9 fveqeq2 5597 . . . . . . 7  |-  ( m  =  N  ->  (
( R `  m
)  =  ( R `
 N )  <->  ( R `  N )  =  ( R `  N ) ) )
109imbi2d 230 . . . . . 6  |-  ( m  =  N  ->  (
( A  e.  S  ->  ( R `  m
)  =  ( R `
 N ) )  <-> 
( A  e.  S  ->  ( R `  N
)  =  ( R `
 N ) ) ) )
11 fveqeq2 5597 . . . . . . 7  |-  ( m  =  k  ->  (
( R `  m
)  =  ( R `
 N )  <->  ( R `  k )  =  ( R `  N ) ) )
1211imbi2d 230 . . . . . 6  |-  ( m  =  k  ->  (
( A  e.  S  ->  ( R `  m
)  =  ( R `
 N ) )  <-> 
( A  e.  S  ->  ( R `  k
)  =  ( R `
 N ) ) ) )
13 fveqeq2 5597 . . . . . . 7  |-  ( m  =  ( k  +  1 )  ->  (
( R `  m
)  =  ( R `
 N )  <->  ( R `  ( k  +  1 ) )  =  ( R `  N ) ) )
1413imbi2d 230 . . . . . 6  |-  ( m  =  ( k  +  1 )  ->  (
( A  e.  S  ->  ( R `  m
)  =  ( R `
 N ) )  <-> 
( A  e.  S  ->  ( R `  (
k  +  1 ) )  =  ( R `
 N ) ) ) )
15 fveqeq2 5597 . . . . . . 7  |-  ( m  =  K  ->  (
( R `  m
)  =  ( R `
 N )  <->  ( R `  K )  =  ( R `  N ) ) )
1615imbi2d 230 . . . . . 6  |-  ( m  =  K  ->  (
( A  e.  S  ->  ( R `  m
)  =  ( R `
 N ) )  <-> 
( A  e.  S  ->  ( R `  K
)  =  ( R `
 N ) ) ) )
17 eqidd 2207 . . . . . . 7  |-  ( A  e.  S  ->  ( R `  N )  =  ( R `  N ) )
1817a1i 9 . . . . . 6  |-  ( N  e.  ZZ  ->  ( A  e.  S  ->  ( R `  N )  =  ( R `  N ) ) )
196eleq2d 2276 . . . . . . . . 9  |-  ( N  e.  ZZ  ->  (
k  e.  ( ZZ>= `  N )  <->  k  e.  { z  e.  ZZ  |  N  <_  z } ) )
2019pm5.32i 454 . . . . . . . 8  |-  ( ( N  e.  ZZ  /\  k  e.  ( ZZ>= `  N ) )  <->  ( N  e.  ZZ  /\  k  e. 
{ z  e.  ZZ  |  N  <_  z } ) )
21 eluznn0 9735 . . . . . . . . . . . . . . 15  |-  ( ( N  e.  NN0  /\  k  e.  ( ZZ>= `  N ) )  -> 
k  e.  NN0 )
224, 21sylan 283 . . . . . . . . . . . . . 14  |-  ( ( A  e.  S  /\  k  e.  ( ZZ>= `  N ) )  -> 
k  e.  NN0 )
23 nn0uz 9698 . . . . . . . . . . . . . . 15  |-  NN0  =  ( ZZ>= `  0 )
24 algcvga.2 . . . . . . . . . . . . . . 15  |-  R  =  seq 0 ( ( F  o.  1st ) ,  ( NN0  X.  { A } ) )
25 0zd 9399 . . . . . . . . . . . . . . 15  |-  ( A  e.  S  ->  0  e.  ZZ )
26 id 19 . . . . . . . . . . . . . . 15  |-  ( A  e.  S  ->  A  e.  S )
27 algcvga.1 . . . . . . . . . . . . . . . 16  |-  F : S
--> S
2827a1i 9 . . . . . . . . . . . . . . 15  |-  ( A  e.  S  ->  F : S --> S )
2923, 24, 25, 26, 28algrp1 12438 . . . . . . . . . . . . . 14  |-  ( ( A  e.  S  /\  k  e.  NN0 )  -> 
( R `  (
k  +  1 ) )  =  ( F `
 ( R `  k ) ) )
3022, 29syldan 282 . . . . . . . . . . . . 13  |-  ( ( A  e.  S  /\  k  e.  ( ZZ>= `  N ) )  -> 
( R `  (
k  +  1 ) )  =  ( F `
 ( R `  k ) ) )
3123, 24, 25, 26, 28algrf 12437 . . . . . . . . . . . . . . . 16  |-  ( A  e.  S  ->  R : NN0 --> S )
3231ffvelcdmda 5727 . . . . . . . . . . . . . . 15  |-  ( ( A  e.  S  /\  k  e.  NN0 )  -> 
( R `  k
)  e.  S )
3322, 32syldan 282 . . . . . . . . . . . . . 14  |-  ( ( A  e.  S  /\  k  e.  ( ZZ>= `  N ) )  -> 
