![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > zletr | GIF version |
Description: Transitive law of ordering for integers. (Contributed by Alexander van der Vekens, 3-Apr-2018.) |
Ref | Expression |
---|---|
zletr | ⊢ ((𝐽 ∈ ℤ ∧ 𝐾 ∈ ℤ ∧ 𝐿 ∈ ℤ) → ((𝐽 ≤ 𝐾 ∧ 𝐾 ≤ 𝐿) → 𝐽 ≤ 𝐿)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | zre 8852 | . 2 ⊢ (𝐽 ∈ ℤ → 𝐽 ∈ ℝ) | |
2 | zre 8852 | . 2 ⊢ (𝐾 ∈ ℤ → 𝐾 ∈ ℝ) | |
3 | zre 8852 | . 2 ⊢ (𝐿 ∈ ℤ → 𝐿 ∈ ℝ) | |
4 | letr 7665 | . 2 ⊢ ((𝐽 ∈ ℝ ∧ 𝐾 ∈ ℝ ∧ 𝐿 ∈ ℝ) → ((𝐽 ≤ 𝐾 ∧ 𝐾 ≤ 𝐿) → 𝐽 ≤ 𝐿)) | |
5 | 1, 2, 3, 4 | syl3an 1223 | 1 ⊢ ((𝐽 ∈ ℤ ∧ 𝐾 ∈ ℤ ∧ 𝐿 ∈ ℤ) → ((𝐽 ≤ 𝐾 ∧ 𝐾 ≤ 𝐿) → 𝐽 ≤ 𝐿)) |
Colors of variables: wff set class |
Syntax hints: → wi 4 ∧ wa 103 ∧ w3a 927 ∈ wcel 1445 class class class wbr 3867 ℝcr 7446 ≤ cle 7620 ℤcz 8848 |
This theorem was proved from axioms: ax-1 5 ax-2 6 ax-mp 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-in1 582 ax-in2 583 ax-io 668 ax-5 1388 ax-7 1389 ax-gen 1390 ax-ie1 1434 ax-ie2 1435 ax-8 1447 ax-10 1448 ax-11 1449 ax-i12 1450 ax-bndl 1451 ax-4 1452 ax-13 1456 ax-14 1457 ax-17 1471 ax-i9 1475 ax-ial 1479 ax-i5r 1480 ax-ext 2077 ax-sep 3978 ax-pow 4030 ax-pr 4060 ax-un 4284 ax-setind 4381 ax-cnex 7533 ax-resscn 7534 ax-pre-ltwlin 7555 |
This theorem depends on definitions: df-bi 116 df-3or 928 df-3an 929 df-tru 1299 df-fal 1302 df-nf 1402 df-sb 1700 df-eu 1958 df-mo 1959 df-clab 2082 df-cleq 2088 df-clel 2091 df-nfc 2224 df-ne 2263 df-nel 2358 df-ral 2375 df-rex 2376 df-rab 2379 df-v 2635 df-dif 3015 df-un 3017 df-in 3019 df-ss 3026 df-pw 3451 df-sn 3472 df-pr 3473 df-op 3475 df-uni 3676 df-br 3868 df-opab 3922 df-xp 4473 df-cnv 4475 df-iota 5014 df-fv 5057 df-ov 5693 df-pnf 7621 df-mnf 7622 df-xr 7623 df-ltxr 7624 df-le 7625 df-neg 7753 df-z 8849 |
This theorem is referenced by: uztrn 9134 uzss 9138 elfz0ubfz0 9685 |
Copyright terms: Public domain | W3C validator |