ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  uztrn Unicode version

Theorem uztrn 9621
Description: Transitive law for sets of upper integers. (Contributed by NM, 20-Sep-2005.)
Assertion
Ref Expression
uztrn  |-  ( ( M  e.  ( ZZ>= `  K )  /\  K  e.  ( ZZ>= `  N )
)  ->  M  e.  ( ZZ>= `  N )
)

Proof of Theorem uztrn
StepHypRef Expression
1 eluzel2 9609 . . 3  |-  ( K  e.  ( ZZ>= `  N
)  ->  N  e.  ZZ )
21adantl 277 . 2  |-  ( ( M  e.  ( ZZ>= `  K )  /\  K  e.  ( ZZ>= `  N )
)  ->  N  e.  ZZ )
3 eluzelz 9613 . . 3  |-  ( M  e.  ( ZZ>= `  K
)  ->  M  e.  ZZ )
43adantr 276 . 2  |-  ( ( M  e.  ( ZZ>= `  K )  /\  K  e.  ( ZZ>= `  N )
)  ->  M  e.  ZZ )
5 eluzle 9616 . . . 4  |-  ( K  e.  ( ZZ>= `  N
)  ->  N  <_  K )
65adantl 277 . . 3  |-  ( ( M  e.  ( ZZ>= `  K )  /\  K  e.  ( ZZ>= `  N )
)  ->  N  <_  K )
7 eluzle 9616 . . . 4  |-  ( M  e.  ( ZZ>= `  K
)  ->  K  <_  M )
87adantr 276 . . 3  |-  ( ( M  e.  ( ZZ>= `  K )  /\  K  e.  ( ZZ>= `  N )
)  ->  K  <_  M )
9 eluzelz 9613 . . . . 5  |-  ( K  e.  ( ZZ>= `  N
)  ->  K  e.  ZZ )
109adantl 277 . . . 4  |-  ( ( M  e.  ( ZZ>= `  K )  /\  K  e.  ( ZZ>= `  N )
)  ->  K  e.  ZZ )
11 zletr 9378 . . . 4  |-  ( ( N  e.  ZZ  /\  K  e.  ZZ  /\  M  e.  ZZ )  ->  (
( N  <_  K  /\  K  <_  M )  ->  N  <_  M
) )
122, 10, 4, 11syl3anc 1249 . . 3  |-  ( ( M  e.  ( ZZ>= `  K )  /\  K  e.  ( ZZ>= `  N )
)  ->  ( ( N  <_  K  /\  K  <_  M )  ->  N  <_  M ) )
136, 8, 12mp2and 433 . 2  |-  ( ( M  e.  ( ZZ>= `  K )  /\  K  e.  ( ZZ>= `  N )
)  ->  N  <_  M )
14 eluz2 9610 . 2  |-  ( M  e.  ( ZZ>= `  N
)  <->  ( N  e.  ZZ  /\  M  e.  ZZ  /\  N  <_  M ) )
152, 4, 13, 14syl3anbrc 1183 1  |-  ( ( M  e.  ( ZZ>= `  K )  /\  K  e.  ( ZZ>= `  N )
)  ->  M  e.  ( ZZ>= `  N )
)
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 104    e. wcel 2167   class class class wbr 4034   ` cfv 5259    <_ cle 8065   ZZcz 9329   ZZ>=cuz 9604
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 710  ax-5 1461  ax-7 1462  ax-gen 1463  ax-ie1 1507  ax-ie2 1508  ax-8 1518  ax-10 1519  ax-11 1520  ax-i12 1521  ax-bndl 1523  ax-4 1524  ax-17 1540  ax-i9 1544  ax-ial 1548  ax-i5r 1549  ax-13 2169  ax-14 2170  ax-ext 2178  ax-sep 4152  ax-pow 4208  ax-pr 4243  ax-un 4469  ax-setind 4574  ax-cnex 7973  ax-resscn 7974  ax-pre-ltwlin 7995
This theorem depends on definitions:  df-bi 117  df-3or 981  df-3an 982  df-tru 1367  df-fal 1370  df-nf 1475  df-sb 1777  df-eu 2048  df-mo 2049  df-clab 2183  df-cleq 2189  df-clel 2192  df-nfc 2328  df-ne 2368  df-nel 2463  df-ral 2480  df-rex 2481  df-rab 2484  df-v 2765  df-sbc 2990  df-dif 3159  df-un 3161  df-in 3163  df-ss 3170  df-pw 3608  df-sn 3629  df-pr 3630  df-op 3632  df-uni 3841  df-br 4035  df-opab 4096  df-mpt 4097  df-id 4329  df-xp 4670  df-rel 4671  df-cnv 4672  df-co 4673  df-dm 4674  df-rn 4675  df-res 4676  df-ima 4677  df-iota 5220  df-fun 5261  df-fn 5262  df-f 5263  df-fv 5267  df-ov 5926  df-pnf 8066  df-mnf 8067  df-xr 8068  df-ltxr 8069  df-le 8070  df-neg 8203  df-z 9330  df-uz 9605
This theorem is referenced by:  uztrn2  9622  fzsplit2  10128  fzass4  10140  fzss1  10141  fzss2  10142  uzsplit  10170  seq3fveq2  10570  seqfveq2g  10572  ser3mono  10582  seq3split  10583  seqsplitg  10584  seq3f1olemqsumkj  10606  seq3f1olemqsumk  10607  seq3id  10620  seq3id2  10621  seq3z  10623  seq3coll  10937  cvgratgt0  11701  mertenslemi1  11703  zproddc  11747  dvdsfac  12028  gsumfzz  13153
  Copyright terms: Public domain W3C validator