Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > zletr | GIF version |
Description: Transitive law of ordering for integers. (Contributed by Alexander van der Vekens, 3-Apr-2018.) |
Ref | Expression |
---|---|
zletr | ⊢ ((𝐽 ∈ ℤ ∧ 𝐾 ∈ ℤ ∧ 𝐿 ∈ ℤ) → ((𝐽 ≤ 𝐾 ∧ 𝐾 ≤ 𝐿) → 𝐽 ≤ 𝐿)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | zre 9228 | . 2 ⊢ (𝐽 ∈ ℤ → 𝐽 ∈ ℝ) | |
2 | zre 9228 | . 2 ⊢ (𝐾 ∈ ℤ → 𝐾 ∈ ℝ) | |
3 | zre 9228 | . 2 ⊢ (𝐿 ∈ ℤ → 𝐿 ∈ ℝ) | |
4 | letr 8014 | . 2 ⊢ ((𝐽 ∈ ℝ ∧ 𝐾 ∈ ℝ ∧ 𝐿 ∈ ℝ) → ((𝐽 ≤ 𝐾 ∧ 𝐾 ≤ 𝐿) → 𝐽 ≤ 𝐿)) | |
5 | 1, 2, 3, 4 | syl3an 1280 | 1 ⊢ ((𝐽 ∈ ℤ ∧ 𝐾 ∈ ℤ ∧ 𝐿 ∈ ℤ) → ((𝐽 ≤ 𝐾 ∧ 𝐾 ≤ 𝐿) → 𝐽 ≤ 𝐿)) |
Colors of variables: wff set class |
Syntax hints: → wi 4 ∧ wa 104 ∧ w3a 978 ∈ wcel 2146 class class class wbr 3998 ℝcr 7785 ≤ cle 7967 ℤcz 9224 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 614 ax-in2 615 ax-io 709 ax-5 1445 ax-7 1446 ax-gen 1447 ax-ie1 1491 ax-ie2 1492 ax-8 1502 ax-10 1503 ax-11 1504 ax-i12 1505 ax-bndl 1507 ax-4 1508 ax-17 1524 ax-i9 1528 ax-ial 1532 ax-i5r 1533 ax-13 2148 ax-14 2149 ax-ext 2157 ax-sep 4116 ax-pow 4169 ax-pr 4203 ax-un 4427 ax-setind 4530 ax-cnex 7877 ax-resscn 7878 ax-pre-ltwlin 7899 |
This theorem depends on definitions: df-bi 117 df-3or 979 df-3an 980 df-tru 1356 df-fal 1359 df-nf 1459 df-sb 1761 df-eu 2027 df-mo 2028 df-clab 2162 df-cleq 2168 df-clel 2171 df-nfc 2306 df-ne 2346 df-nel 2441 df-ral 2458 df-rex 2459 df-rab 2462 df-v 2737 df-dif 3129 df-un 3131 df-in 3133 df-ss 3140 df-pw 3574 df-sn 3595 df-pr 3596 df-op 3598 df-uni 3806 df-br 3999 df-opab 4060 df-xp 4626 df-cnv 4628 df-iota 5170 df-fv 5216 df-ov 5868 df-pnf 7968 df-mnf 7969 df-xr 7970 df-ltxr 7971 df-le 7972 df-neg 8105 df-z 9225 |
This theorem is referenced by: uztrn 9515 uzss 9519 elfz0ubfz0 10093 |
Copyright terms: Public domain | W3C validator |