ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  zletr Unicode version

Theorem zletr 9375
Description: Transitive law of ordering for integers. (Contributed by Alexander van der Vekens, 3-Apr-2018.)
Assertion
Ref Expression
zletr  |-  ( ( J  e.  ZZ  /\  K  e.  ZZ  /\  L  e.  ZZ )  ->  (
( J  <_  K  /\  K  <_  L )  ->  J  <_  L
) )

Proof of Theorem zletr
StepHypRef Expression
1 zre 9330 . 2  |-  ( J  e.  ZZ  ->  J  e.  RR )
2 zre 9330 . 2  |-  ( K  e.  ZZ  ->  K  e.  RR )
3 zre 9330 . 2  |-  ( L  e.  ZZ  ->  L  e.  RR )
4 letr 8109 . 2  |-  ( ( J  e.  RR  /\  K  e.  RR  /\  L  e.  RR )  ->  (
( J  <_  K  /\  K  <_  L )  ->  J  <_  L
) )
51, 2, 3, 4syl3an 1291 1  |-  ( ( J  e.  ZZ  /\  K  e.  ZZ  /\  L  e.  ZZ )  ->  (
( J  <_  K  /\  K  <_  L )  ->  J  <_  L
) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 104    /\ w3a 980    e. wcel 2167   class class class wbr 4033   RRcr 7878    <_ cle 8062   ZZcz 9326
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 710  ax-5 1461  ax-7 1462  ax-gen 1463  ax-ie1 1507  ax-ie2 1508  ax-8 1518  ax-10 1519  ax-11 1520  ax-i12 1521  ax-bndl 1523  ax-4 1524  ax-17 1540  ax-i9 1544  ax-ial 1548  ax-i5r 1549  ax-13 2169  ax-14 2170  ax-ext 2178  ax-sep 4151  ax-pow 4207  ax-pr 4242  ax-un 4468  ax-setind 4573  ax-cnex 7970  ax-resscn 7971  ax-pre-ltwlin 7992
This theorem depends on definitions:  df-bi 117  df-3or 981  df-3an 982  df-tru 1367  df-fal 1370  df-nf 1475  df-sb 1777  df-eu 2048  df-mo 2049  df-clab 2183  df-cleq 2189  df-clel 2192  df-nfc 2328  df-ne 2368  df-nel 2463  df-ral 2480  df-rex 2481  df-rab 2484  df-v 2765  df-dif 3159  df-un 3161  df-in 3163  df-ss 3170  df-pw 3607  df-sn 3628  df-pr 3629  df-op 3631  df-uni 3840  df-br 4034  df-opab 4095  df-xp 4669  df-cnv 4671  df-iota 5219  df-fv 5266  df-ov 5925  df-pnf 8063  df-mnf 8064  df-xr 8065  df-ltxr 8066  df-le 8067  df-neg 8200  df-z 9327
This theorem is referenced by:  uztrn  9618  uzss  9622  elfz0ubfz0  10200
  Copyright terms: Public domain W3C validator