ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  uztrn Unicode version

Theorem uztrn 9612
Description: Transitive law for sets of upper integers. (Contributed by NM, 20-Sep-2005.)
Assertion
Ref Expression
uztrn  |-  ( ( M  e.  ( ZZ>= `  K )  /\  K  e.  ( ZZ>= `  N )
)  ->  M  e.  ( ZZ>= `  N )
)

Proof of Theorem uztrn
StepHypRef Expression
1 eluzel2 9600 . . 3  |-  ( K  e.  ( ZZ>= `  N
)  ->  N  e.  ZZ )
21adantl 277 . 2  |-  ( ( M  e.  ( ZZ>= `  K )  /\  K  e.  ( ZZ>= `  N )
)  ->  N  e.  ZZ )
3 eluzelz 9604 . . 3  |-  ( M  e.  ( ZZ>= `  K
)  ->  M  e.  ZZ )
43adantr 276 . 2  |-  ( ( M  e.  ( ZZ>= `  K )  /\  K  e.  ( ZZ>= `  N )
)  ->  M  e.  ZZ )
5 eluzle 9607 . . . 4  |-  ( K  e.  ( ZZ>= `  N
)  ->  N  <_  K )
65adantl 277 . . 3  |-  ( ( M  e.  ( ZZ>= `  K )  /\  K  e.  ( ZZ>= `  N )
)  ->  N  <_  K )
7 eluzle 9607 . . . 4  |-  ( M  e.  ( ZZ>= `  K
)  ->  K  <_  M )
87adantr 276 . . 3  |-  ( ( M  e.  ( ZZ>= `  K )  /\  K  e.  ( ZZ>= `  N )
)  ->  K  <_  M )
9 eluzelz 9604 . . . . 5  |-  ( K  e.  ( ZZ>= `  N
)  ->  K  e.  ZZ )
109adantl 277 . . . 4  |-  ( ( M  e.  ( ZZ>= `  K )  /\  K  e.  ( ZZ>= `  N )
)  ->  K  e.  ZZ )
11 zletr 9369 . . . 4  |-  ( ( N  e.  ZZ  /\  K  e.  ZZ  /\  M  e.  ZZ )  ->  (
( N  <_  K  /\  K  <_  M )  ->  N  <_  M
) )
122, 10, 4, 11syl3anc 1249 . . 3  |-  ( ( M  e.  ( ZZ>= `  K )  /\  K  e.  ( ZZ>= `  N )
)  ->  ( ( N  <_  K  /\  K  <_  M )  ->  N  <_  M ) )
136, 8, 12mp2and 433 . 2  |-  ( ( M  e.  ( ZZ>= `  K )  /\  K  e.  ( ZZ>= `  N )
)  ->  N  <_  M )
14 eluz2 9601 . 2  |-  ( M  e.  ( ZZ>= `  N
)  <->  ( N  e.  ZZ  /\  M  e.  ZZ  /\  N  <_  M ) )
152, 4, 13, 14syl3anbrc 1183 1  |-  ( ( M  e.  ( ZZ>= `  K )  /\  K  e.  ( ZZ>= `  N )
)  ->  M  e.  ( ZZ>= `  N )
)
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 104    e. wcel 2164   class class class wbr 4030   ` cfv 5255    <_ cle 8057   ZZcz 9320   ZZ>=cuz 9595
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 710  ax-5 1458  ax-7 1459  ax-gen 1460  ax-ie1 1504  ax-ie2 1505  ax-8 1515  ax-10 1516  ax-11 1517  ax-i12 1518  ax-bndl 1520  ax-4 1521  ax-17 1537  ax-i9 1541  ax-ial 1545  ax-i5r 1546  ax-13 2166  ax-14 2167  ax-ext 2175  ax-sep 4148  ax-pow 4204  ax-pr 4239  ax-un 4465  ax-setind 4570  ax-cnex 7965  ax-resscn 7966  ax-pre-ltwlin 7987
This theorem depends on definitions:  df-bi 117  df-3or 981  df-3an 982  df-tru 1367  df-fal 1370  df-nf 1472  df-sb 1774  df-eu 2045  df-mo 2046  df-clab 2180  df-cleq 2186  df-clel 2189  df-nfc 2325  df-ne 2365  df-nel 2460  df-ral 2477  df-rex 2478  df-rab 2481  df-v 2762  df-sbc 2987  df-dif 3156  df-un 3158  df-in 3160  df-ss 3167  df-pw 3604  df-sn 3625  df-pr 3626  df-op 3628  df-uni 3837  df-br 4031  df-opab 4092  df-mpt 4093  df-id 4325  df-xp 4666  df-rel 4667  df-cnv 4668  df-co 4669  df-dm 4670  df-rn 4671  df-res 4672  df-ima 4673  df-iota 5216  df-fun 5257  df-fn 5258  df-f 5259  df-fv 5263  df-ov 5922  df-pnf 8058  df-mnf 8059  df-xr 8060  df-ltxr 8061  df-le 8062  df-neg 8195  df-z 9321  df-uz 9596
This theorem is referenced by:  uztrn2  9613  fzsplit2  10119  fzass4  10131  fzss1  10132  fzss2  10133  uzsplit  10161  seq3fveq2  10549  seqfveq2g  10551  ser3mono  10561  seq3split  10562  seqsplitg  10563  seq3f1olemqsumkj  10585  seq3f1olemqsumk  10586  seq3id  10599  seq3id2  10600  seq3z  10602  seq3coll  10916  cvgratgt0  11679  mertenslemi1  11681  zproddc  11725  dvdsfac  12005  gsumfzz  13070
  Copyright terms: Public domain W3C validator