![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > nn0uz | Unicode version |
Description: Nonnegative integers expressed as an upper set of integers. (Contributed by NM, 2-Sep-2005.) |
Ref | Expression |
---|---|
nn0uz |
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | nn0zrab 9291 |
. 2
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() | |
2 | 0z 9277 |
. . 3
![]() ![]() ![]() ![]() | |
3 | uzval 9543 |
. . 3
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() | |
4 | 2, 3 | ax-mp 5 |
. 2
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
5 | 1, 4 | eqtr4i 2211 |
1
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
Colors of variables: wff set class |
Syntax hints: ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 615 ax-in2 616 ax-io 710 ax-5 1457 ax-7 1458 ax-gen 1459 ax-ie1 1503 ax-ie2 1504 ax-8 1514 ax-10 1515 ax-11 1516 ax-i12 1517 ax-bndl 1519 ax-4 1520 ax-17 1536 ax-i9 1540 ax-ial 1544 ax-i5r 1545 ax-13 2160 ax-14 2161 ax-ext 2169 ax-sep 4133 ax-pow 4186 ax-pr 4221 ax-un 4445 ax-setind 4548 ax-cnex 7915 ax-resscn 7916 ax-1cn 7917 ax-1re 7918 ax-icn 7919 ax-addcl 7920 ax-addrcl 7921 ax-mulcl 7922 ax-addcom 7924 ax-addass 7926 ax-distr 7928 ax-i2m1 7929 ax-0lt1 7930 ax-0id 7932 ax-rnegex 7933 ax-cnre 7935 ax-pre-ltirr 7936 ax-pre-ltwlin 7937 ax-pre-lttrn 7938 ax-pre-ltadd 7940 |
This theorem depends on definitions: df-bi 117 df-3or 980 df-3an 981 df-tru 1366 df-fal 1369 df-nf 1471 df-sb 1773 df-eu 2039 df-mo 2040 df-clab 2174 df-cleq 2180 df-clel 2183 df-nfc 2318 df-ne 2358 df-nel 2453 df-ral 2470 df-rex 2471 df-reu 2472 df-rab 2474 df-v 2751 df-sbc 2975 df-dif 3143 df-un 3145 df-in 3147 df-ss 3154 df-pw 3589 df-sn 3610 df-pr 3611 df-op 3613 df-uni 3822 df-int 3857 df-br 4016 df-opab 4077 df-mpt 4078 df-id 4305 df-xp 4644 df-rel 4645 df-cnv 4646 df-co 4647 df-dm 4648 df-iota 5190 df-fun 5230 df-fv 5236 df-riota 5844 df-ov 5891 df-oprab 5892 df-mpo 5893 df-pnf 8007 df-mnf 8008 df-xr 8009 df-ltxr 8010 df-le 8011 df-sub 8143 df-neg 8144 df-inn 8933 df-n0 9190 df-z 9267 df-uz 9542 |
This theorem is referenced by: elnn0uz 9578 2eluzge0 9588 eluznn0 9612 fseq1p1m1 10107 fz01or 10124 fznn0sub2 10141 nn0split 10149 fzossnn0 10188 frecfzennn 10439 frechashgf1o 10441 exple1 10589 bcval5 10756 bcpasc 10759 hashcl 10774 hashfzo0 10816 zfz1isolemsplit 10831 binom1dif 11508 isumnn0nn 11514 arisum2 11520 expcnvre 11524 explecnv 11526 geoserap 11528 geolim 11532 geolim2 11533 geoisum 11538 geoisumr 11539 mertenslemub 11555 mertenslemi1 11556 mertenslem2 11557 mertensabs 11558 efcllemp 11679 ef0lem 11681 efval 11682 eff 11684 efcvg 11687 efcvgfsum 11688 reefcl 11689 ege2le3 11692 efcj 11694 eftlcvg 11708 eftlub 11711 effsumlt 11713 ef4p 11715 efgt1p2 11716 efgt1p 11717 eflegeo 11722 eirraplem 11797 alginv 12060 algcvg 12061 algcvga 12064 algfx 12065 eucalgcvga 12071 eucalg 12072 phiprmpw 12235 prmdiv 12248 pcfac 12361 ennnfonelemh 12418 ennnfonelemp1 12420 ennnfonelemom 12422 ennnfonelemkh 12426 ennnfonelemrn 12433 dveflem 14458 lgseisenlem1 14721 |
Copyright terms: Public domain | W3C validator |