ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  nn0uz Unicode version

Theorem nn0uz 9384
Description: Nonnegative integers expressed as an upper set of integers. (Contributed by NM, 2-Sep-2005.)
Assertion
Ref Expression
nn0uz  |-  NN0  =  ( ZZ>= `  0 )

Proof of Theorem nn0uz
StepHypRef Expression
1 nn0zrab 9103 . 2  |-  NN0  =  { k  e.  ZZ  |  0  <_  k }
2 0z 9089 . . 3  |-  0  e.  ZZ
3 uzval 9352 . . 3  |-  ( 0  e.  ZZ  ->  ( ZZ>=
`  0 )  =  { k  e.  ZZ  |  0  <_  k } )
42, 3ax-mp 5 . 2  |-  ( ZZ>= ` 
0 )  =  {
k  e.  ZZ  | 
0  <_  k }
51, 4eqtr4i 2164 1  |-  NN0  =  ( ZZ>= `  0 )
Colors of variables: wff set class
Syntax hints:    = wceq 1332    e. wcel 1481   {crab 2421   class class class wbr 3937   ` cfv 5131   0cc0 7644    <_ cle 7825   NN0cn0 9001   ZZcz 9078   ZZ>=cuz 9350
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-in1 604  ax-in2 605  ax-io 699  ax-5 1424  ax-7 1425  ax-gen 1426  ax-ie1 1470  ax-ie2 1471  ax-8 1483  ax-10 1484  ax-11 1485  ax-i12 1486  ax-bndl 1487  ax-4 1488  ax-13 1492  ax-14 1493  ax-17 1507  ax-i9 1511  ax-ial 1515  ax-i5r 1516  ax-ext 2122  ax-sep 4054  ax-pow 4106  ax-pr 4139  ax-un 4363  ax-setind 4460  ax-cnex 7735  ax-resscn 7736  ax-1cn 7737  ax-1re 7738  ax-icn 7739  ax-addcl 7740  ax-addrcl 7741  ax-mulcl 7742  ax-addcom 7744  ax-addass 7746  ax-distr 7748  ax-i2m1 7749  ax-0lt1 7750  ax-0id 7752  ax-rnegex 7753  ax-cnre 7755  ax-pre-ltirr 7756  ax-pre-ltwlin 7757  ax-pre-lttrn 7758  ax-pre-ltadd 7760
This theorem depends on definitions:  df-bi 116  df-3or 964  df-3an 965  df-tru 1335  df-fal 1338  df-nf 1438  df-sb 1737  df-eu 2003  df-mo 2004  df-clab 2127  df-cleq 2133  df-clel 2136  df-nfc 2271  df-ne 2310  df-nel 2405  df-ral 2422  df-rex 2423  df-reu 2424  df-rab 2426  df-v 2691  df-sbc 2914  df-dif 3078  df-un 3080  df-in 3082  df-ss 3089  df-pw 3517  df-sn 3538  df-pr 3539  df-op 3541  df-uni 3745  df-int 3780  df-br 3938  df-opab 3998  df-mpt 3999  df-id 4223  df-xp 4553  df-rel 4554  df-cnv 4555  df-co 4556  df-dm 4557  df-iota 5096  df-fun 5133  df-fv 5139  df-riota 5738  df-ov 5785  df-oprab 5786  df-mpo 5787  df-pnf 7826  df-mnf 7827  df-xr 7828  df-ltxr 7829  df-le 7830  df-sub 7959  df-neg 7960  df-inn 8745  df-n0 9002  df-z 9079  df-uz 9351
This theorem is referenced by:  elnn0uz  9387  2eluzge0  9397  eluznn0  9420  fseq1p1m1  9905  fz01or  9922  fznn0sub2  9936  nn0split  9944  fzossnn0  9983  frecfzennn  10230  frechashgf1o  10232  exple1  10380  bcval5  10541  bcpasc  10544  hashcl  10559  hashfzo0  10601  zfz1isolemsplit  10613  binom1dif  11288  isumnn0nn  11294  arisum2  11300  expcnvre  11304  explecnv  11306  geoserap  11308  geolim  11312  geolim2  11313  geoisum  11318  geoisumr  11319  mertenslemub  11335  mertenslemi1  11336  mertenslem2  11337  mertensabs  11338  efcllemp  11401  ef0lem  11403  efval  11404  eff  11406  efcvg  11409  efcvgfsum  11410  reefcl  11411  ege2le3  11414  efcj  11416  eftlcvg  11430  eftlub  11433  effsumlt  11435  ef4p  11437  efgt1p2  11438  efgt1p  11439  eflegeo  11444  eirraplem  11519  alginv  11764  algcvg  11765  algcvga  11768  algfx  11769  eucalgcvga  11775  eucalg  11776  phiprmpw  11934  ennnfonelemh  11953  ennnfonelemp1  11955  ennnfonelemom  11957  ennnfonelemkh  11961  ennnfonelemrn  11968  dveflem  12895
  Copyright terms: Public domain W3C validator