| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > letr | Unicode version | ||
| Description: Transitive law. (Contributed by NM, 12-Nov-1999.) |
| Ref | Expression |
|---|---|
| letr |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | axltwlin 8111 |
. . . . 5
| |
| 2 | 1 | 3coml 1212 |
. . . 4
|
| 3 | orcom 729 |
. . . 4
| |
| 4 | 2, 3 | imbitrdi 161 |
. . 3
|
| 5 | 4 | con3d 632 |
. 2
|
| 6 | lenlt 8119 |
. . . . 5
| |
| 7 | 6 | 3adant3 1019 |
. . . 4
|
| 8 | lenlt 8119 |
. . . . 5
| |
| 9 | 8 | 3adant1 1017 |
. . . 4
|
| 10 | 7, 9 | anbi12d 473 |
. . 3
|
| 11 | ioran 753 |
. . 3
| |
| 12 | 10, 11 | bitr4di 198 |
. 2
|
| 13 | lenlt 8119 |
. . 3
| |
| 14 | 13 | 3adant2 1018 |
. 2
|
| 15 | 5, 12, 14 | 3imtr4d 203 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 615 ax-in2 616 ax-io 710 ax-5 1461 ax-7 1462 ax-gen 1463 ax-ie1 1507 ax-ie2 1508 ax-8 1518 ax-10 1519 ax-11 1520 ax-i12 1521 ax-bndl 1523 ax-4 1524 ax-17 1540 ax-i9 1544 ax-ial 1548 ax-i5r 1549 ax-13 2169 ax-14 2170 ax-ext 2178 ax-sep 4152 ax-pow 4208 ax-pr 4243 ax-un 4469 ax-setind 4574 ax-cnex 7987 ax-resscn 7988 ax-pre-ltwlin 8009 |
| This theorem depends on definitions: df-bi 117 df-3an 982 df-tru 1367 df-fal 1370 df-nf 1475 df-sb 1777 df-eu 2048 df-mo 2049 df-clab 2183 df-cleq 2189 df-clel 2192 df-nfc 2328 df-ne 2368 df-nel 2463 df-ral 2480 df-rex 2481 df-rab 2484 df-v 2765 df-dif 3159 df-un 3161 df-in 3163 df-ss 3170 df-pw 3608 df-sn 3629 df-pr 3630 df-op 3632 df-uni 3841 df-br 4035 df-opab 4096 df-xp 4670 df-cnv 4672 df-pnf 8080 df-mnf 8081 df-xr 8082 df-ltxr 8083 df-le 8084 |
| This theorem is referenced by: letri 8151 letrd 8167 le2add 8488 le2sub 8505 p1le 8893 lemul12b 8905 lemul12a 8906 zletr 9392 peano2uz2 9450 ledivge1le 9818 fznlem 10133 elfz1b 10182 elfz0fzfz0 10218 fz0fzelfz0 10219 fz0fzdiffz0 10222 elfzmlbp 10224 difelfznle 10227 ssfzo12bi 10318 flqge 10389 fldiv4p1lem1div2 10412 monoord 10594 leexp2r 10702 expubnd 10705 le2sq2 10724 facwordi 10849 faclbnd3 10852 facavg 10855 fimaxre2 11409 fsumabs 11647 cvgratnnlemnexp 11706 cvgratnnlemmn 11707 algcvga 12244 prmdvdsfz 12332 prmfac1 12345 4sqlem11 12595 sincosq1lem 15145 gausslemma2dlem1a 15383 lgsquadlem1 15402 |
| Copyright terms: Public domain | W3C validator |