Step | Hyp | Ref
| Expression |
1 | | seqcaopr2.1 |
. 2
⊢ ((𝜑 ∧ (𝑥 ∈ 𝑆 ∧ 𝑦 ∈ 𝑆)) → (𝑥 + 𝑦) ∈ 𝑆) |
2 | | seqcaopr2.2 |
. 2
⊢ ((𝜑 ∧ (𝑥 ∈ 𝑆 ∧ 𝑦 ∈ 𝑆)) → (𝑥𝑄𝑦) ∈ 𝑆) |
3 | | seqcaopr2.4 |
. 2
⊢ (𝜑 → 𝑁 ∈ (ℤ≥‘𝑀)) |
4 | | seq3caopr2.5 |
. 2
⊢ ((𝜑 ∧ 𝑘 ∈ (ℤ≥‘𝑀)) → (𝐹‘𝑘) ∈ 𝑆) |
5 | | seq3caopr2.6 |
. 2
⊢ ((𝜑 ∧ 𝑘 ∈ (ℤ≥‘𝑀)) → (𝐺‘𝑘) ∈ 𝑆) |
6 | | seq3caopr2.7 |
. 2
⊢ ((𝜑 ∧ 𝑘 ∈ (ℤ≥‘𝑀)) → (𝐻‘𝑘) = ((𝐹‘𝑘)𝑄(𝐺‘𝑘))) |
7 | | eqid 2170 |
. . . . 5
⊢
(ℤ≥‘𝑀) = (ℤ≥‘𝑀) |
8 | | eluzel2 9492 |
. . . . . . 7
⊢ (𝑁 ∈
(ℤ≥‘𝑀) → 𝑀 ∈ ℤ) |
9 | 3, 8 | syl 14 |
. . . . . 6
⊢ (𝜑 → 𝑀 ∈ ℤ) |
10 | 9 | adantr 274 |
. . . . 5
⊢ ((𝜑 ∧ 𝑛 ∈ (𝑀..^𝑁)) → 𝑀 ∈ ℤ) |
11 | 5 | ralrimiva 2543 |
. . . . . . 7
⊢ (𝜑 → ∀𝑘 ∈ (ℤ≥‘𝑀)(𝐺‘𝑘) ∈ 𝑆) |
12 | 11 | adantr 274 |
. . . . . 6
⊢ ((𝜑 ∧ 𝑛 ∈ (𝑀..^𝑁)) → ∀𝑘 ∈ (ℤ≥‘𝑀)(𝐺‘𝑘) ∈ 𝑆) |
13 | | fveq2 5496 |
. . . . . . . 8
⊢ (𝑘 = 𝑥 → (𝐺‘𝑘) = (𝐺‘𝑥)) |
14 | 13 | eleq1d 2239 |
. . . . . . 7
⊢ (𝑘 = 𝑥 → ((𝐺‘𝑘) ∈ 𝑆 ↔ (𝐺‘𝑥) ∈ 𝑆)) |
15 | 14 | rspccva 2833 |
. . . . . 6
⊢
((∀𝑘 ∈
(ℤ≥‘𝑀)(𝐺‘𝑘) ∈ 𝑆 ∧ 𝑥 ∈ (ℤ≥‘𝑀)) → (𝐺‘𝑥) ∈ 𝑆) |
16 | 12, 15 | sylan 281 |
. . . . 5
⊢ (((𝜑 ∧ 𝑛 ∈ (𝑀..^𝑁)) ∧ 𝑥 ∈ (ℤ≥‘𝑀)) → (𝐺‘𝑥) ∈ 𝑆) |
17 | 1 | adantlr 474 |
. . . . 5
⊢ (((𝜑 ∧ 𝑛 ∈ (𝑀..^𝑁)) ∧ (𝑥 ∈ 𝑆 ∧ 𝑦 ∈ 𝑆)) → (𝑥 + 𝑦) ∈ 𝑆) |
18 | 7, 10, 16, 17 | seqf 10417 |
. . . 4
⊢ ((𝜑 ∧ 𝑛 ∈ (𝑀..^𝑁)) → seq𝑀( + , 𝐺):(ℤ≥‘𝑀)⟶𝑆) |
19 | | elfzouz 10107 |
. . . . 5
⊢ (𝑛 ∈ (𝑀..^𝑁) → 𝑛 ∈ (ℤ≥‘𝑀)) |
20 | 19 | adantl 275 |
