Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > uztrn | Unicode version |
Description: Transitive law for sets of upper integers. (Contributed by NM, 20-Sep-2005.) |
Ref | Expression |
---|---|
uztrn |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | eluzel2 9471 | . . 3 | |
2 | 1 | adantl 275 | . 2 |
3 | eluzelz 9475 | . . 3 | |
4 | 3 | adantr 274 | . 2 |
5 | eluzle 9478 | . . . 4 | |
6 | 5 | adantl 275 | . . 3 |
7 | eluzle 9478 | . . . 4 | |
8 | 7 | adantr 274 | . . 3 |
9 | eluzelz 9475 | . . . . 5 | |
10 | 9 | adantl 275 | . . . 4 |
11 | zletr 9240 | . . . 4 | |
12 | 2, 10, 4, 11 | syl3anc 1228 | . . 3 |
13 | 6, 8, 12 | mp2and 430 | . 2 |
14 | eluz2 9472 | . 2 | |
15 | 2, 4, 13, 14 | syl3anbrc 1171 | 1 |
Colors of variables: wff set class |
Syntax hints: wi 4 wa 103 wcel 2136 class class class wbr 3982 cfv 5188 cle 7934 cz 9191 cuz 9466 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-in1 604 ax-in2 605 ax-io 699 ax-5 1435 ax-7 1436 ax-gen 1437 ax-ie1 1481 ax-ie2 1482 ax-8 1492 ax-10 1493 ax-11 1494 ax-i12 1495 ax-bndl 1497 ax-4 1498 ax-17 1514 ax-i9 1518 ax-ial 1522 ax-i5r 1523 ax-13 2138 ax-14 2139 ax-ext 2147 ax-sep 4100 ax-pow 4153 ax-pr 4187 ax-un 4411 ax-setind 4514 ax-cnex 7844 ax-resscn 7845 ax-pre-ltwlin 7866 |
This theorem depends on definitions: df-bi 116 df-3or 969 df-3an 970 df-tru 1346 df-fal 1349 df-nf 1449 df-sb 1751 df-eu 2017 df-mo 2018 df-clab 2152 df-cleq 2158 df-clel 2161 df-nfc 2297 df-ne 2337 df-nel 2432 df-ral 2449 df-rex 2450 df-rab 2453 df-v 2728 df-sbc 2952 df-dif 3118 df-un 3120 df-in 3122 df-ss 3129 df-pw 3561 df-sn 3582 df-pr 3583 df-op 3585 df-uni 3790 df-br 3983 df-opab 4044 df-mpt 4045 df-id 4271 df-xp 4610 df-rel 4611 df-cnv 4612 df-co 4613 df-dm 4614 df-rn 4615 df-res 4616 df-ima 4617 df-iota 5153 df-fun 5190 df-fn 5191 df-f 5192 df-fv 5196 df-ov 5845 df-pnf 7935 df-mnf 7936 df-xr 7937 df-ltxr 7938 df-le 7939 df-neg 8072 df-z 9192 df-uz 9467 |
This theorem is referenced by: uztrn2 9483 fzsplit2 9985 fzass4 9997 fzss1 9998 fzss2 9999 uzsplit 10027 seq3fveq2 10404 ser3mono 10413 seq3split 10414 seq3f1olemqsumkj 10433 seq3f1olemqsumk 10434 seq3id 10443 seq3id2 10444 seq3z 10446 seq3coll 10755 cvgratgt0 11474 mertenslemi1 11476 zproddc 11520 dvdsfac 11798 |
Copyright terms: Public domain | W3C validator |