| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > letr | Unicode version | ||
| Description: Transitive law. (Contributed by NM, 12-Nov-1999.) |
| Ref | Expression |
|---|---|
| letr |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | axltwlin 8214 |
. . . . 5
| |
| 2 | 1 | 3coml 1234 |
. . . 4
|
| 3 | orcom 733 |
. . . 4
| |
| 4 | 2, 3 | imbitrdi 161 |
. . 3
|
| 5 | 4 | con3d 634 |
. 2
|
| 6 | lenlt 8222 |
. . . . 5
| |
| 7 | 6 | 3adant3 1041 |
. . . 4
|
| 8 | lenlt 8222 |
. . . . 5
| |
| 9 | 8 | 3adant1 1039 |
. . . 4
|
| 10 | 7, 9 | anbi12d 473 |
. . 3
|
| 11 | ioran 757 |
. . 3
| |
| 12 | 10, 11 | bitr4di 198 |
. 2
|
| 13 | lenlt 8222 |
. . 3
| |
| 14 | 13 | 3adant2 1040 |
. 2
|
| 15 | 5, 12, 14 | 3imtr4d 203 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 617 ax-in2 618 ax-io 714 ax-5 1493 ax-7 1494 ax-gen 1495 ax-ie1 1539 ax-ie2 1540 ax-8 1550 ax-10 1551 ax-11 1552 ax-i12 1553 ax-bndl 1555 ax-4 1556 ax-17 1572 ax-i9 1576 ax-ial 1580 ax-i5r 1581 ax-13 2202 ax-14 2203 ax-ext 2211 ax-sep 4202 ax-pow 4258 ax-pr 4293 ax-un 4524 ax-setind 4629 ax-cnex 8090 ax-resscn 8091 ax-pre-ltwlin 8112 |
| This theorem depends on definitions: df-bi 117 df-3an 1004 df-tru 1398 df-fal 1401 df-nf 1507 df-sb 1809 df-eu 2080 df-mo 2081 df-clab 2216 df-cleq 2222 df-clel 2225 df-nfc 2361 df-ne 2401 df-nel 2496 df-ral 2513 df-rex 2514 df-rab 2517 df-v 2801 df-dif 3199 df-un 3201 df-in 3203 df-ss 3210 df-pw 3651 df-sn 3672 df-pr 3673 df-op 3675 df-uni 3889 df-br 4084 df-opab 4146 df-xp 4725 df-cnv 4727 df-pnf 8183 df-mnf 8184 df-xr 8185 df-ltxr 8186 df-le 8187 |
| This theorem is referenced by: letri 8254 letrd 8270 le2add 8591 le2sub 8608 p1le 8996 lemul12b 9008 lemul12a 9009 zletr 9496 peano2uz2 9554 ledivge1le 9922 fznlem 10237 elfz1b 10286 elfz0fzfz0 10322 fz0fzelfz0 10323 fz0fzdiffz0 10326 elfzmlbp 10328 difelfznle 10331 elincfzoext 10399 ssfzo12bi 10431 flqge 10502 fldiv4p1lem1div2 10525 monoord 10707 leexp2r 10815 expubnd 10818 le2sq2 10837 facwordi 10962 faclbnd3 10965 facavg 10968 swrdswrdlem 11236 swrdccat 11267 fimaxre2 11738 fsumabs 11976 cvgratnnlemnexp 12035 cvgratnnlemmn 12036 algcvga 12573 prmdvdsfz 12661 prmfac1 12674 4sqlem11 12924 sincosq1lem 15499 gausslemma2dlem1a 15737 lgsquadlem1 15756 |
| Copyright terms: Public domain | W3C validator |