. . . 4
⊢ ((𝜑 ∧ 𝑛 ∈ (𝑀..^𝑁)) → 𝑛 ∈ (ℤ≥‘𝑀)) |
21 | 18, 20 | ffvelrnd 5632 |
. . 3
⊢ ((𝜑 ∧ 𝑛 ∈ (𝑀..^𝑁)) → (seq𝑀( + , 𝐺)‘𝑛) ∈ 𝑆) |
22 | | fzssuz 10021 |
. . . . 5
⊢ (𝑀...𝑁) ⊆
(ℤ≥‘𝑀) |
23 | | fzofzp1 10183 |
. . . . 5
⊢ (𝑛 ∈ (𝑀..^𝑁) → (𝑛 + 1) ∈ (𝑀...𝑁)) |
24 | 22, 23 | sselid 3145 |
. . . 4
⊢ (𝑛 ∈ (𝑀..^𝑁) → (𝑛 + 1) ∈
(ℤ≥‘𝑀)) |
25 | | fveq2 5496 |
. . . . . 6
⊢ (𝑘 = (𝑛 + 1) → (𝐺‘𝑘) = (𝐺‘(𝑛 + 1))) |
26 | 25 | eleq1d 2239 |
. . . . 5
⊢ (𝑘 = (𝑛 + 1) → ((𝐺‘𝑘) ∈ 𝑆 ↔ (𝐺‘(𝑛 + 1)) ∈ 𝑆)) |
27 | 26 | rspccva 2833 |
. . . 4
⊢
((∀𝑘 ∈
(ℤ≥‘𝑀)(𝐺‘𝑘) ∈ 𝑆 ∧ (𝑛 + 1) ∈
(ℤ≥‘𝑀)) → (𝐺‘(𝑛 + 1)) ∈ 𝑆) |
28 | 11, 24, 27 | syl2an 287 |
. . 3
⊢ ((𝜑 ∧ 𝑛 ∈ (𝑀..^𝑁)) → (𝐺‘(𝑛 + 1)) ∈ 𝑆) |
29 | 4 | ralrimiva 2543 |
. . . . . . . 8
⊢ (𝜑 → ∀𝑘 ∈ (ℤ≥‘𝑀)(𝐹‘𝑘) ∈ 𝑆) |
30 | | fveq2 5496 |
. . . . . . . . . 10
⊢ (𝑘 = 𝑥 → (𝐹‘𝑘) = (𝐹‘𝑥)) |
31 | 30 | eleq1d 2239 |
. . . . . . . . 9
⊢ (𝑘 = 𝑥 → ((𝐹‘𝑘) ∈ 𝑆 ↔ (𝐹‘𝑥) ∈ 𝑆)) |
32 | 31 | rspccva 2833 |
. . . . . . . 8
⊢
((∀𝑘 ∈
(ℤ≥‘𝑀)(𝐹‘𝑘) ∈ 𝑆 ∧ 𝑥 ∈ (ℤ≥‘𝑀)) → (𝐹‘𝑥) ∈ 𝑆) |
33 | 29, 32 | sylan 281 |
. . . . . . 7
⊢ ((𝜑 ∧ 𝑥 ∈ (ℤ≥‘𝑀)) → (𝐹‘𝑥) ∈ 𝑆) |
34 | 33 | adantlr 474 |
. . . . . 6
⊢ (((𝜑 ∧ 𝑛 ∈ (𝑀..^𝑁)) ∧ 𝑥 ∈ (ℤ≥‘𝑀)) → (𝐹‘𝑥) ∈ 𝑆) |
35 | 7, 10, 34, 17 | seqf 10417 |
. . . . 5
⊢ ((𝜑 ∧ 𝑛 ∈ (𝑀..^𝑁)) → seq𝑀( + , 𝐹):(ℤ≥‘𝑀)⟶𝑆) |
36 | 35, 20 | ffvelrnd 5632 |
. . . 4
⊢ ((𝜑 ∧ 𝑛 ∈ (𝑀..^𝑁)) → (seq𝑀( + , 𝐹)‘𝑛) ∈ 𝑆) |
37 | | fveq2 5496 |
. . . . . . 7
