| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > nn0uz | Unicode version | ||
| Description: Nonnegative integers expressed as an upper set of integers. (Contributed by NM, 2-Sep-2005.) |
| Ref | Expression |
|---|---|
| nn0uz |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | nn0zrab 9399 |
. 2
| |
| 2 | 0z 9385 |
. . 3
| |
| 3 | uzval 9652 |
. . 3
| |
| 4 | 2, 3 | ax-mp 5 |
. 2
|
| 5 | 1, 4 | eqtr4i 2229 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 615 ax-in2 616 ax-io 711 ax-5 1470 ax-7 1471 ax-gen 1472 ax-ie1 1516 ax-ie2 1517 ax-8 1527 ax-10 1528 ax-11 1529 ax-i12 1530 ax-bndl 1532 ax-4 1533 ax-17 1549 ax-i9 1553 ax-ial 1557 ax-i5r 1558 ax-13 2178 ax-14 2179 ax-ext 2187 ax-sep 4163 ax-pow 4219 ax-pr 4254 ax-un 4481 ax-setind 4586 ax-cnex 8018 ax-resscn 8019 ax-1cn 8020 ax-1re 8021 ax-icn 8022 ax-addcl 8023 ax-addrcl 8024 ax-mulcl 8025 ax-addcom 8027 ax-addass 8029 ax-distr 8031 ax-i2m1 8032 ax-0lt1 8033 ax-0id 8035 ax-rnegex 8036 ax-cnre 8038 ax-pre-ltirr 8039 ax-pre-ltwlin 8040 ax-pre-lttrn 8041 ax-pre-ltadd 8043 |
| This theorem depends on definitions: df-bi 117 df-3or 982 df-3an 983 df-tru 1376 df-fal 1379 df-nf 1484 df-sb 1786 df-eu 2057 df-mo 2058 df-clab 2192 df-cleq 2198 df-clel 2201 df-nfc 2337 df-ne 2377 df-nel 2472 df-ral 2489 df-rex 2490 df-reu 2491 df-rab 2493 df-v 2774 df-sbc 2999 df-dif 3168 df-un 3170 df-in 3172 df-ss 3179 df-pw 3618 df-sn 3639 df-pr 3640 df-op 3642 df-uni 3851 df-int 3886 df-br 4046 df-opab 4107 df-mpt 4108 df-id 4341 df-xp 4682 df-rel 4683 df-cnv 4684 df-co 4685 df-dm 4686 df-iota 5233 df-fun 5274 df-fv 5280 df-riota 5901 df-ov 5949 df-oprab 5950 df-mpo 5951 df-pnf 8111 df-mnf 8112 df-xr 8113 df-ltxr 8114 df-le 8115 df-sub 8247 df-neg 8248 df-inn 9039 df-n0 9298 df-z 9375 df-uz 9651 |
| This theorem is referenced by: elnn0uz 9688 2eluzge0 9698 eluznn0 9722 fseq1p1m1 10218 fz01or 10235 fznn0sub2 10252 nn0split 10260 fzossnn0 10301 frecfzennn 10573 frechashgf1o 10575 xnn0nnen 10584 exple1 10742 bcval5 10910 bcpasc 10913 hashcl 10928 hashfzo0 10970 zfz1isolemsplit 10985 ccatval2 11057 ccatass 11067 ccatrn 11068 swrdccat2 11127 binom1dif 11831 isumnn0nn 11837 arisum2 11843 expcnvre 11847 explecnv 11849 geoserap 11851 geolim 11855 geolim2 11856 geoisum 11861 geoisumr 11862 mertenslemub 11878 mertenslemi1 11879 mertenslem2 11880 mertensabs 11881 efcllemp 12002 ef0lem 12004 efval 12005 eff 12007 efcvg 12010 efcvgfsum 12011 reefcl 12012 ege2le3 12015 efcj 12017 eftlcvg 12031 eftlub 12034 effsumlt 12036 ef4p 12038 efgt1p2 12039 efgt1p 12040 eflegeo 12045 eirraplem 12121 bitsfzolem 12298 bitsfzo 12299 bitsfi 12301 bitsinv1lem 12305 bitsinv1 12306 nninfctlemfo 12394 alginv 12402 algcvg 12403 algcvga 12406 algfx 12407 eucalgcvga 12413 eucalg 12414 phiprmpw 12577 prmdiv 12590 pcfac 12706 ennnfonelemh 12808 ennnfonelemp1 12810 ennnfonelemom 12812 ennnfonelemkh 12816 ennnfonelemrn 12823 gsumwsubmcl 13361 gsumwmhm 13363 dveflem 15231 ply1termlem 15247 plyaddlem1 15252 plymullem1 15253 plycoeid3 15262 plycolemc 15263 dvply1 15270 0sgmppw 15498 1sgmprm 15499 lgseisenlem1 15580 lgsquadlem2 15588 |
| Copyright terms: Public domain | W3C validator |