Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > letr | Unicode version |
Description: Transitive law. (Contributed by NM, 12-Nov-1999.) |
Ref | Expression |
---|---|
letr |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | axltwlin 7980 | . . . . 5 | |
2 | 1 | 3coml 1205 | . . . 4 |
3 | orcom 723 | . . . 4 | |
4 | 2, 3 | syl6ib 160 | . . 3 |
5 | 4 | con3d 626 | . 2 |
6 | lenlt 7988 | . . . . 5 | |
7 | 6 | 3adant3 1012 | . . . 4 |
8 | lenlt 7988 | . . . . 5 | |
9 | 8 | 3adant1 1010 | . . . 4 |
10 | 7, 9 | anbi12d 470 | . . 3 |
11 | ioran 747 | . . 3 | |
12 | 10, 11 | bitr4di 197 | . 2 |
13 | lenlt 7988 | . . 3 | |
14 | 13 | 3adant2 1011 | . 2 |
15 | 5, 12, 14 | 3imtr4d 202 | 1 |
Colors of variables: wff set class |
Syntax hints: wn 3 wi 4 wa 103 wb 104 wo 703 w3a 973 wcel 2141 class class class wbr 3987 cr 7766 clt 7947 cle 7948 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-in1 609 ax-in2 610 ax-io 704 ax-5 1440 ax-7 1441 ax-gen 1442 ax-ie1 1486 ax-ie2 1487 ax-8 1497 ax-10 1498 ax-11 1499 ax-i12 1500 ax-bndl 1502 ax-4 1503 ax-17 1519 ax-i9 1523 ax-ial 1527 ax-i5r 1528 ax-13 2143 ax-14 2144 ax-ext 2152 ax-sep 4105 ax-pow 4158 ax-pr 4192 ax-un 4416 ax-setind 4519 ax-cnex 7858 ax-resscn 7859 ax-pre-ltwlin 7880 |
This theorem depends on definitions: df-bi 116 df-3an 975 df-tru 1351 df-fal 1354 df-nf 1454 df-sb 1756 df-eu 2022 df-mo 2023 df-clab 2157 df-cleq 2163 df-clel 2166 df-nfc 2301 df-ne 2341 df-nel 2436 df-ral 2453 df-rex 2454 df-rab 2457 df-v 2732 df-dif 3123 df-un 3125 df-in 3127 df-ss 3134 df-pw 3566 df-sn 3587 df-pr 3588 df-op 3590 df-uni 3795 df-br 3988 df-opab 4049 df-xp 4615 df-cnv 4617 df-pnf 7949 df-mnf 7950 df-xr 7951 df-ltxr 7952 df-le 7953 |
This theorem is referenced by: letri 8020 letrd 8036 le2add 8356 le2sub 8373 p1le 8758 lemul12b 8770 lemul12a 8771 zletr 9254 peano2uz2 9312 ledivge1le 9676 fznlem 9990 elfz1b 10039 elfz0fzfz0 10075 fz0fzelfz0 10076 fz0fzdiffz0 10079 elfzmlbp 10081 difelfznle 10084 ssfzo12bi 10174 flqge 10231 fldiv4p1lem1div2 10254 monoord 10425 leexp2r 10523 expubnd 10526 le2sq2 10544 facwordi 10667 faclbnd3 10670 facavg 10673 fimaxre2 11183 fsumabs 11421 cvgratnnlemnexp 11480 cvgratnnlemmn 11481 algcvga 11998 prmdvdsfz 12086 prmfac1 12099 sincosq1lem 13505 |
Copyright terms: Public domain | W3C validator |