⊢ (𝑘 = (𝑛 + 1) → (𝐹‘𝑘) = (𝐹‘(𝑛 + 1))) |
38 | 37 | eleq1d 2239 |
. . . . . 6
⊢ (𝑘 = (𝑛 + 1) → ((𝐹‘𝑘) ∈ 𝑆 ↔ (𝐹‘(𝑛 + 1)) ∈ 𝑆)) |
39 | 38 | rspccva 2833 |
. . . . 5
⊢
((∀𝑘 ∈
(ℤ≥‘𝑀)(𝐹‘𝑘) ∈ 𝑆 ∧ (𝑛 + 1) ∈
(ℤ≥‘𝑀)) → (𝐹‘(𝑛 + 1)) ∈ 𝑆) |
40 | 29, 24, 39 | syl2an 287 |
. . . 4
⊢ ((𝜑 ∧ 𝑛 ∈ (𝑀..^𝑁)) → (𝐹‘(𝑛 + 1)) ∈ 𝑆) |
41 | | seqcaopr2.3 |
. . . . . . . 8
⊢ ((𝜑 ∧ ((𝑥 ∈ 𝑆 ∧ 𝑦 ∈ 𝑆) ∧ (𝑧 ∈ 𝑆 ∧ 𝑤 ∈ 𝑆))) → ((𝑥𝑄𝑧) + (𝑦𝑄𝑤)) = ((𝑥 + 𝑦)𝑄(𝑧 + 𝑤))) |
42 | 41 | anassrs 398 |
. . . . . . 7
⊢ (((𝜑 ∧ (𝑥 ∈ 𝑆 ∧ 𝑦 ∈ 𝑆)) ∧ (𝑧 ∈ 𝑆 ∧ 𝑤 ∈ 𝑆)) → ((𝑥𝑄𝑧) + (𝑦𝑄𝑤)) = ((𝑥 + 𝑦)𝑄(𝑧 + 𝑤))) |
43 | 42 | ralrimivva 2552 |
. . . . . 6
⊢ ((𝜑 ∧ (𝑥 ∈ 𝑆 ∧ 𝑦 ∈ 𝑆)) → ∀𝑧 ∈ 𝑆 ∀𝑤 ∈ 𝑆 ((𝑥𝑄𝑧) + (𝑦𝑄𝑤)) = ((𝑥 + 𝑦)𝑄(𝑧 + 𝑤))) |
44 | 43 | ralrimivva 2552 |
. . . . 5
⊢ (𝜑 → ∀𝑥 ∈ 𝑆 ∀𝑦 ∈ 𝑆 ∀𝑧 ∈ 𝑆 ∀𝑤 ∈ 𝑆 ((𝑥𝑄𝑧) + (𝑦𝑄𝑤)) = ((𝑥 + 𝑦)𝑄(𝑧 + 𝑤))) |
45 | 44 | adantr 274 |
. . . 4
⊢ ((𝜑 ∧ 𝑛 ∈ (𝑀..^𝑁)) → ∀𝑥 ∈ 𝑆 ∀𝑦 ∈ 𝑆 ∀𝑧 ∈ 𝑆 ∀𝑤 ∈ 𝑆 ((𝑥𝑄𝑧) + (𝑦𝑄𝑤)) = ((𝑥 + 𝑦)𝑄(𝑧 + 𝑤))) |
46 | | oveq1 5860 |
. . . . . . . 8
⊢ (𝑥 = (seq𝑀( + , 𝐹)‘𝑛) → (𝑥𝑄𝑧) = ((seq𝑀( + , 𝐹)‘𝑛)𝑄𝑧)) |
47 | 46 | oveq1d 5868 |
. . . . . . 7
⊢ (𝑥 = (seq𝑀( + , 𝐹)‘𝑛) → ((𝑥𝑄𝑧) + (𝑦𝑄𝑤)) = (((seq𝑀( + , 𝐹)‘𝑛)𝑄𝑧) + (𝑦𝑄𝑤))) |
48 | | oveq1 5860 |
. . . . . . . 8
⊢ (𝑥 = (seq𝑀( + , 𝐹)‘𝑛) → (𝑥 + 𝑦) = ((seq𝑀( + , 𝐹)‘𝑛) + 𝑦)) |
49 | 48 | oveq1d 5868 |
. . . . . . 7
⊢ (𝑥 = (seq𝑀( + , 𝐹)‘𝑛) → ((𝑥 + 𝑦)𝑄(𝑧 + 𝑤)) = (((seq𝑀( + , 𝐹)‘𝑛) + 𝑦)𝑄(𝑧 + 𝑤))) |
50 | 47, 49 | eqeq12d 2185 |
