ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  uztrn Unicode version

Theorem uztrn 9637
Description: Transitive law for sets of upper integers. (Contributed by NM, 20-Sep-2005.)
Assertion
Ref Expression
uztrn  |-  ( ( M  e.  ( ZZ>= `  K )  /\  K  e.  ( ZZ>= `  N )
)  ->  M  e.  ( ZZ>= `  N )
)

Proof of Theorem uztrn
StepHypRef Expression
1 eluzel2 9625 . . 3  |-  ( K  e.  ( ZZ>= `  N
)  ->  N  e.  ZZ )
21adantl 277 . 2  |-  ( ( M  e.  ( ZZ>= `  K )  /\  K  e.  ( ZZ>= `  N )
)  ->  N  e.  ZZ )
3 eluzelz 9629 . . 3  |-  ( M  e.  ( ZZ>= `  K
)  ->  M  e.  ZZ )
43adantr 276 . 2  |-  ( ( M  e.  ( ZZ>= `  K )  /\  K  e.  ( ZZ>= `  N )
)  ->  M  e.  ZZ )
5 eluzle 9632 . . . 4  |-  ( K  e.  ( ZZ>= `  N
)  ->  N  <_  K )
65adantl 277 . . 3  |-  ( ( M  e.  ( ZZ>= `  K )  /\  K  e.  ( ZZ>= `  N )
)  ->  N  <_  K )
7 eluzle 9632 . . . 4  |-  ( M  e.  ( ZZ>= `  K
)  ->  K  <_  M )
87adantr 276 . . 3  |-  ( ( M  e.  ( ZZ>= `  K )  /\  K  e.  ( ZZ>= `  N )
)  ->  K  <_  M )
9 eluzelz 9629 . . . . 5  |-  ( K  e.  ( ZZ>= `  N
)  ->  K  e.  ZZ )
109adantl 277 . . . 4  |-  ( ( M  e.  ( ZZ>= `  K )  /\  K  e.  ( ZZ>= `  N )
)  ->  K  e.  ZZ )
11 zletr 9394 . . . 4  |-  ( ( N  e.  ZZ  /\  K  e.  ZZ  /\  M  e.  ZZ )  ->  (
( N  <_  K  /\  K  <_  M )  ->  N  <_  M
) )
122, 10, 4, 11syl3anc 1249 . . 3  |-  ( ( M  e.  ( ZZ>= `  K )  /\  K  e.  ( ZZ>= `  N )
)  ->  ( ( N  <_  K  /\  K  <_  M )  ->  N  <_  M ) )
136, 8, 12mp2and 433 . 2  |-  ( ( M  e.  ( ZZ>= `  K )  /\  K  e.  ( ZZ>= `  N )
)  ->  N  <_  M )
14 eluz2 9626 . 2  |-  ( M  e.  ( ZZ>= `  N
)  <->  ( N  e.  ZZ  /\  M  e.  ZZ  /\  N  <_  M ) )
152, 4, 13, 14syl3anbrc 1183 1  |-  ( ( M  e.  ( ZZ>= `  K )  /\  K  e.  ( ZZ>= `  N )
)  ->  M  e.  ( ZZ>= `  N )
)
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 104    e. wcel 2167   class class class wbr 4034   ` cfv 5259    <_ cle 8081   ZZcz 9345   ZZ>=cuz 9620
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 710  ax-5 1461  ax-7 1462  ax-gen 1463  ax-ie1 1507  ax-ie2 1508  ax-8 1518  ax-10 1519  ax-11 1520  ax-i12 1521  ax-bndl 1523  ax-4 1524  ax-17 1540  ax-i9 1544  ax-ial 1548  ax-i5r 1549  ax-13 2169  ax-14 2170  ax-ext 2178  ax-sep 4152  ax-pow 4208  ax-pr 4243  ax-un 4469  ax-setind 4574  ax-cnex 7989  ax-resscn 7990  ax-pre-ltwlin 8011
This theorem depends on definitions:  df-bi 117  df-3or 981  df-3an 982  df-tru 1367  df-fal 1370  df-nf 1475  df-sb 1777  df-eu 2048  df-mo 2049  df-clab 2183  df-cleq 2189  df-clel 2192  df-nfc 2328  df-ne 2368  df-nel 2463  df-ral 2480  df-rex 2481  df-rab 2484  df-v 2765  df-sbc 2990  df-dif 3159  df-un 3161  df-in 3163  df-ss 3170  df-pw 3608  df-sn 3629  df-pr 3630  df-op 3632  df-uni 3841  df-br 4035  df-opab 4096  df-mpt 4097  df-id 4329  df-xp 4670  df-rel 4671  df-cnv 4672  df-co 4673  df-dm 4674  df-rn 4675  df-res 4676  df-ima 4677  df-iota 5220  df-fun 5261  df-fn 5262  df-f 5263  df-fv 5267  df-ov 5928  df-pnf 8082  df-mnf 8083  df-xr 8084  df-ltxr 8085  df-le 8086  df-neg 8219  df-z 9346  df-uz 9621
This theorem is referenced by:  uztrn2  9638  fzsplit2  10144  fzass4  10156  fzss1  10157  fzss2  10158  uzsplit  10186  seq3fveq2  10586  seqfveq2g  10588  ser3mono  10598  seq3split  10599  seqsplitg  10600  seq3f1olemqsumkj  10622  seq3f1olemqsumk  10623  seq3id  10636  seq3id2  10637  seq3z  10639  seq3coll  10953  cvgratgt0  11717  mertenslemi1  11719  zproddc  11763  dvdsfac  12044  gsumfzz  13199
  Copyright terms: Public domain W3C validator