ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  letr Unicode version

Theorem letr 7854
Description: Transitive law. (Contributed by NM, 12-Nov-1999.)
Assertion
Ref Expression
letr  |-  ( ( A  e.  RR  /\  B  e.  RR  /\  C  e.  RR )  ->  (
( A  <_  B  /\  B  <_  C )  ->  A  <_  C
) )

Proof of Theorem letr
StepHypRef Expression
1 axltwlin 7839 . . . . 5  |-  ( ( C  e.  RR  /\  A  e.  RR  /\  B  e.  RR )  ->  ( C  <  A  ->  ( C  <  B  \/  B  <  A ) ) )
213coml 1188 . . . 4  |-  ( ( A  e.  RR  /\  B  e.  RR  /\  C  e.  RR )  ->  ( C  <  A  ->  ( C  <  B  \/  B  <  A ) ) )
3 orcom 717 . . . 4  |-  ( ( C  <  B  \/  B  <  A )  <->  ( B  <  A  \/  C  < 
B ) )
42, 3syl6ib 160 . . 3  |-  ( ( A  e.  RR  /\  B  e.  RR  /\  C  e.  RR )  ->  ( C  <  A  ->  ( B  <  A  \/  C  <  B ) ) )
54con3d 620 . 2  |-  ( ( A  e.  RR  /\  B  e.  RR  /\  C  e.  RR )  ->  ( -.  ( B  <  A  \/  C  <  B )  ->  -.  C  <  A ) )
6 lenlt 7847 . . . . 5  |-  ( ( A  e.  RR  /\  B  e.  RR )  ->  ( A  <_  B  <->  -.  B  <  A ) )
763adant3 1001 . . . 4  |-  ( ( A  e.  RR  /\  B  e.  RR  /\  C  e.  RR )  ->  ( A  <_  B  <->  -.  B  <  A ) )
8 lenlt 7847 . . . . 5  |-  ( ( B  e.  RR  /\  C  e.  RR )  ->  ( B  <_  C  <->  -.  C  <  B ) )
983adant1 999 . . . 4  |-  ( ( A  e.  RR  /\  B  e.  RR  /\  C  e.  RR )  ->  ( B  <_  C  <->  -.  C  <  B ) )
107, 9anbi12d 464 . . 3  |-  ( ( A  e.  RR  /\  B  e.  RR  /\  C  e.  RR )  ->  (
( A  <_  B  /\  B  <_  C )  <-> 
( -.  B  < 
A  /\  -.  C  <  B ) ) )
11 ioran 741 . . 3  |-  ( -.  ( B  <  A  \/  C  <  B )  <-> 
( -.  B  < 
A  /\  -.  C  <  B ) )
1210, 11syl6bbr 197 . 2  |-  ( ( A  e.  RR  /\  B  e.  RR  /\  C  e.  RR )  ->  (
( A  <_  B  /\  B  <_  C )  <->  -.  ( B  <  A  \/  C  <  B ) ) )
13 lenlt 7847 . . 3  |-  ( ( A  e.  RR  /\  C  e.  RR )  ->  ( A  <_  C  <->  -.  C  <  A ) )
14133adant2 1000 . 2  |-  ( ( A  e.  RR  /\  B  e.  RR  /\  C  e.  RR )  ->  ( A  <_  C  <->  -.  C  <  A ) )
155, 12, 143imtr4d 202 1  |-  ( ( A  e.  RR  /\  B  e.  RR  /\  C  e.  RR )  ->  (
( A  <_  B  /\  B  <_  C )  ->  A  <_  C
) )
Colors of variables: wff set class
Syntax hints:   -. wn 3    -> wi 4    /\ wa 103    <-> wb 104    \/ wo 697    /\ w3a 962    e. wcel 1480   class class class wbr 3929   RRcr 7626    < clt 7807    <_ cle 7808
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-in1 603  ax-in2 604  ax-io 698  ax-5 1423  ax-7 1424  ax-gen 1425  ax-ie1 1469  ax-ie2 1470  ax-8 1482  ax-10 1483  ax-11 1484  ax-i12 1485  ax-bndl 1486  ax-4 1487  ax-13 1491  ax-14 1492  ax-17 1506  ax-i9 1510  ax-ial 1514  ax-i5r 1515  ax-ext 2121  ax-sep 4046  ax-pow 4098  ax-pr 4131  ax-un 4355  ax-setind 4452  ax-cnex 7718  ax-resscn 7719  ax-pre-ltwlin 7740
This theorem depends on definitions:  df-bi 116  df-3an 964  df-tru 1334  df-fal 1337  df-nf 1437  df-sb 1736  df-eu 2002  df-mo 2003  df-clab 2126  df-cleq 2132  df-clel 2135  df-nfc 2270  df-ne 2309  df-nel 2404  df-ral 2421  df-rex 2422  df-rab 2425  df-v 2688  df-dif 3073  df-un 3075  df-in 3077  df-ss 3084  df-pw 3512  df-sn 3533  df-pr 3534  df-op 3536  df-uni 3737  df-br 3930  df-opab 3990  df-xp 4545  df-cnv 4547  df-pnf 7809  df-mnf 7810  df-xr 7811  df-ltxr 7812  df-le 7813
This theorem is referenced by:  letri  7878  letrd  7893  le2add  8213  le2sub  8230  p1le  8614  lemul12b  8626  lemul12a  8627  zletr  9110  peano2uz2  9165  ledivge1le  9520  fznlem  9828  elfz1b  9877  elfz0fzfz0  9910  fz0fzelfz0  9911  fz0fzdiffz0  9914  elfzmlbp  9916  difelfznle  9919  ssfzo12bi  10009  flqge  10062  fldiv4p1lem1div2  10085  monoord  10256  leexp2r  10354  expubnd  10357  le2sq2  10375  facwordi  10493  faclbnd3  10496  facavg  10499  fimaxre2  11005  fsumabs  11241  cvgratnnlemnexp  11300  cvgratnnlemmn  11301  algcvga  11738  prmdvdsfz  11825  prmfac1  11836  sincosq1lem  12922
  Copyright terms: Public domain W3C validator