. . . . . 6
⊢ (𝑥 = (seq𝑀( + , 𝐹)‘𝑛) → (((𝑥𝑄𝑧) + (𝑦𝑄𝑤)) = ((𝑥 + 𝑦)𝑄(𝑧 + 𝑤)) ↔ (((seq𝑀( + , 𝐹)‘𝑛)𝑄𝑧) + (𝑦𝑄𝑤)) = (((seq𝑀( + , 𝐹)‘𝑛) + 𝑦)𝑄(𝑧 + 𝑤)))) |
51 | 50 | 2ralbidv 2494 |
. . . . 5
⊢ (𝑥 = (seq𝑀( + , 𝐹)‘𝑛) → (∀𝑧 ∈ 𝑆 ∀𝑤 ∈ 𝑆 ((𝑥𝑄𝑧) + (𝑦𝑄𝑤)) = ((𝑥 + 𝑦)𝑄(𝑧 + 𝑤)) ↔ ∀𝑧 ∈ 𝑆 ∀𝑤 ∈ 𝑆 (((seq𝑀( + , 𝐹)‘𝑛)𝑄𝑧) + (𝑦𝑄𝑤)) = (((seq𝑀( + , 𝐹)‘𝑛) + 𝑦)𝑄(𝑧 + 𝑤)))) |
52 | | oveq1 5860 |
. . . . . . . 8
⊢ (𝑦 = (𝐹‘(𝑛 + 1)) → (𝑦𝑄𝑤) = ((𝐹‘(𝑛 + 1))𝑄𝑤)) |
53 | 52 | oveq2d 5869 |
. . . . . . 7
⊢ (𝑦 = (𝐹‘(𝑛 + 1)) → (((seq𝑀( + , 𝐹)‘𝑛)𝑄𝑧) + (𝑦𝑄𝑤)) = (((seq𝑀( + , 𝐹)‘𝑛)𝑄𝑧) + ((𝐹‘(𝑛 + 1))𝑄𝑤))) |
54 | | oveq2 5861 |
. . . . . . . 8
⊢ (𝑦 = (𝐹‘(𝑛 + 1)) → ((seq𝑀( + , 𝐹)‘𝑛) + 𝑦) = ((seq𝑀( + , 𝐹)‘𝑛) + (𝐹‘(𝑛 + 1)))) |
55 | 54 | oveq1d 5868 |
. . . . . . 7
⊢ (𝑦 = (𝐹‘(𝑛 + 1)) → (((seq𝑀( + , 𝐹)‘𝑛) + 𝑦)𝑄(𝑧 + 𝑤)) = (((seq𝑀( + , 𝐹)‘𝑛) + (𝐹‘(𝑛 + 1)))𝑄(𝑧 + 𝑤))) |
56 | 53, 55 | eqeq12d 2185 |
. . . . . 6
⊢ (𝑦 = (𝐹‘(𝑛 + 1)) → ((((seq𝑀( + , 𝐹)‘𝑛)𝑄𝑧) + (𝑦𝑄𝑤)) = (((seq𝑀( + , 𝐹)‘𝑛) + 𝑦)𝑄(𝑧 + 𝑤)) ↔ (((seq𝑀( + , 𝐹)‘𝑛)𝑄𝑧) + ((𝐹‘(𝑛 + 1))𝑄𝑤)) = (((seq𝑀( + , 𝐹)‘𝑛) + (𝐹‘(𝑛 + 1)))𝑄(𝑧 + 𝑤)))) |
57 | 56 | 2ralbidv 2494 |
. . . . 5
⊢ (𝑦 = (𝐹‘(𝑛 + 1)) → (∀𝑧 ∈ 𝑆 ∀𝑤 ∈ 𝑆 (((seq𝑀( + , 𝐹)‘𝑛)𝑄𝑧) + (𝑦𝑄𝑤)) = (((seq𝑀( + , 𝐹)‘𝑛) + 𝑦)𝑄(𝑧 + 𝑤)) ↔ ∀𝑧 ∈ 𝑆 ∀𝑤 ∈ 𝑆 (((seq𝑀( + , 𝐹)‘𝑛)𝑄𝑧) + ((𝐹‘(𝑛 + 1))𝑄𝑤)) = (((seq𝑀( + , 𝐹)‘𝑛) + (𝐹‘(𝑛 + 1)))𝑄(𝑧 + 𝑤)))) |
58 | 51, 57 | rspc2va 2848 |
. . . 4
⊢
