Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > letr | Unicode version |
Description: Transitive law. (Contributed by NM, 12-Nov-1999.) |
Ref | Expression |
---|---|
letr |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | axltwlin 7987 | . . . . 5 | |
2 | 1 | 3coml 1205 | . . . 4 |
3 | orcom 723 | . . . 4 | |
4 | 2, 3 | syl6ib 160 | . . 3 |
5 | 4 | con3d 626 | . 2 |
6 | lenlt 7995 | . . . . 5 | |
7 | 6 | 3adant3 1012 | . . . 4 |
8 | lenlt 7995 | . . . . 5 | |
9 | 8 | 3adant1 1010 | . . . 4 |
10 | 7, 9 | anbi12d 470 | . . 3 |
11 | ioran 747 | . . 3 | |
12 | 10, 11 | bitr4di 197 | . 2 |
13 | lenlt 7995 | . . 3 | |
14 | 13 | 3adant2 1011 | . 2 |
15 | 5, 12, 14 | 3imtr4d 202 | 1 |
Colors of variables: wff set class |
Syntax hints: wn 3 wi 4 wa 103 wb 104 wo 703 w3a 973 wcel 2141 class class class wbr 3989 cr 7773 clt 7954 cle 7955 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-in1 609 ax-in2 610 ax-io 704 ax-5 1440 ax-7 1441 ax-gen 1442 ax-ie1 1486 ax-ie2 1487 ax-8 1497 ax-10 1498 ax-11 1499 ax-i12 1500 ax-bndl 1502 ax-4 1503 ax-17 1519 ax-i9 1523 ax-ial 1527 ax-i5r 1528 ax-13 2143 ax-14 2144 ax-ext 2152 ax-sep 4107 ax-pow 4160 ax-pr 4194 ax-un 4418 ax-setind 4521 ax-cnex 7865 ax-resscn 7866 ax-pre-ltwlin 7887 |
This theorem depends on definitions: df-bi 116 df-3an 975 df-tru 1351 df-fal 1354 df-nf 1454 df-sb 1756 df-eu 2022 df-mo 2023 df-clab 2157 df-cleq 2163 df-clel 2166 df-nfc 2301 df-ne 2341 df-nel 2436 df-ral 2453 df-rex 2454 df-rab 2457 df-v 2732 df-dif 3123 df-un 3125 df-in 3127 df-ss 3134 df-pw 3568 df-sn 3589 df-pr 3590 df-op 3592 df-uni 3797 df-br 3990 df-opab 4051 df-xp 4617 df-cnv 4619 df-pnf 7956 df-mnf 7957 df-xr 7958 df-ltxr 7959 df-le 7960 |
This theorem is referenced by: letri 8027 letrd 8043 le2add 8363 le2sub 8380 p1le 8765 lemul12b 8777 lemul12a 8778 zletr 9261 peano2uz2 9319 ledivge1le 9683 fznlem 9997 elfz1b 10046 elfz0fzfz0 10082 fz0fzelfz0 10083 fz0fzdiffz0 10086 elfzmlbp 10088 difelfznle 10091 ssfzo12bi 10181 flqge 10238 fldiv4p1lem1div2 10261 monoord 10432 leexp2r 10530 expubnd 10533 le2sq2 10551 facwordi 10674 faclbnd3 10677 facavg 10680 fimaxre2 11190 fsumabs 11428 cvgratnnlemnexp 11487 cvgratnnlemmn 11488 algcvga 12005 prmdvdsfz 12093 prmfac1 12106 sincosq1lem 13540 |
Copyright terms: Public domain | W3C validator |