ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  letr Unicode version

Theorem letr 8155
Description: Transitive law. (Contributed by NM, 12-Nov-1999.)
Assertion
Ref Expression
letr  |-  ( ( A  e.  RR  /\  B  e.  RR  /\  C  e.  RR )  ->  (
( A  <_  B  /\  B  <_  C )  ->  A  <_  C
) )

Proof of Theorem letr
StepHypRef Expression
1 axltwlin 8140 . . . . 5  |-  ( ( C  e.  RR  /\  A  e.  RR  /\  B  e.  RR )  ->  ( C  <  A  ->  ( C  <  B  \/  B  <  A ) ) )
213coml 1213 . . . 4  |-  ( ( A  e.  RR  /\  B  e.  RR  /\  C  e.  RR )  ->  ( C  <  A  ->  ( C  <  B  \/  B  <  A ) ) )
3 orcom 730 . . . 4  |-  ( ( C  <  B  \/  B  <  A )  <->  ( B  <  A  \/  C  < 
B ) )
42, 3imbitrdi 161 . . 3  |-  ( ( A  e.  RR  /\  B  e.  RR  /\  C  e.  RR )  ->  ( C  <  A  ->  ( B  <  A  \/  C  <  B ) ) )
54con3d 632 . 2  |-  ( ( A  e.  RR  /\  B  e.  RR  /\  C  e.  RR )  ->  ( -.  ( B  <  A  \/  C  <  B )  ->  -.  C  <  A ) )
6 lenlt 8148 . . . . 5  |-  ( ( A  e.  RR  /\  B  e.  RR )  ->  ( A  <_  B  <->  -.  B  <  A ) )
763adant3 1020 . . . 4  |-  ( ( A  e.  RR  /\  B  e.  RR  /\  C  e.  RR )  ->  ( A  <_  B  <->  -.  B  <  A ) )
8 lenlt 8148 . . . . 5  |-  ( ( B  e.  RR  /\  C  e.  RR )  ->  ( B  <_  C  <->  -.  C  <  B ) )
983adant1 1018 . . . 4  |-  ( ( A  e.  RR  /\  B  e.  RR  /\  C  e.  RR )  ->  ( B  <_  C  <->  -.  C  <  B ) )
107, 9anbi12d 473 . . 3  |-  ( ( A  e.  RR  /\  B  e.  RR  /\  C  e.  RR )  ->  (
( A  <_  B  /\  B  <_  C )  <-> 
( -.  B  < 
A  /\  -.  C  <  B ) ) )
11 ioran 754 . . 3  |-  ( -.  ( B  <  A  \/  C  <  B )  <-> 
( -.  B  < 
A  /\  -.  C  <  B ) )
1210, 11bitr4di 198 . 2  |-  ( ( A  e.  RR  /\  B  e.  RR  /\  C  e.  RR )  ->  (
( A  <_  B  /\  B  <_  C )  <->  -.  ( B  <  A  \/  C  <  B ) ) )
13 lenlt 8148 . . 3  |-  ( ( A  e.  RR  /\  C  e.  RR )  ->  ( A  <_  C  <->  -.  C  <  A ) )
14133adant2 1019 . 2  |-  ( ( A  e.  RR  /\  B  e.  RR  /\  C  e.  RR )  ->  ( A  <_  C  <->  -.  C  <  A ) )
155, 12, 143imtr4d 203 1  |-  ( ( A  e.  RR  /\  B  e.  RR  /\  C  e.  RR )  ->  (
( A  <_  B  /\  B  <_  C )  ->  A  <_  C
) )
Colors of variables: wff set class
Syntax hints:   -. wn 3    -> wi 4    /\ wa 104    <-> wb 105    \/ wo 710    /\ w3a 981    e. wcel 2176   class class class wbr 4044   RRcr 7924    < clt 8107    <_ cle 8108
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 711  ax-5 1470  ax-7 1471  ax-gen 1472  ax-ie1 1516  ax-ie2 1517  ax-8 1527  ax-10 1528  ax-11 1529  ax-i12 1530  ax-bndl 1532  ax-4 1533  ax-17 1549  ax-i9 1553  ax-ial 1557  ax-i5r 1558  ax-13 2178  ax-14 2179  ax-ext 2187  ax-sep 4162  ax-pow 4218  ax-pr 4253  ax-un 4480  ax-setind 4585  ax-cnex 8016  ax-resscn 8017  ax-pre-ltwlin 8038
This theorem depends on definitions:  df-bi 117  df-3an 983  df-tru 1376  df-fal 1379  df-nf 1484  df-sb 1786  df-eu 2057  df-mo 2058  df-clab 2192  df-cleq 2198  df-clel 2201  df-nfc 2337  df-ne 2377  df-nel 2472  df-ral 2489  df-rex 2490  df-rab 2493  df-v 2774  df-dif 3168  df-un 3170  df-in 3172  df-ss 3179  df-pw 3618  df-sn 3639  df-pr 3640  df-op 3642  df-uni 3851  df-br 4045  df-opab 4106  df-xp 4681  df-cnv 4683  df-pnf 8109  df-mnf 8110  df-xr 8111  df-ltxr 8112  df-le 8113
This theorem is referenced by:  letri  8180  letrd  8196  le2add  8517  le2sub  8534  p1le  8922  lemul12b  8934  lemul12a  8935  zletr  9422  peano2uz2  9480  ledivge1le  9848  fznlem  10163  elfz1b  10212  elfz0fzfz0  10248  fz0fzelfz0  10249  fz0fzdiffz0  10252  elfzmlbp  10254  difelfznle  10257  elincfzoext  10322  ssfzo12bi  10354  flqge  10425  fldiv4p1lem1div2  10448  monoord  10630  leexp2r  10738  expubnd  10741  le2sq2  10760  facwordi  10885  faclbnd3  10888  facavg  10891  fimaxre2  11538  fsumabs  11776  cvgratnnlemnexp  11835  cvgratnnlemmn  11836  algcvga  12373  prmdvdsfz  12461  prmfac1  12474  4sqlem11  12724  sincosq1lem  15297  gausslemma2dlem1a  15535  lgsquadlem1  15554
  Copyright terms: Public domain W3C validator