| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > letr | Unicode version | ||
| Description: Transitive law. (Contributed by NM, 12-Nov-1999.) |
| Ref | Expression |
|---|---|
| letr |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | axltwlin 8140 |
. . . . 5
| |
| 2 | 1 | 3coml 1213 |
. . . 4
|
| 3 | orcom 730 |
. . . 4
| |
| 4 | 2, 3 | imbitrdi 161 |
. . 3
|
| 5 | 4 | con3d 632 |
. 2
|
| 6 | lenlt 8148 |
. . . . 5
| |
| 7 | 6 | 3adant3 1020 |
. . . 4
|
| 8 | lenlt 8148 |
. . . . 5
| |
| 9 | 8 | 3adant1 1018 |
. . . 4
|
| 10 | 7, 9 | anbi12d 473 |
. . 3
|
| 11 | ioran 754 |
. . 3
| |
| 12 | 10, 11 | bitr4di 198 |
. 2
|
| 13 | lenlt 8148 |
. . 3
| |
| 14 | 13 | 3adant2 1019 |
. 2
|
| 15 | 5, 12, 14 | 3imtr4d 203 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 615 ax-in2 616 ax-io 711 ax-5 1470 ax-7 1471 ax-gen 1472 ax-ie1 1516 ax-ie2 1517 ax-8 1527 ax-10 1528 ax-11 1529 ax-i12 1530 ax-bndl 1532 ax-4 1533 ax-17 1549 ax-i9 1553 ax-ial 1557 ax-i5r 1558 ax-13 2178 ax-14 2179 ax-ext 2187 ax-sep 4162 ax-pow 4218 ax-pr 4253 ax-un 4480 ax-setind 4585 ax-cnex 8016 ax-resscn 8017 ax-pre-ltwlin 8038 |
| This theorem depends on definitions: df-bi 117 df-3an 983 df-tru 1376 df-fal 1379 df-nf 1484 df-sb 1786 df-eu 2057 df-mo 2058 df-clab 2192 df-cleq 2198 df-clel 2201 df-nfc 2337 df-ne 2377 df-nel 2472 df-ral 2489 df-rex 2490 df-rab 2493 df-v 2774 df-dif 3168 df-un 3170 df-in 3172 df-ss 3179 df-pw 3618 df-sn 3639 df-pr 3640 df-op 3642 df-uni 3851 df-br 4045 df-opab 4106 df-xp 4681 df-cnv 4683 df-pnf 8109 df-mnf 8110 df-xr 8111 df-ltxr 8112 df-le 8113 |
| This theorem is referenced by: letri 8180 letrd 8196 le2add 8517 le2sub 8534 p1le 8922 lemul12b 8934 lemul12a 8935 zletr 9422 peano2uz2 9480 ledivge1le 9848 fznlem 10163 elfz1b 10212 elfz0fzfz0 10248 fz0fzelfz0 10249 fz0fzdiffz0 10252 elfzmlbp 10254 difelfznle 10257 elincfzoext 10322 ssfzo12bi 10354 flqge 10425 fldiv4p1lem1div2 10448 monoord 10630 leexp2r 10738 expubnd 10741 le2sq2 10760 facwordi 10885 faclbnd3 10888 facavg 10891 fimaxre2 11538 fsumabs 11776 cvgratnnlemnexp 11835 cvgratnnlemmn 11836 algcvga 12373 prmdvdsfz 12461 prmfac1 12474 4sqlem11 12724 sincosq1lem 15297 gausslemma2dlem1a 15535 lgsquadlem1 15554 |
| Copyright terms: Public domain | W3C validator |