ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  letr Unicode version

Theorem letr 8104
Description: Transitive law. (Contributed by NM, 12-Nov-1999.)
Assertion
Ref Expression
letr  |-  ( ( A  e.  RR  /\  B  e.  RR  /\  C  e.  RR )  ->  (
( A  <_  B  /\  B  <_  C )  ->  A  <_  C
) )

Proof of Theorem letr
StepHypRef Expression
1 axltwlin 8089 . . . . 5  |-  ( ( C  e.  RR  /\  A  e.  RR  /\  B  e.  RR )  ->  ( C  <  A  ->  ( C  <  B  \/  B  <  A ) ) )
213coml 1212 . . . 4  |-  ( ( A  e.  RR  /\  B  e.  RR  /\  C  e.  RR )  ->  ( C  <  A  ->  ( C  <  B  \/  B  <  A ) ) )
3 orcom 729 . . . 4  |-  ( ( C  <  B  \/  B  <  A )  <->  ( B  <  A  \/  C  < 
B ) )
42, 3imbitrdi 161 . . 3  |-  ( ( A  e.  RR  /\  B  e.  RR  /\  C  e.  RR )  ->  ( C  <  A  ->  ( B  <  A  \/  C  <  B ) ) )
54con3d 632 . 2  |-  ( ( A  e.  RR  /\  B  e.  RR  /\  C  e.  RR )  ->  ( -.  ( B  <  A  \/  C  <  B )  ->  -.  C  <  A ) )
6 lenlt 8097 . . . . 5  |-  ( ( A  e.  RR  /\  B  e.  RR )  ->  ( A  <_  B  <->  -.  B  <  A ) )
763adant3 1019 . . . 4  |-  ( ( A  e.  RR  /\  B  e.  RR  /\  C  e.  RR )  ->  ( A  <_  B  <->  -.  B  <  A ) )
8 lenlt 8097 . . . . 5  |-  ( ( B  e.  RR  /\  C  e.  RR )  ->  ( B  <_  C  <->  -.  C  <  B ) )
983adant1 1017 . . . 4  |-  ( ( A  e.  RR  /\  B  e.  RR  /\  C  e.  RR )  ->  ( B  <_  C  <->  -.  C  <  B ) )
107, 9anbi12d 473 . . 3  |-  ( ( A  e.  RR  /\  B  e.  RR  /\  C  e.  RR )  ->  (
( A  <_  B  /\  B  <_  C )  <-> 
( -.  B  < 
A  /\  -.  C  <  B ) ) )
11 ioran 753 . . 3  |-  ( -.  ( B  <  A  \/  C  <  B )  <-> 
( -.  B  < 
A  /\  -.  C  <  B ) )
1210, 11bitr4di 198 . 2  |-  ( ( A  e.  RR  /\  B  e.  RR  /\  C  e.  RR )  ->  (
( A  <_  B  /\  B  <_  C )  <->  -.  ( B  <  A  \/  C  <  B ) ) )
13 lenlt 8097 . . 3  |-  ( ( A  e.  RR  /\  C  e.  RR )  ->  ( A  <_  C  <->  -.  C  <  A ) )
14133adant2 1018 . 2  |-  ( ( A  e.  RR  /\  B  e.  RR  /\  C  e.  RR )  ->  ( A  <_  C  <->  -.  C  <  A ) )
155, 12, 143imtr4d 203 1  |-  ( ( A  e.  RR  /\  B  e.  RR  /\  C  e.  RR )  ->  (
( A  <_  B  /\  B  <_  C )  ->  A  <_  C
) )
Colors of variables: wff set class
Syntax hints:   -. wn 3    -> wi 4    /\ wa 104    <-> wb 105    \/ wo 709    /\ w3a 980    e. wcel 2164   class class class wbr 4030   RRcr 7873    < clt 8056    <_ cle 8057
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 710  ax-5 1458  ax-7 1459  ax-gen 1460  ax-ie1 1504  ax-ie2 1505  ax-8 1515  ax-10 1516  ax-11 1517  ax-i12 1518  ax-bndl 1520  ax-4 1521  ax-17 1537  ax-i9 1541  ax-ial 1545  ax-i5r 1546  ax-13 2166  ax-14 2167  ax-ext 2175  ax-sep 4148  ax-pow 4204  ax-pr 4239  ax-un 4465  ax-setind 4570  ax-cnex 7965  ax-resscn 7966  ax-pre-ltwlin 7987
This theorem depends on definitions:  df-bi 117  df-3an 982  df-tru 1367  df-fal 1370  df-nf 1472  df-sb 1774  df-eu 2045  df-mo 2046  df-clab 2180  df-cleq 2186  df-clel 2189  df-nfc 2325  df-ne 2365  df-nel 2460  df-ral 2477  df-rex 2478  df-rab 2481  df-v 2762  df-dif 3156  df-un 3158  df-in 3160  df-ss 3167  df-pw 3604  df-sn 3625  df-pr 3626  df-op 3628  df-uni 3837  df-br 4031  df-opab 4092  df-xp 4666  df-cnv 4668  df-pnf 8058  df-mnf 8059  df-xr 8060  df-ltxr 8061  df-le 8062
This theorem is referenced by:  letri  8129  letrd  8145  le2add  8465  le2sub  8482  p1le  8870  lemul12b  8882  lemul12a  8883  zletr  9369  peano2uz2  9427  ledivge1le  9795  fznlem  10110  elfz1b  10159  elfz0fzfz0  10195  fz0fzelfz0  10196  fz0fzdiffz0  10199  elfzmlbp  10201  difelfznle  10204  ssfzo12bi  10295  flqge  10354  fldiv4p1lem1div2  10377  monoord  10559  leexp2r  10667  expubnd  10670  le2sq2  10689  facwordi  10814  faclbnd3  10817  facavg  10820  fimaxre2  11373  fsumabs  11611  cvgratnnlemnexp  11670  cvgratnnlemmn  11671  algcvga  12192  prmdvdsfz  12280  prmfac1  12293  4sqlem11  12542  sincosq1lem  15001  gausslemma2dlem1a  15215  lgsquadlem1  15234
  Copyright terms: Public domain W3C validator