Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > nn0uz | Unicode version |
Description: Nonnegative integers expressed as an upper set of integers. (Contributed by NM, 2-Sep-2005.) |
Ref | Expression |
---|---|
nn0uz |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | nn0zrab 9208 | . 2 | |
2 | 0z 9194 | . . 3 | |
3 | uzval 9460 | . . 3 | |
4 | 2, 3 | ax-mp 5 | . 2 |
5 | 1, 4 | eqtr4i 2188 | 1 |
Colors of variables: wff set class |
Syntax hints: wceq 1342 wcel 2135 crab 2446 class class class wbr 3977 cfv 5183 cc0 7745 cle 7926 cn0 9106 cz 9183 cuz 9458 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-in1 604 ax-in2 605 ax-io 699 ax-5 1434 ax-7 1435 ax-gen 1436 ax-ie1 1480 ax-ie2 1481 ax-8 1491 ax-10 1492 ax-11 1493 ax-i12 1494 ax-bndl 1496 ax-4 1497 ax-17 1513 ax-i9 1517 ax-ial 1521 ax-i5r 1522 ax-13 2137 ax-14 2138 ax-ext 2146 ax-sep 4095 ax-pow 4148 ax-pr 4182 ax-un 4406 ax-setind 4509 ax-cnex 7836 ax-resscn 7837 ax-1cn 7838 ax-1re 7839 ax-icn 7840 ax-addcl 7841 ax-addrcl 7842 ax-mulcl 7843 ax-addcom 7845 ax-addass 7847 ax-distr 7849 ax-i2m1 7850 ax-0lt1 7851 ax-0id 7853 ax-rnegex 7854 ax-cnre 7856 ax-pre-ltirr 7857 ax-pre-ltwlin 7858 ax-pre-lttrn 7859 ax-pre-ltadd 7861 |
This theorem depends on definitions: df-bi 116 df-3or 968 df-3an 969 df-tru 1345 df-fal 1348 df-nf 1448 df-sb 1750 df-eu 2016 df-mo 2017 df-clab 2151 df-cleq 2157 df-clel 2160 df-nfc 2295 df-ne 2335 df-nel 2430 df-ral 2447 df-rex 2448 df-reu 2449 df-rab 2451 df-v 2724 df-sbc 2948 df-dif 3114 df-un 3116 df-in 3118 df-ss 3125 df-pw 3556 df-sn 3577 df-pr 3578 df-op 3580 df-uni 3785 df-int 3820 df-br 3978 df-opab 4039 df-mpt 4040 df-id 4266 df-xp 4605 df-rel 4606 df-cnv 4607 df-co 4608 df-dm 4609 df-iota 5148 df-fun 5185 df-fv 5191 df-riota 5793 df-ov 5840 df-oprab 5841 df-mpo 5842 df-pnf 7927 df-mnf 7928 df-xr 7929 df-ltxr 7930 df-le 7931 df-sub 8063 df-neg 8064 df-inn 8850 df-n0 9107 df-z 9184 df-uz 9459 |
This theorem is referenced by: elnn0uz 9495 2eluzge0 9505 eluznn0 9529 fseq1p1m1 10020 fz01or 10037 fznn0sub2 10054 nn0split 10062 fzossnn0 10101 frecfzennn 10352 frechashgf1o 10354 exple1 10502 bcval5 10666 bcpasc 10669 hashcl 10684 hashfzo0 10726 zfz1isolemsplit 10741 binom1dif 11418 isumnn0nn 11424 arisum2 11430 expcnvre 11434 explecnv 11436 geoserap 11438 geolim 11442 geolim2 11443 geoisum 11448 geoisumr 11449 mertenslemub 11465 mertenslemi1 11466 mertenslem2 11467 mertensabs 11468 efcllemp 11589 ef0lem 11591 efval 11592 eff 11594 efcvg 11597 efcvgfsum 11598 reefcl 11599 ege2le3 11602 efcj 11604 eftlcvg 11618 eftlub 11621 effsumlt 11623 ef4p 11625 efgt1p2 11626 efgt1p 11627 eflegeo 11632 eirraplem 11707 alginv 11968 algcvg 11969 algcvga 11972 algfx 11973 eucalgcvga 11979 eucalg 11980 phiprmpw 12143 prmdiv 12156 pcfac 12269 ennnfonelemh 12300 ennnfonelemp1 12302 ennnfonelemom 12304 ennnfonelemkh 12308 ennnfonelemrn 12315 dveflem 13254 |
Copyright terms: Public domain | W3C validator |