ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  uztrn Unicode version

Theorem uztrn 9546
Description: Transitive law for sets of upper integers. (Contributed by NM, 20-Sep-2005.)
Assertion
Ref Expression
uztrn  |-  ( ( M  e.  ( ZZ>= `  K )  /\  K  e.  ( ZZ>= `  N )
)  ->  M  e.  ( ZZ>= `  N )
)

Proof of Theorem uztrn
StepHypRef Expression
1 eluzel2 9535 . . 3  |-  ( K  e.  ( ZZ>= `  N
)  ->  N  e.  ZZ )
21adantl 277 . 2  |-  ( ( M  e.  ( ZZ>= `  K )  /\  K  e.  ( ZZ>= `  N )
)  ->  N  e.  ZZ )
3 eluzelz 9539 . . 3  |-  ( M  e.  ( ZZ>= `  K
)  ->  M  e.  ZZ )
43adantr 276 . 2  |-  ( ( M  e.  ( ZZ>= `  K )  /\  K  e.  ( ZZ>= `  N )
)  ->  M  e.  ZZ )
5 eluzle 9542 . . . 4  |-  ( K  e.  ( ZZ>= `  N
)  ->  N  <_  K )
65adantl 277 . . 3  |-  ( ( M  e.  ( ZZ>= `  K )  /\  K  e.  ( ZZ>= `  N )
)  ->  N  <_  K )
7 eluzle 9542 . . . 4  |-  ( M  e.  ( ZZ>= `  K
)  ->  K  <_  M )
87adantr 276 . . 3  |-  ( ( M  e.  ( ZZ>= `  K )  /\  K  e.  ( ZZ>= `  N )
)  ->  K  <_  M )
9 eluzelz 9539 . . . . 5  |-  ( K  e.  ( ZZ>= `  N
)  ->  K  e.  ZZ )
109adantl 277 . . . 4  |-  ( ( M  e.  ( ZZ>= `  K )  /\  K  e.  ( ZZ>= `  N )
)  ->  K  e.  ZZ )
11 zletr 9304 . . . 4  |-  ( ( N  e.  ZZ  /\  K  e.  ZZ  /\  M  e.  ZZ )  ->  (
( N  <_  K  /\  K  <_  M )  ->  N  <_  M
) )
122, 10, 4, 11syl3anc 1238 . . 3  |-  ( ( M  e.  ( ZZ>= `  K )  /\  K  e.  ( ZZ>= `  N )
)  ->  ( ( N  <_  K  /\  K  <_  M )  ->  N  <_  M ) )
136, 8, 12mp2and 433 . 2  |-  ( ( M  e.  ( ZZ>= `  K )  /\  K  e.  ( ZZ>= `  N )
)  ->  N  <_  M )
14 eluz2 9536 . 2  |-  ( M  e.  ( ZZ>= `  N
)  <->  ( N  e.  ZZ  /\  M  e.  ZZ  /\  N  <_  M ) )
152, 4, 13, 14syl3anbrc 1181 1  |-  ( ( M  e.  ( ZZ>= `  K )  /\  K  e.  ( ZZ>= `  N )
)  ->  M  e.  ( ZZ>= `  N )
)
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 104    e. wcel 2148   class class class wbr 4005   ` cfv 5218    <_ cle 7995   ZZcz 9255   ZZ>=cuz 9530
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 614  ax-in2 615  ax-io 709  ax-5 1447  ax-7 1448  ax-gen 1449  ax-ie1 1493  ax-ie2 1494  ax-8 1504  ax-10 1505  ax-11 1506  ax-i12 1507  ax-bndl 1509  ax-4 1510  ax-17 1526  ax-i9 1530  ax-ial 1534  ax-i5r 1535  ax-13 2150  ax-14 2151  ax-ext 2159  ax-sep 4123  ax-pow 4176  ax-pr 4211  ax-un 4435  ax-setind 4538  ax-cnex 7904  ax-resscn 7905  ax-pre-ltwlin 7926
This theorem depends on definitions:  df-bi 117  df-3or 979  df-3an 980  df-tru 1356  df-fal 1359  df-nf 1461  df-sb 1763  df-eu 2029  df-mo 2030  df-clab 2164  df-cleq 2170  df-clel 2173  df-nfc 2308  df-ne 2348  df-nel 2443  df-ral 2460  df-rex 2461  df-rab 2464  df-v 2741  df-sbc 2965  df-dif 3133  df-un 3135  df-in 3137  df-ss 3144  df-pw 3579  df-sn 3600  df-pr 3601  df-op 3603  df-uni 3812  df-br 4006  df-opab 4067  df-mpt 4068  df-id 4295  df-xp 4634  df-rel 4635  df-cnv 4636  df-co 4637  df-dm 4638  df-rn 4639  df-res 4640  df-ima 4641  df-iota 5180  df-fun 5220  df-fn 5221  df-f 5222  df-fv 5226  df-ov 5880  df-pnf 7996  df-mnf 7997  df-xr 7998  df-ltxr 7999  df-le 8000  df-neg 8133  df-z 9256  df-uz 9531
This theorem is referenced by:  uztrn2  9547  fzsplit2  10052  fzass4  10064  fzss1  10065  fzss2  10066  uzsplit  10094  seq3fveq2  10471  ser3mono  10480  seq3split  10481  seq3f1olemqsumkj  10500  seq3f1olemqsumk  10501  seq3id  10510  seq3id2  10511  seq3z  10513  seq3coll  10824  cvgratgt0  11543  mertenslemi1  11545  zproddc  11589  dvdsfac  11868
  Copyright terms: Public domain W3C validator