((((seq𝑀( + , 𝐹)‘𝑛) ∈ 𝑆 ∧ (𝐹‘(𝑛 + 1)) ∈ 𝑆) ∧ ∀𝑥 ∈ 𝑆 ∀𝑦 ∈ 𝑆 ∀𝑧 ∈ 𝑆 ∀𝑤 ∈ 𝑆 ((𝑥𝑄𝑧) + (𝑦𝑄𝑤)) = ((𝑥 + 𝑦)𝑄(𝑧 + 𝑤))) → ∀𝑧 ∈ 𝑆 ∀𝑤 ∈ 𝑆 (((seq𝑀( + , 𝐹)‘𝑛)𝑄𝑧) + ((𝐹‘(𝑛 + 1))𝑄𝑤)) = (((seq𝑀( + , 𝐹)‘𝑛) + (𝐹‘(𝑛 + 1)))𝑄(𝑧 + 𝑤))) |
59 | 36, 40, 45, 58 | syl21anc 1232 |
. . 3
⊢ ((𝜑 ∧ 𝑛 ∈ (𝑀..^𝑁)) → ∀𝑧 ∈ 𝑆 ∀𝑤 ∈ 𝑆 (((seq𝑀( + , 𝐹)‘𝑛)𝑄𝑧) + ((𝐹‘(𝑛 + 1))𝑄𝑤)) = (((seq𝑀( + , 𝐹)‘𝑛) + (𝐹‘(𝑛 + 1)))𝑄(𝑧 + 𝑤))) |
60 | | oveq2 5861 |
. . . . . 6
⊢ (𝑧 = (seq𝑀( + , 𝐺)‘𝑛) → ((seq𝑀( + , 𝐹)‘𝑛)𝑄𝑧) = ((seq𝑀( + , 𝐹)‘𝑛)𝑄(seq𝑀( + , 𝐺)‘𝑛))) |
61 | 60 | oveq1d 5868 |
. . . . 5
⊢ (𝑧 = (seq𝑀( + , 𝐺)‘𝑛) → (((seq𝑀( + , 𝐹)‘𝑛)𝑄𝑧) + ((𝐹‘(𝑛 + 1))𝑄𝑤)) = (((seq𝑀( + , 𝐹)‘𝑛)𝑄(seq𝑀( + , 𝐺)‘𝑛)) + ((𝐹‘(𝑛 + 1))𝑄𝑤))) |
62 | | oveq1 5860 |
. . . . . 6
⊢ (𝑧 = (seq𝑀( + , 𝐺)‘𝑛) → (𝑧 + 𝑤) = ((seq𝑀( + , 𝐺)‘𝑛) + 𝑤)) |
63 | 62 | oveq2d 5869 |
. . . . 5
⊢ (𝑧 = (seq𝑀( + , 𝐺)‘𝑛) → (((seq𝑀( + , 𝐹)‘𝑛) + (𝐹‘(𝑛 + 1)))𝑄(𝑧 + 𝑤)) = (((seq𝑀( + , 𝐹)‘𝑛) + (𝐹‘(𝑛 + 1)))𝑄((seq𝑀( + , 𝐺)‘𝑛) + 𝑤))) |
64 | 61, 63 | eqeq12d 2185 |
. . . 4
⊢ (𝑧 = (seq𝑀( + , 𝐺)‘𝑛) → ((((seq𝑀( + , 𝐹)‘𝑛)𝑄𝑧) + ((𝐹‘(𝑛 + 1))𝑄𝑤)) = (((seq𝑀( + , 𝐹)‘𝑛) + (𝐹‘(𝑛 + 1)))𝑄(𝑧 + 𝑤)) ↔ (((seq𝑀( + , 𝐹)‘𝑛)𝑄(seq𝑀( + , 𝐺)‘𝑛)) + ((𝐹‘(𝑛 + 1))𝑄𝑤)) = (((seq𝑀( + , 𝐹)‘𝑛) + (𝐹‘(𝑛 + 1)))𝑄((seq𝑀( + , 𝐺)‘𝑛) + 𝑤)))) |
65 | | oveq2 5861 |
. . . . . 6
⊢ (𝑤 = (𝐺‘(𝑛 + 1)) → ((𝐹‘(𝑛 + 1))𝑄𝑤) = ((𝐹‘(𝑛 + 1))𝑄(𝐺‘(𝑛 + 1)))) |
66 | 65 | oveq2d 5869 |
. . . . 5
