| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > letr | Unicode version | ||
| Description: Transitive law. (Contributed by NM, 12-Nov-1999.) |
| Ref | Expression |
|---|---|
| letr |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | axltwlin 8175 |
. . . . 5
| |
| 2 | 1 | 3coml 1213 |
. . . 4
|
| 3 | orcom 730 |
. . . 4
| |
| 4 | 2, 3 | imbitrdi 161 |
. . 3
|
| 5 | 4 | con3d 632 |
. 2
|
| 6 | lenlt 8183 |
. . . . 5
| |
| 7 | 6 | 3adant3 1020 |
. . . 4
|
| 8 | lenlt 8183 |
. . . . 5
| |
| 9 | 8 | 3adant1 1018 |
. . . 4
|
| 10 | 7, 9 | anbi12d 473 |
. . 3
|
| 11 | ioran 754 |
. . 3
| |
| 12 | 10, 11 | bitr4di 198 |
. 2
|
| 13 | lenlt 8183 |
. . 3
| |
| 14 | 13 | 3adant2 1019 |
. 2
|
| 15 | 5, 12, 14 | 3imtr4d 203 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 615 ax-in2 616 ax-io 711 ax-5 1471 ax-7 1472 ax-gen 1473 ax-ie1 1517 ax-ie2 1518 ax-8 1528 ax-10 1529 ax-11 1530 ax-i12 1531 ax-bndl 1533 ax-4 1534 ax-17 1550 ax-i9 1554 ax-ial 1558 ax-i5r 1559 ax-13 2180 ax-14 2181 ax-ext 2189 ax-sep 4178 ax-pow 4234 ax-pr 4269 ax-un 4498 ax-setind 4603 ax-cnex 8051 ax-resscn 8052 ax-pre-ltwlin 8073 |
| This theorem depends on definitions: df-bi 117 df-3an 983 df-tru 1376 df-fal 1379 df-nf 1485 df-sb 1787 df-eu 2058 df-mo 2059 df-clab 2194 df-cleq 2200 df-clel 2203 df-nfc 2339 df-ne 2379 df-nel 2474 df-ral 2491 df-rex 2492 df-rab 2495 df-v 2778 df-dif 3176 df-un 3178 df-in 3180 df-ss 3187 df-pw 3628 df-sn 3649 df-pr 3650 df-op 3652 df-uni 3865 df-br 4060 df-opab 4122 df-xp 4699 df-cnv 4701 df-pnf 8144 df-mnf 8145 df-xr 8146 df-ltxr 8147 df-le 8148 |
| This theorem is referenced by: letri 8215 letrd 8231 le2add 8552 le2sub 8569 p1le 8957 lemul12b 8969 lemul12a 8970 zletr 9457 peano2uz2 9515 ledivge1le 9883 fznlem 10198 elfz1b 10247 elfz0fzfz0 10283 fz0fzelfz0 10284 fz0fzdiffz0 10287 elfzmlbp 10289 difelfznle 10292 elincfzoext 10359 ssfzo12bi 10391 flqge 10462 fldiv4p1lem1div2 10485 monoord 10667 leexp2r 10775 expubnd 10778 le2sq2 10797 facwordi 10922 faclbnd3 10925 facavg 10928 swrdswrdlem 11195 swrdccat 11226 fimaxre2 11653 fsumabs 11891 cvgratnnlemnexp 11950 cvgratnnlemmn 11951 algcvga 12488 prmdvdsfz 12576 prmfac1 12589 4sqlem11 12839 sincosq1lem 15412 gausslemma2dlem1a 15650 lgsquadlem1 15669 |
| Copyright terms: Public domain | W3C validator |