| Intuitionistic Logic Explorer | 
      
      
      < Previous  
      Next >
      
       Nearby theorems  | 
  ||
| Mirrors > Home > ILE Home > Th. List > letr | Unicode version | ||
| Description: Transitive law. (Contributed by NM, 12-Nov-1999.) | 
| Ref | Expression | 
|---|---|
| letr | 
 | 
| Step | Hyp | Ref | Expression | 
|---|---|---|---|
| 1 | axltwlin 8094 | 
. . . . 5
 | |
| 2 | 1 | 3coml 1212 | 
. . . 4
 | 
| 3 | orcom 729 | 
. . . 4
 | |
| 4 | 2, 3 | imbitrdi 161 | 
. . 3
 | 
| 5 | 4 | con3d 632 | 
. 2
 | 
| 6 | lenlt 8102 | 
. . . . 5
 | |
| 7 | 6 | 3adant3 1019 | 
. . . 4
 | 
| 8 | lenlt 8102 | 
. . . . 5
 | |
| 9 | 8 | 3adant1 1017 | 
. . . 4
 | 
| 10 | 7, 9 | anbi12d 473 | 
. . 3
 | 
| 11 | ioran 753 | 
. . 3
 | |
| 12 | 10, 11 | bitr4di 198 | 
. 2
 | 
| 13 | lenlt 8102 | 
. . 3
 | |
| 14 | 13 | 3adant2 1018 | 
. 2
 | 
| 15 | 5, 12, 14 | 3imtr4d 203 | 
1
 | 
| Colors of variables: wff set class | 
| Syntax hints:    | 
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 615 ax-in2 616 ax-io 710 ax-5 1461 ax-7 1462 ax-gen 1463 ax-ie1 1507 ax-ie2 1508 ax-8 1518 ax-10 1519 ax-11 1520 ax-i12 1521 ax-bndl 1523 ax-4 1524 ax-17 1540 ax-i9 1544 ax-ial 1548 ax-i5r 1549 ax-13 2169 ax-14 2170 ax-ext 2178 ax-sep 4151 ax-pow 4207 ax-pr 4242 ax-un 4468 ax-setind 4573 ax-cnex 7970 ax-resscn 7971 ax-pre-ltwlin 7992 | 
| This theorem depends on definitions: df-bi 117 df-3an 982 df-tru 1367 df-fal 1370 df-nf 1475 df-sb 1777 df-eu 2048 df-mo 2049 df-clab 2183 df-cleq 2189 df-clel 2192 df-nfc 2328 df-ne 2368 df-nel 2463 df-ral 2480 df-rex 2481 df-rab 2484 df-v 2765 df-dif 3159 df-un 3161 df-in 3163 df-ss 3170 df-pw 3607 df-sn 3628 df-pr 3629 df-op 3631 df-uni 3840 df-br 4034 df-opab 4095 df-xp 4669 df-cnv 4671 df-pnf 8063 df-mnf 8064 df-xr 8065 df-ltxr 8066 df-le 8067 | 
| This theorem is referenced by: letri 8134 letrd 8150 le2add 8471 le2sub 8488 p1le 8876 lemul12b 8888 lemul12a 8889 zletr 9375 peano2uz2 9433 ledivge1le 9801 fznlem 10116 elfz1b 10165 elfz0fzfz0 10201 fz0fzelfz0 10202 fz0fzdiffz0 10205 elfzmlbp 10207 difelfznle 10210 ssfzo12bi 10301 flqge 10372 fldiv4p1lem1div2 10395 monoord 10577 leexp2r 10685 expubnd 10688 le2sq2 10707 facwordi 10832 faclbnd3 10835 facavg 10838 fimaxre2 11392 fsumabs 11630 cvgratnnlemnexp 11689 cvgratnnlemmn 11690 algcvga 12219 prmdvdsfz 12307 prmfac1 12320 4sqlem11 12570 sincosq1lem 15061 gausslemma2dlem1a 15299 lgsquadlem1 15318 | 
| Copyright terms: Public domain | W3C validator |