( R `  k
)  e.  S )
34 algcvga.4 . . . . . . . . . . . . . . . 16  |-  ( z  e.  S  ->  (
( C `  ( F `  z )
)  =/=  0  -> 
( C `  ( F `  z )
)  <  ( C `  z ) ) )
3527, 24, 2, 34, 1algcvga 12443 . . . . . . . . . . . . . . 15  |-  ( A  e.  S  ->  (
k  e.  ( ZZ>= `  N )  ->  ( C `  ( R `  k ) )  =  0 ) )
3635imp 124 . . . . . . . . . . . . . 14  |-  ( ( A  e.  S  /\  k  e.  ( ZZ>= `  N ) )  -> 
( C `  ( R `  k )
)  =  0 )
37 fveqeq2 5597 . . . . . . . . . . . . . . . 16  |-  ( z  =  ( R `  k )  ->  (
( C `  z
)  =  0  <->  ( C `  ( R `  k ) )  =  0 ) )
38 fveq2 5588 . . . . . . . . . . . . . . . . 17  |-  ( z  =  ( R `  k )  ->  ( F `  z )  =  ( F `  ( R `  k ) ) )
39 id 19 . . . . . . . . . . . . . . . . 17  |-  ( z  =  ( R `  k )  ->  z  =  ( R `  k ) )
4038, 39eqeq12d 2221 . . . . . . . . . . . . . . . 16  |-  ( z  =  ( R `  k )  ->  (
( F `  z
)  =  z  <->  ( F `  ( R `  k
) )  =  ( R `  k ) ) )
4137, 40imbi12d 234 . . . . . . . . . . . . . . 15  |-  ( z  =  ( R `  k )  ->  (
( ( C `  z )  =  0  ->  ( F `  z )  =  z )  <->  ( ( C `
 ( R `  k ) )  =  0  ->  ( F `  ( R `  k
) )  =  ( R `  k ) ) ) )
42 algfx.6 . . . . . . . . . . . . . . 15  |-  ( z  e.  S  ->  (
( C `  z
)  =  0  -> 
( F `  z
)  =  z ) )
4341, 42vtoclga 2841 . . . . . . . . . . . . . 14  |-  ( ( R `  k )  e.  S  ->  (
( C `  ( R `  k )
)  =  0  -> 
( F `  ( R `  k )
)  =  ( R `
 k ) ) )
4433, 36, 43sylc 62 . . . . . . . . . . . . 13  |-  ( ( A  e.  S  /\  k  e.  ( ZZ>= `  N ) )  -> 
( F `  ( R `  k )
)  =  ( R `
 k ) )
4530, 44eqtrd 2239 . . . . . . . . . . . 12  |-  ( ( A  e.  S  /\  k  e.  ( ZZ>= `  N ) )  -> 
( R `  (
k  +  1 ) )  =  ( R `
 k ) )
4645eqeq1d 2215 . . . . . . . . . . 11  |-  ( ( A  e.  S  /\  k  e.  ( ZZ>= `  N ) )  -> 
( ( R `  ( k  +  1 ) )  =  ( R `  N )  <-> 
( R `  k
)  =  ( R `
 N ) ) )
4746biimprd 158 . . . . . . . . . 10  |-  ( ( A  e.  S  /\  k  e.  ( ZZ>= `  N ) )  -> 
( ( R `  k )  =  ( R `  N )  ->  ( R `  ( k  +  1 ) )  =  ( R `  N ) ) )
4847expcom 116 . . . . . . . . 9  |-  ( k  e.  ( ZZ>= `  N
)  ->  ( A  e.  S  ->  ( ( R `  k )  =  ( R `  N )  ->  ( R `  ( k  +  1 ) )  =  ( R `  N ) ) ) )
4948adantl 277 . . . . . . . 8  |-  ( ( N  e.  ZZ  /\  k  e.  ( ZZ>= `  N ) )  -> 
( A  e.  S  ->  ( ( R `  k )  =  ( R `  N )  ->  ( R `  ( k  +  1 ) )  =  ( R `  N ) ) ) )
5020, 49sylbir 135 . . . . . . 7  |-  ( ( N  e.  ZZ  /\  k  e.  { z  e.  ZZ  |  N  <_ 
z } )  -> 
( A  e.  S  ->  ( ( R `  k )  =  ( R `  N )  ->  ( R `  ( k  +  1 ) )  =  ( R `  N ) ) ) )
5150a2d 26 . . . . . 6  |-  ( ( N  e.  ZZ  /\  k  e.  { z  e.  ZZ  |  N  <_ 
z } )  -> 
( ( A  e.  S  ->  ( R `  k )  =  ( R `  N ) )  ->  ( A  e.  S  ->  ( R `
 ( k  +  1 ) )  =  ( R `  N
) ) ) )
5210, 12, 14, 16, 18, 51uzind3 9501 . . . . 5  |-  ( ( N  e.  ZZ  /\  K  e.  { z  e.  ZZ  |  N  <_ 