⊢ (𝑤 = (𝐺‘(𝑛 + 1)) → (((seq𝑀( + , 𝐹)‘𝑛)𝑄(seq𝑀( + , 𝐺)‘𝑛)) + ((𝐹‘(𝑛 + 1))𝑄𝑤)) = (((seq𝑀( + , 𝐹)‘𝑛)𝑄(seq𝑀( + , 𝐺)‘𝑛)) + ((𝐹‘(𝑛 + 1))𝑄(𝐺‘(𝑛 + 1))))) |
67 | | oveq2 5861 |
. . . . . 6
⊢ (𝑤 = (𝐺‘(𝑛 + 1)) → ((seq𝑀( + , 𝐺)‘𝑛) + 𝑤) = ((seq𝑀( + , 𝐺)‘𝑛) + (𝐺‘(𝑛 + 1)))) |
68 | 67 | oveq2d 5869 |
. . . . 5
⊢ (𝑤 = (𝐺‘(𝑛 + 1)) → (((seq𝑀( + , 𝐹)‘𝑛) + (𝐹‘(𝑛 + 1)))𝑄((seq𝑀( + , 𝐺)‘𝑛) + 𝑤)) = (((seq𝑀( + , 𝐹)‘𝑛) + (𝐹‘(𝑛 + 1)))𝑄((seq𝑀( + , 𝐺)‘𝑛) + (𝐺‘(𝑛 + 1))))) |
69 | 66, 68 | eqeq12d 2185 |
. . . 4
⊢ (𝑤 = (𝐺‘(𝑛 + 1)) → ((((seq𝑀( + , 𝐹)‘𝑛)𝑄(seq𝑀( + , 𝐺)‘𝑛)) + ((𝐹‘(𝑛 + 1))𝑄𝑤)) = (((seq𝑀( + , 𝐹)‘𝑛) + (𝐹‘(𝑛 + 1)))𝑄((seq𝑀( + , 𝐺)‘𝑛) + 𝑤)) ↔ (((seq𝑀( + , 𝐹)‘𝑛)𝑄(seq𝑀( + , 𝐺)‘𝑛)) + ((𝐹‘(𝑛 + 1))𝑄(𝐺‘(𝑛 + 1)))) = (((seq𝑀( + , 𝐹)‘𝑛) + (𝐹‘(𝑛 + 1)))𝑄((seq𝑀( + , 𝐺)‘𝑛) + (𝐺‘(𝑛 + 1)))))) |
70 | 64, 69 | rspc2va 2848 |
. . 3
⊢
((((seq𝑀( + , 𝐺)‘𝑛) ∈ 𝑆 ∧ (𝐺‘(𝑛 + 1)) ∈ 𝑆) ∧ ∀𝑧 ∈ 𝑆 ∀𝑤 ∈ 𝑆 (((seq𝑀( + , 𝐹)‘𝑛)𝑄𝑧) + ((𝐹‘(𝑛 + 1))𝑄𝑤)) = (((seq𝑀( + , 𝐹)‘𝑛) + (𝐹‘(𝑛 + 1)))𝑄(𝑧 + 𝑤))) → (((seq𝑀( + , 𝐹)‘𝑛)𝑄(seq𝑀( + , 𝐺)‘𝑛)) + ((𝐹‘(𝑛 + 1))𝑄(𝐺‘(𝑛 + 1)))) = (((seq𝑀( + , 𝐹)‘𝑛) + (𝐹‘(𝑛 + 1)))𝑄((seq𝑀( + , 𝐺)‘𝑛) + (𝐺‘(𝑛 + 1))))) |
71 | 21, 28, 59, 70 | syl21anc 1232 |
. 2
⊢ ((𝜑 ∧ 𝑛 ∈ (𝑀..^𝑁)) → (((seq𝑀( + , 𝐹)‘𝑛)𝑄(seq𝑀( + , 𝐺)‘𝑛)) + ((𝐹‘(𝑛 + 1))𝑄(𝐺‘(𝑛 + 1)))) = (((seq𝑀( + , 𝐹)‘𝑛) + (𝐹‘(𝑛 + 1)))𝑄((seq𝑀( + , 𝐺)‘𝑛) + (𝐺‘(𝑛 + 1))))) |
72 | 1, 2, 3, 4, 5, 6, 71 | seq3caopr3 10437 |
1
⊢ (𝜑 → (seq𝑀( + , 𝐻)‘𝑁) = ((seq𝑀( + , 𝐹)‘𝑁)𝑄(seq𝑀( + , 𝐺)‘𝑁))) |