| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > nn0uz | Unicode version | ||
| Description: Nonnegative integers expressed as an upper set of integers. (Contributed by NM, 2-Sep-2005.) |
| Ref | Expression |
|---|---|
| nn0uz |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | nn0zrab 9397 |
. 2
| |
| 2 | 0z 9383 |
. . 3
| |
| 3 | uzval 9650 |
. . 3
| |
| 4 | 2, 3 | ax-mp 5 |
. 2
|
| 5 | 1, 4 | eqtr4i 2229 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 615 ax-in2 616 ax-io 711 ax-5 1470 ax-7 1471 ax-gen 1472 ax-ie1 1516 ax-ie2 1517 ax-8 1527 ax-10 1528 ax-11 1529 ax-i12 1530 ax-bndl 1532 ax-4 1533 ax-17 1549 ax-i9 1553 ax-ial 1557 ax-i5r 1558 ax-13 2178 ax-14 2179 ax-ext 2187 ax-sep 4162 ax-pow 4218 ax-pr 4253 ax-un 4480 ax-setind 4585 ax-cnex 8016 ax-resscn 8017 ax-1cn 8018 ax-1re 8019 ax-icn 8020 ax-addcl 8021 ax-addrcl 8022 ax-mulcl 8023 ax-addcom 8025 ax-addass 8027 ax-distr 8029 ax-i2m1 8030 ax-0lt1 8031 ax-0id 8033 ax-rnegex 8034 ax-cnre 8036 ax-pre-ltirr 8037 ax-pre-ltwlin 8038 ax-pre-lttrn 8039 ax-pre-ltadd 8041 |
| This theorem depends on definitions: df-bi 117 df-3or 982 df-3an 983 df-tru 1376 df-fal 1379 df-nf 1484 df-sb 1786 df-eu 2057 df-mo 2058 df-clab 2192 df-cleq 2198 df-clel 2201 df-nfc 2337 df-ne 2377 df-nel 2472 df-ral 2489 df-rex 2490 df-reu 2491 df-rab 2493 df-v 2774 df-sbc 2999 df-dif 3168 df-un 3170 df-in 3172 df-ss 3179 df-pw 3618 df-sn 3639 df-pr 3640 df-op 3642 df-uni 3851 df-int 3886 df-br 4045 df-opab 4106 df-mpt 4107 df-id 4340 df-xp 4681 df-rel 4682 df-cnv 4683 df-co 4684 df-dm 4685 df-iota 5232 df-fun 5273 df-fv 5279 df-riota 5899 df-ov 5947 df-oprab 5948 df-mpo 5949 df-pnf 8109 df-mnf 8110 df-xr 8111 df-ltxr 8112 df-le 8113 df-sub 8245 df-neg 8246 df-inn 9037 df-n0 9296 df-z 9373 df-uz 9649 |
| This theorem is referenced by: elnn0uz 9686 2eluzge0 9696 eluznn0 9720 fseq1p1m1 10216 fz01or 10233 fznn0sub2 10250 nn0split 10258 fzossnn0 10299 frecfzennn 10571 frechashgf1o 10573 xnn0nnen 10582 exple1 10740 bcval5 10908 bcpasc 10911 hashcl 10926 hashfzo0 10968 zfz1isolemsplit 10983 ccatval2 11054 ccatass 11064 ccatrn 11065 swrdccat2 11124 binom1dif 11798 isumnn0nn 11804 arisum2 11810 expcnvre 11814 explecnv 11816 geoserap 11818 geolim 11822 geolim2 11823 geoisum 11828 geoisumr 11829 mertenslemub 11845 mertenslemi1 11846 mertenslem2 11847 mertensabs 11848 efcllemp 11969 ef0lem 11971 efval 11972 eff 11974 efcvg 11977 efcvgfsum 11978 reefcl 11979 ege2le3 11982 efcj 11984 eftlcvg 11998 eftlub 12001 effsumlt 12003 ef4p 12005 efgt1p2 12006 efgt1p 12007 eflegeo 12012 eirraplem 12088 bitsfzolem 12265 bitsfzo 12266 bitsfi 12268 bitsinv1lem 12272 bitsinv1 12273 nninfctlemfo 12361 alginv 12369 algcvg 12370 algcvga 12373 algfx 12374 eucalgcvga 12380 eucalg 12381 phiprmpw 12544 prmdiv 12557 pcfac 12673 ennnfonelemh 12775 ennnfonelemp1 12777 ennnfonelemom 12779 ennnfonelemkh 12783 ennnfonelemrn 12790 gsumwsubmcl 13328 gsumwmhm 13330 dveflem 15198 ply1termlem 15214 plyaddlem1 15219 plymullem1 15220 plycoeid3 15229 plycolemc 15230 dvply1 15237 0sgmppw 15465 1sgmprm 15466 lgseisenlem1 15547 lgsquadlem2 15555 |
| Copyright terms: Public domain | W3C validator |