| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > nn0uz | Unicode version | ||
| Description: Nonnegative integers expressed as an upper set of integers. (Contributed by NM, 2-Sep-2005.) |
| Ref | Expression |
|---|---|
| nn0uz |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | nn0zrab 9432 |
. 2
| |
| 2 | 0z 9418 |
. . 3
| |
| 3 | uzval 9685 |
. . 3
| |
| 4 | 2, 3 | ax-mp 5 |
. 2
|
| 5 | 1, 4 | eqtr4i 2231 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 615 ax-in2 616 ax-io 711 ax-5 1471 ax-7 1472 ax-gen 1473 ax-ie1 1517 ax-ie2 1518 ax-8 1528 ax-10 1529 ax-11 1530 ax-i12 1531 ax-bndl 1533 ax-4 1534 ax-17 1550 ax-i9 1554 ax-ial 1558 ax-i5r 1559 ax-13 2180 ax-14 2181 ax-ext 2189 ax-sep 4178 ax-pow 4234 ax-pr 4269 ax-un 4498 ax-setind 4603 ax-cnex 8051 ax-resscn 8052 ax-1cn 8053 ax-1re 8054 ax-icn 8055 ax-addcl 8056 ax-addrcl 8057 ax-mulcl 8058 ax-addcom 8060 ax-addass 8062 ax-distr 8064 ax-i2m1 8065 ax-0lt1 8066 ax-0id 8068 ax-rnegex 8069 ax-cnre 8071 ax-pre-ltirr 8072 ax-pre-ltwlin 8073 ax-pre-lttrn 8074 ax-pre-ltadd 8076 |
| This theorem depends on definitions: df-bi 117 df-3or 982 df-3an 983 df-tru 1376 df-fal 1379 df-nf 1485 df-sb 1787 df-eu 2058 df-mo 2059 df-clab 2194 df-cleq 2200 df-clel 2203 df-nfc 2339 df-ne 2379 df-nel 2474 df-ral 2491 df-rex 2492 df-reu 2493 df-rab 2495 df-v 2778 df-sbc 3006 df-dif 3176 df-un 3178 df-in 3180 df-ss 3187 df-pw 3628 df-sn 3649 df-pr 3650 df-op 3652 df-uni 3865 df-int 3900 df-br 4060 df-opab 4122 df-mpt 4123 df-id 4358 df-xp 4699 df-rel 4700 df-cnv 4701 df-co 4702 df-dm 4703 df-iota 5251 df-fun 5292 df-fv 5298 df-riota 5922 df-ov 5970 df-oprab 5971 df-mpo 5972 df-pnf 8144 df-mnf 8145 df-xr 8146 df-ltxr 8147 df-le 8148 df-sub 8280 df-neg 8281 df-inn 9072 df-n0 9331 df-z 9408 df-uz 9684 |
| This theorem is referenced by: elnn0uz 9721 2eluzge0 9731 eluznn0 9755 fseq1p1m1 10251 fz01or 10268 fznn0sub2 10285 nn0split 10293 fzossnn0 10334 frecfzennn 10608 frechashgf1o 10610 xnn0nnen 10619 exple1 10777 bcval5 10945 bcpasc 10948 hashcl 10963 hashfzo0 11005 zfz1isolemsplit 11020 ccatval2 11092 ccatass 11102 ccatrn 11103 swrdccat2 11162 wrdeqs1cat 11211 cats1un 11212 binom1dif 11913 isumnn0nn 11919 arisum2 11925 expcnvre 11929 explecnv 11931 geoserap 11933 geolim 11937 geolim2 11938 geoisum 11943 geoisumr 11944 mertenslemub 11960 mertenslemi1 11961 mertenslem2 11962 mertensabs 11963 efcllemp 12084 ef0lem 12086 efval 12087 eff 12089 efcvg 12092 efcvgfsum 12093 reefcl 12094 ege2le3 12097 efcj 12099 eftlcvg 12113 eftlub 12116 effsumlt 12118 ef4p 12120 efgt1p2 12121 efgt1p 12122 eflegeo 12127 eirraplem 12203 bitsfzolem 12380 bitsfzo 12381 bitsfi 12383 bitsinv1lem 12387 bitsinv1 12388 nninfctlemfo 12476 alginv 12484 algcvg 12485 algcvga 12488 algfx 12489 eucalgcvga 12495 eucalg 12496 phiprmpw 12659 prmdiv 12672 pcfac 12788 ennnfonelemh 12890 ennnfonelemp1 12892 ennnfonelemom 12894 ennnfonelemkh 12898 ennnfonelemrn 12905 gsumwsubmcl 13443 gsumwmhm 13445 dveflem 15313 ply1termlem 15329 plyaddlem1 15334 plymullem1 15335 plycoeid3 15344 plycolemc 15345 dvply1 15352 0sgmppw 15580 1sgmprm 15581 lgseisenlem1 15662 lgsquadlem2 15670 |
| Copyright terms: Public domain | W3C validator |