| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > letr | Unicode version | ||
| Description: Transitive law. (Contributed by NM, 12-Nov-1999.) |
| Ref | Expression |
|---|---|
| letr |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | axltwlin 8142 |
. . . . 5
| |
| 2 | 1 | 3coml 1213 |
. . . 4
|
| 3 | orcom 730 |
. . . 4
| |
| 4 | 2, 3 | imbitrdi 161 |
. . 3
|
| 5 | 4 | con3d 632 |
. 2
|
| 6 | lenlt 8150 |
. . . . 5
| |
| 7 | 6 | 3adant3 1020 |
. . . 4
|
| 8 | lenlt 8150 |
. . . . 5
| |
| 9 | 8 | 3adant1 1018 |
. . . 4
|
| 10 | 7, 9 | anbi12d 473 |
. . 3
|
| 11 | ioran 754 |
. . 3
| |
| 12 | 10, 11 | bitr4di 198 |
. 2
|
| 13 | lenlt 8150 |
. . 3
| |
| 14 | 13 | 3adant2 1019 |
. 2
|
| 15 | 5, 12, 14 | 3imtr4d 203 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 615 ax-in2 616 ax-io 711 ax-5 1470 ax-7 1471 ax-gen 1472 ax-ie1 1516 ax-ie2 1517 ax-8 1527 ax-10 1528 ax-11 1529 ax-i12 1530 ax-bndl 1532 ax-4 1533 ax-17 1549 ax-i9 1553 ax-ial 1557 ax-i5r 1558 ax-13 2178 ax-14 2179 ax-ext 2187 ax-sep 4163 ax-pow 4219 ax-pr 4254 ax-un 4481 ax-setind 4586 ax-cnex 8018 ax-resscn 8019 ax-pre-ltwlin 8040 |
| This theorem depends on definitions: df-bi 117 df-3an 983 df-tru 1376 df-fal 1379 df-nf 1484 df-sb 1786 df-eu 2057 df-mo 2058 df-clab 2192 df-cleq 2198 df-clel 2201 df-nfc 2337 df-ne 2377 df-nel 2472 df-ral 2489 df-rex 2490 df-rab 2493 df-v 2774 df-dif 3168 df-un 3170 df-in 3172 df-ss 3179 df-pw 3618 df-sn 3639 df-pr 3640 df-op 3642 df-uni 3851 df-br 4046 df-opab 4107 df-xp 4682 df-cnv 4684 df-pnf 8111 df-mnf 8112 df-xr 8113 df-ltxr 8114 df-le 8115 |
| This theorem is referenced by: letri 8182 letrd 8198 le2add 8519 le2sub 8536 p1le 8924 lemul12b 8936 lemul12a 8937 zletr 9424 peano2uz2 9482 ledivge1le 9850 fznlem 10165 elfz1b 10214 elfz0fzfz0 10250 fz0fzelfz0 10251 fz0fzdiffz0 10254 elfzmlbp 10256 difelfznle 10259 elincfzoext 10324 ssfzo12bi 10356 flqge 10427 fldiv4p1lem1div2 10450 monoord 10632 leexp2r 10740 expubnd 10743 le2sq2 10762 facwordi 10887 faclbnd3 10890 facavg 10893 fimaxre2 11571 fsumabs 11809 cvgratnnlemnexp 11868 cvgratnnlemmn 11869 algcvga 12406 prmdvdsfz 12494 prmfac1 12507 4sqlem11 12757 sincosq1lem 15330 gausslemma2dlem1a 15568 lgsquadlem1 15587 |
| Copyright terms: Public domain | W3C validator |