| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > nn0uz | Unicode version | ||
| Description: Nonnegative integers expressed as an upper set of integers. (Contributed by NM, 2-Sep-2005.) |
| Ref | Expression |
|---|---|
| nn0uz |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | nn0zrab 9471 |
. 2
| |
| 2 | 0z 9457 |
. . 3
| |
| 3 | uzval 9724 |
. . 3
| |
| 4 | 2, 3 | ax-mp 5 |
. 2
|
| 5 | 1, 4 | eqtr4i 2253 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 617 ax-in2 618 ax-io 714 ax-5 1493 ax-7 1494 ax-gen 1495 ax-ie1 1539 ax-ie2 1540 ax-8 1550 ax-10 1551 ax-11 1552 ax-i12 1553 ax-bndl 1555 ax-4 1556 ax-17 1572 ax-i9 1576 ax-ial 1580 ax-i5r 1581 ax-13 2202 ax-14 2203 ax-ext 2211 ax-sep 4202 ax-pow 4258 ax-pr 4293 ax-un 4524 ax-setind 4629 ax-cnex 8090 ax-resscn 8091 ax-1cn 8092 ax-1re 8093 ax-icn 8094 ax-addcl 8095 ax-addrcl 8096 ax-mulcl 8097 ax-addcom 8099 ax-addass 8101 ax-distr 8103 ax-i2m1 8104 ax-0lt1 8105 ax-0id 8107 ax-rnegex 8108 ax-cnre 8110 ax-pre-ltirr 8111 ax-pre-ltwlin 8112 ax-pre-lttrn 8113 ax-pre-ltadd 8115 |
| This theorem depends on definitions: df-bi 117 df-3or 1003 df-3an 1004 df-tru 1398 df-fal 1401 df-nf 1507 df-sb 1809 df-eu 2080 df-mo 2081 df-clab 2216 df-cleq 2222 df-clel 2225 df-nfc 2361 df-ne 2401 df-nel 2496 df-ral 2513 df-rex 2514 df-reu 2515 df-rab 2517 df-v 2801 df-sbc 3029 df-dif 3199 df-un 3201 df-in 3203 df-ss 3210 df-pw 3651 df-sn 3672 df-pr 3673 df-op 3675 df-uni 3889 df-int 3924 df-br 4084 df-opab 4146 df-mpt 4147 df-id 4384 df-xp 4725 df-rel 4726 df-cnv 4727 df-co 4728 df-dm 4729 df-iota 5278 df-fun 5320 df-fv 5326 df-riota 5954 df-ov 6004 df-oprab 6005 df-mpo 6006 df-pnf 8183 df-mnf 8184 df-xr 8185 df-ltxr 8186 df-le 8187 df-sub 8319 df-neg 8320 df-inn 9111 df-n0 9370 df-z 9447 df-uz 9723 |
| This theorem is referenced by: elnn0uz 9760 2eluzge0 9770 eluznn0 9794 fseq1p1m1 10290 fz01or 10307 fznn0sub2 10324 nn0split 10332 fzossnn0 10373 frecfzennn 10648 frechashgf1o 10650 xnn0nnen 10659 exple1 10817 bcval5 10985 bcpasc 10988 hashcl 11003 hashfzo0 11045 zfz1isolemsplit 11060 ccatval2 11133 ccatass 11143 ccatrn 11144 swrdccat2 11203 wrdeqs1cat 11252 cats1un 11253 cats1fvd 11298 binom1dif 11998 isumnn0nn 12004 arisum2 12010 expcnvre 12014 explecnv 12016 geoserap 12018 geolim 12022 geolim2 12023 geoisum 12028 geoisumr 12029 mertenslemub 12045 mertenslemi1 12046 mertenslem2 12047 mertensabs 12048 efcllemp 12169 ef0lem 12171 efval 12172 eff 12174 efcvg 12177 efcvgfsum 12178 reefcl 12179 ege2le3 12182 efcj 12184 eftlcvg 12198 eftlub 12201 effsumlt 12203 ef4p 12205 efgt1p2 12206 efgt1p 12207 eflegeo 12212 eirraplem 12288 bitsfzolem 12465 bitsfzo 12466 bitsfi 12468 bitsinv1lem 12472 bitsinv1 12473 nninfctlemfo 12561 alginv 12569 algcvg 12570 algcvga 12573 algfx 12574 eucalgcvga 12580 eucalg 12581 phiprmpw 12744 prmdiv 12757 pcfac 12873 ennnfonelemh 12975 ennnfonelemp1 12977 ennnfonelemom 12979 ennnfonelemkh 12983 ennnfonelemrn 12990 gsumwsubmcl 13529 gsumwmhm 13531 dveflem 15400 ply1termlem 15416 plyaddlem1 15421 plymullem1 15422 plycoeid3 15431 plycolemc 15432 dvply1 15439 0sgmppw 15667 1sgmprm 15668 lgseisenlem1 15749 lgsquadlem2 15757 |
| Copyright terms: Public domain | W3C validator |