z } )  -> 
( A  e.  S  ->  ( R `  K
)  =  ( R `
 N ) ) )
538, 52sylbi 121 . . . 4  |-  ( ( N  e.  ZZ  /\  K  e.  ( ZZ>= `  N ) )  -> 
( A  e.  S  ->  ( R `  K
)  =  ( R `
 N ) ) )
5453ex 115 . . 3  |-  ( N  e.  ZZ  ->  ( K  e.  ( ZZ>= `  N )  ->  ( A  e.  S  ->  ( R `  K )  =  ( R `  N ) ) ) )
5554com3r 79 . 2  |-  ( A  e.  S  ->  ( N  e.  ZZ  ->  ( K  e.  ( ZZ>= `  N )  ->  ( R `  K )  =  ( R `  N ) ) ) )
565, 55mpd 13 1  |-  ( A  e.  S  ->  ( K  e.  ( ZZ>= `  N )  ->  ( R `  K )  =  ( R `  N ) ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 104    = wceq 1373    e. wcel 2177    =/= wne 2377   {crab 2489   {csn 3637   class class class wbr 4050    X. cxp 4680    o. ccom 4686   -->wf 5275   ` cfv 5279  (class class class)co 5956   1stc1st 6236   0cc0 7940   1c1 7941    + caddc 7943    < clt 8122    <_ cle 8123   NN0cn0 9310   ZZcz 9387   ZZ>=cuz 9663    seqcseq 10609
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 711  ax-5 1471  ax-7 1472  ax-gen 1473  ax-ie1 1517  ax-ie2 1518  ax-8 1528  ax-10 1529  ax-11 1530  ax-i12 1531  ax-bndl 1533  ax-4 1534  ax-17 1550  ax-i9 1554  ax-ial 1558  ax-i5r 1559  ax-13 2179  ax-14 2180  ax-ext 2188  ax-coll 4166  ax-sep 4169  ax-nul 4177  ax-pow 4225  ax-pr 4260  ax-un 4487  ax-setind 4592  ax-iinf 4643  ax-cnex 8031  ax-resscn 8032  ax-1cn 8033  ax-1re 8034  ax-icn 8035  ax-addcl 8036  ax-addrcl 8037  ax-mulcl 8038  ax-addcom 8040  ax-addass 8042  ax-distr 8044  ax-i2m1 8045  ax-0lt1 8046  ax-0id 8048  ax-rnegex 8049  ax-cnre 8051  ax-pre-ltirr 8052  ax-pre-ltwlin 8053  ax-pre-lttrn 8054  ax-pre-apti 8055  ax-pre-ltadd 8056
This theorem depends on definitions:  df-bi 117  df-stab 833  df-dc 837  df-3or 982  df-3an 983  df-tru 1376  df-fal 1379  df-nf 1485  df-sb 1787  df-eu 2058  df-mo 2059  df-clab 2193  df-cleq 2199  df-clel 2202  df-nfc 2338  df-ne 2378  df-nel 2473  df-ral 2490  df-rex 2491  df-reu 2492  df-rab 2494  df-v 2775  df-sbc 3003  df-csb 3098  df-dif 3172  df-un 3174  df-in 3176  df-ss 3183  df-nul 3465  df-pw 3622  df-sn 3643  df-pr 3644  df-op 3646  df-uni 3856  df-int 3891  df-iun 3934  df-br 4051  df-opab 4113  df-mpt 4114  df-tr 4150  df-id 4347  df-iord 4420  df-on 4422  df-ilim 4423  df-suc 4425  df-iom 4646  df-xp 4688  df-rel 4689  df-cnv 4690  df-co 4691  df-dm 4692  df-rn 4693  df-res 4694  df-ima 4695  df-iota 5240  df-fun 5281  df-fn 5282  df-f 5283  df-f1 5284  df-fo 5285  df-f1o 5286  df-fv 5287  df-riota 5911  df-ov 5959  df-oprab 5960  df-mpo 5961  df-1st 6238  df-2nd 6239  df-recs 6403  df-frec 6489  df-pnf 8124  df-mnf 8125  df-xr 8126  df-ltxr 8127  df-le 8128  df-sub 8260  df-neg 8261  df-inn 9052  df-n0 9311  df-z 9388  df-uz 9664  df-seqfrec 10610
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator