ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  seq3caopr2 GIF version

Theorem seq3caopr2 10255
Description: The sum of two infinite series (generalized to an arbitrary commutative and associative operation). (Contributed by Mario Carneiro, 30-May-2014.) (Revised by Jim Kingdon, 23-Apr-2023.)
Hypotheses
Ref Expression
seqcaopr2.1 ((𝜑 ∧ (𝑥𝑆𝑦𝑆)) → (𝑥 + 𝑦) ∈ 𝑆)
seqcaopr2.2 ((𝜑 ∧ (𝑥𝑆𝑦𝑆)) → (𝑥𝑄𝑦) ∈ 𝑆)
seqcaopr2.3 ((𝜑 ∧ ((𝑥𝑆𝑦𝑆) ∧ (𝑧𝑆𝑤𝑆))) → ((𝑥𝑄𝑧) + (𝑦𝑄𝑤)) = ((𝑥 + 𝑦)𝑄(𝑧 + 𝑤)))
seqcaopr2.4 (𝜑𝑁 ∈ (ℤ𝑀))
seq3caopr2.5 ((𝜑𝑘 ∈ (ℤ𝑀)) → (𝐹𝑘) ∈ 𝑆)
seq3caopr2.6 ((𝜑𝑘 ∈ (ℤ𝑀)) → (𝐺𝑘) ∈ 𝑆)
seq3caopr2.7 ((𝜑𝑘 ∈ (ℤ𝑀)) → (𝐻𝑘) = ((𝐹𝑘)𝑄(𝐺𝑘)))
Assertion
Ref Expression
seq3caopr2 (𝜑 → (seq𝑀( + , 𝐻)‘𝑁) = ((seq𝑀( + , 𝐹)‘𝑁)𝑄(seq𝑀( + , 𝐺)‘𝑁)))
Distinct variable groups:   𝑤, + ,𝑥,𝑦,𝑧   𝑘,𝐹,𝑤,𝑥,𝑦,𝑧   𝑘,𝐺,𝑤,𝑥,𝑦,𝑧   𝑘,𝐻,𝑥,𝑦,𝑧   𝑘,𝑀,𝑤,𝑥,𝑦,𝑧   𝑘,𝑁,𝑥,𝑦,𝑧   𝑄,𝑘,𝑤,𝑥,𝑦,𝑧   𝑆,𝑘,𝑤,𝑥,𝑦,𝑧   𝜑,𝑘,𝑤,𝑥,𝑦,𝑧
Allowed substitution hints:   + (𝑘)   𝐻(𝑤)   𝑁(𝑤)

Proof of Theorem seq3caopr2
Dummy variable 𝑛 is distinct from all other variables.
StepHypRef Expression
1 seqcaopr2.1 . 2 ((𝜑 ∧ (𝑥𝑆𝑦𝑆)) → (𝑥 + 𝑦) ∈ 𝑆)
2 seqcaopr2.2 . 2 ((𝜑 ∧ (𝑥𝑆𝑦𝑆)) → (𝑥𝑄𝑦) ∈ 𝑆)
3 seqcaopr2.4 . 2 (𝜑𝑁 ∈ (ℤ𝑀))
4 seq3caopr2.5 . 2 ((𝜑𝑘 ∈ (ℤ𝑀)) → (𝐹𝑘) ∈ 𝑆)
5 seq3caopr2.6 . 2 ((𝜑𝑘 ∈ (ℤ𝑀)) → (𝐺𝑘) ∈ 𝑆)
6 seq3caopr2.7 . 2 ((𝜑𝑘 ∈ (ℤ𝑀)) → (𝐻𝑘) = ((𝐹𝑘)𝑄(𝐺𝑘)))
7 eqid 2139 . . . . 5 (ℤ𝑀) = (ℤ𝑀)
8 eluzel2 9331 . . . . . . 7 (𝑁 ∈ (ℤ𝑀) → 𝑀 ∈ ℤ)
93, 8syl 14 . . . . . 6 (𝜑𝑀 ∈ ℤ)
109adantr 274 . . . . 5 ((𝜑𝑛 ∈ (𝑀..^𝑁)) → 𝑀 ∈ ℤ)
115ralrimiva 2505 . . . . . . 7 (𝜑 → ∀𝑘 ∈ (ℤ𝑀)(𝐺𝑘) ∈ 𝑆)
1211adantr 274 . . . . . 6 ((𝜑𝑛 ∈ (𝑀..^𝑁)) → ∀𝑘 ∈ (ℤ𝑀)(𝐺𝑘) ∈ 𝑆)
13 fveq2 5421 . . . . . . . 8 (𝑘 = 𝑥 → (𝐺𝑘) = (𝐺𝑥))
1413eleq1d 2208 . . . . . . 7 (𝑘 = 𝑥 → ((𝐺𝑘) ∈ 𝑆 ↔ (𝐺𝑥) ∈ 𝑆))
1514rspccva 2788 . . . . . 6 ((∀𝑘 ∈ (ℤ𝑀)(𝐺𝑘) ∈ 𝑆𝑥 ∈ (ℤ𝑀)) → (𝐺𝑥) ∈ 𝑆)
1612, 15sylan 281 . . . . 5 (((𝜑𝑛 ∈ (𝑀..^𝑁)) ∧ 𝑥 ∈ (ℤ𝑀)) → (𝐺𝑥) ∈ 𝑆)
171adantlr 468 . . . . 5 (((𝜑𝑛 ∈ (𝑀..^𝑁)) ∧ (𝑥𝑆𝑦𝑆)) → (𝑥 + 𝑦) ∈ 𝑆)
187, 10, 16, 17seqf 10234 . . . 4 ((𝜑𝑛 ∈ (𝑀..^𝑁)) → seq𝑀( + , 𝐺):(ℤ𝑀)⟶𝑆)
19 elfzouz 9928 . . . . 5 (𝑛 ∈ (𝑀..^𝑁) → 𝑛 ∈ (ℤ𝑀))
2019adantl 275 . . . 4 ((𝜑𝑛 ∈ (𝑀..^𝑁)) → 𝑛 ∈ (ℤ𝑀))
2118, 20ffvelrnd 5556 . . 3 ((𝜑𝑛 ∈ (𝑀..^𝑁)) → (seq𝑀( + , 𝐺)‘𝑛) ∈ 𝑆)
22 fzssuz 9845 . . . . 5 (𝑀...𝑁) ⊆ (ℤ𝑀)
23 fzofzp1 10004 . . . . 5 (𝑛 ∈ (𝑀..^𝑁) → (𝑛 + 1) ∈ (𝑀...𝑁))
2422, 23sseldi 3095 . . . 4 (𝑛 ∈ (𝑀..^𝑁) → (𝑛 + 1) ∈ (ℤ𝑀))
25 fveq2 5421 . . . . . 6 (𝑘 = (𝑛 + 1) → (𝐺𝑘) = (𝐺‘(𝑛 + 1)))
2625eleq1d 2208 . . . . 5 (𝑘 = (𝑛 + 1) → ((𝐺𝑘) ∈ 𝑆 ↔ (𝐺‘(𝑛 + 1)) ∈ 𝑆))
2726rspccva 2788 . . . 4 ((∀𝑘 ∈ (ℤ𝑀)(𝐺𝑘) ∈ 𝑆 ∧ (𝑛 + 1) ∈ (ℤ𝑀)) → (𝐺‘(𝑛 + 1)) ∈ 𝑆)
2811, 24, 27syl2an 287 . . 3 ((𝜑𝑛 ∈ (𝑀..^𝑁)) → (𝐺‘(𝑛 + 1)) ∈ 𝑆)
294ralrimiva 2505 . . . . . . . 8 (𝜑 → ∀𝑘 ∈ (ℤ𝑀)(𝐹𝑘) ∈ 𝑆)
30 fveq2 5421 . . . . . . . . . 10 (𝑘 = 𝑥 → (𝐹𝑘) = (𝐹𝑥))
3130eleq1d 2208 . . . . . . . . 9 (𝑘 = 𝑥 → ((𝐹𝑘) ∈ 𝑆 ↔ (𝐹𝑥) ∈ 𝑆))
3231rspccva 2788 . . . . . . . 8 ((∀𝑘 ∈ (ℤ𝑀)(𝐹𝑘) ∈ 𝑆𝑥 ∈ (ℤ𝑀)) → (𝐹𝑥) ∈ 𝑆)
3329, 32sylan 281 . . . . . . 7 ((𝜑𝑥 ∈ (ℤ𝑀)) → (𝐹𝑥) ∈ 𝑆)
3433adantlr 468 . . . . . 6 (((𝜑𝑛 ∈ (𝑀..^𝑁)) ∧ 𝑥 ∈ (ℤ𝑀)) → (𝐹𝑥) ∈ 𝑆)
357, 10, 34, 17seqf 10234 . . . . 5 ((𝜑𝑛 ∈ (𝑀..^𝑁)) → seq𝑀( + , 𝐹):(ℤ𝑀)⟶𝑆)
3635, 20ffvelrnd 5556 . . . 4 ((𝜑𝑛 ∈ (𝑀..^𝑁)) → (seq𝑀( + , 𝐹)‘𝑛) ∈ 𝑆)
37 fveq2 5421 . . . . . . 7 (𝑘 = (𝑛 + 1) → (𝐹𝑘) = (𝐹‘(𝑛 + 1)))
3837eleq1d 2208 . . . . . 6 (𝑘 = (𝑛 + 1) → ((𝐹𝑘) ∈ 𝑆 ↔ (𝐹‘(𝑛 + 1)) ∈ 𝑆))
3938rspccva 2788 . . . . 5 ((∀𝑘 ∈ (ℤ𝑀)(𝐹𝑘) ∈ 𝑆 ∧ (𝑛 + 1) ∈ (ℤ𝑀)) → (𝐹‘(𝑛 + 1)) ∈ 𝑆)
4029, 24, 39syl2an 287 . . . 4 ((𝜑𝑛 ∈ (𝑀..^𝑁)) → (𝐹‘(𝑛 + 1)) ∈ 𝑆)
41 seqcaopr2.3 . . . . . . . 8 ((𝜑 ∧ ((𝑥𝑆𝑦𝑆) ∧ (𝑧𝑆𝑤𝑆))) → ((𝑥𝑄𝑧) + (𝑦𝑄𝑤)) = ((𝑥 + 𝑦)𝑄(𝑧 + 𝑤)))
4241anassrs 397 . . . . . . 7 (((𝜑 ∧ (𝑥𝑆𝑦𝑆)) ∧ (𝑧𝑆𝑤𝑆)) → ((𝑥𝑄𝑧) + (𝑦𝑄𝑤)) = ((𝑥 + 𝑦)𝑄(𝑧 + 𝑤)))
4342ralrimivva 2514 . . . . . 6 ((𝜑 ∧ (𝑥𝑆𝑦𝑆)) → ∀𝑧𝑆𝑤𝑆 ((𝑥𝑄𝑧) + (𝑦𝑄𝑤)) = ((𝑥 + 𝑦)𝑄(𝑧 + 𝑤)))
4443ralrimivva 2514 . . . . 5 (𝜑 → ∀𝑥𝑆𝑦𝑆𝑧𝑆𝑤𝑆 ((𝑥𝑄𝑧) + (𝑦𝑄𝑤)) = ((𝑥 + 𝑦)𝑄(𝑧 + 𝑤)))
4544adantr 274 . . . 4 ((𝜑𝑛 ∈ (𝑀..^𝑁)) → ∀𝑥𝑆𝑦𝑆𝑧𝑆𝑤𝑆 ((𝑥𝑄𝑧) + (𝑦𝑄𝑤)) = ((𝑥 + 𝑦)𝑄(𝑧 + 𝑤)))
46 oveq1 5781 . . . . . . . 8 (𝑥 = (seq𝑀( + , 𝐹)‘𝑛) → (𝑥𝑄𝑧) = ((seq𝑀( + , 𝐹)‘𝑛)𝑄𝑧))
4746oveq1d 5789 . . . . . . 7 (𝑥 = (seq𝑀( + , 𝐹)‘𝑛) → ((𝑥𝑄𝑧) + (𝑦𝑄𝑤)) = (((seq𝑀( + , 𝐹)‘𝑛)𝑄𝑧) + (𝑦𝑄𝑤)))
48 oveq1 5781 . . . . . . . 8 (𝑥 = (seq𝑀( + , 𝐹)‘𝑛) → (𝑥 + 𝑦) = ((seq𝑀( + , 𝐹)‘𝑛) + 𝑦))
4948oveq1d 5789 . . . . . . 7 (𝑥 = (seq𝑀( + , 𝐹)‘𝑛) → ((𝑥 + 𝑦)𝑄(𝑧 + 𝑤)) = (((seq𝑀( + , 𝐹)‘𝑛) + 𝑦)𝑄(𝑧 + 𝑤)))
5047, 49eqeq12d 2154 . . . . . 6 (𝑥 = (seq𝑀( + , 𝐹)‘𝑛) → (((𝑥𝑄𝑧) + (𝑦𝑄𝑤)) = ((𝑥 + 𝑦)𝑄(𝑧 + 𝑤)) ↔ (((seq𝑀( + , 𝐹)‘𝑛)𝑄𝑧) + (𝑦𝑄𝑤)) = (((seq𝑀( + , 𝐹)‘𝑛) + 𝑦)𝑄(𝑧 + 𝑤))))
51502ralbidv 2459 . . . . 5 (𝑥 = (seq𝑀( + , 𝐹)‘𝑛) → (∀𝑧𝑆𝑤𝑆 ((𝑥𝑄𝑧) + (𝑦𝑄𝑤)) = ((𝑥 + 𝑦)𝑄(𝑧 + 𝑤)) ↔ ∀𝑧𝑆𝑤𝑆 (((seq𝑀( + , 𝐹)‘𝑛)𝑄𝑧) + (𝑦𝑄𝑤)) = (((seq𝑀( + , 𝐹)‘𝑛) + 𝑦)𝑄(𝑧 + 𝑤))))
52 oveq1 5781 . . . . . . . 8 (𝑦 = (𝐹‘(𝑛 + 1)) → (𝑦𝑄𝑤) = ((𝐹‘(𝑛 + 1))𝑄𝑤))
5352oveq2d 5790 . . . . . . 7 (𝑦 = (𝐹‘(𝑛 + 1)) → (((seq𝑀( + , 𝐹)‘𝑛)𝑄𝑧) + (𝑦𝑄𝑤)) = (((seq𝑀( + , 𝐹)‘𝑛)𝑄𝑧) + ((𝐹‘(𝑛 + 1))𝑄𝑤)))
54 oveq2 5782 . . . . . . . 8 (𝑦 = (𝐹‘(𝑛 + 1)) → ((seq𝑀( + , 𝐹)‘𝑛) + 𝑦) = ((seq𝑀( + , 𝐹)‘𝑛) + (𝐹‘(𝑛 + 1))))
5554oveq1d 5789 . . . . . . 7 (𝑦 = (𝐹‘(𝑛 + 1)) → (((seq𝑀( + , 𝐹)‘𝑛) + 𝑦)𝑄(𝑧 + 𝑤)) = (((seq𝑀( + , 𝐹)‘𝑛) + (𝐹‘(𝑛 + 1)))𝑄(𝑧 + 𝑤)))
5653, 55eqeq12d 2154 . . . . . 6 (𝑦 = (𝐹‘(𝑛 + 1)) → ((((seq𝑀( + , 𝐹)‘𝑛)𝑄𝑧) + (𝑦𝑄𝑤)) = (((seq𝑀( + , 𝐹)‘𝑛) + 𝑦)𝑄(𝑧 + 𝑤)) ↔ (((seq𝑀( + , 𝐹)‘𝑛)𝑄𝑧) + ((𝐹‘(𝑛 + 1))𝑄𝑤)) = (((seq𝑀( + , 𝐹)‘𝑛) + (𝐹‘(𝑛 + 1)))𝑄(𝑧 + 𝑤))))
57562ralbidv 2459 . . . . 5 (𝑦 = (𝐹‘(𝑛 + 1)) → (∀𝑧𝑆𝑤𝑆 (((seq𝑀( + , 𝐹)‘𝑛)𝑄𝑧) + (𝑦𝑄𝑤)) = (((seq𝑀( + , 𝐹)‘𝑛) + 𝑦)𝑄(𝑧 + 𝑤)) ↔ ∀𝑧𝑆𝑤𝑆 (((seq𝑀( + , 𝐹)‘𝑛)𝑄𝑧) + ((𝐹‘(𝑛 + 1))𝑄𝑤)) = (((seq𝑀( + , 𝐹)‘𝑛) + (𝐹‘(𝑛 + 1)))𝑄(𝑧 + 𝑤))))
5851, 57rspc2va 2803 . . . 4 ((((seq𝑀( + , 𝐹)‘𝑛) ∈ 𝑆 ∧ (𝐹‘(𝑛 + 1)) ∈ 𝑆) ∧ ∀𝑥𝑆𝑦𝑆𝑧𝑆𝑤𝑆 ((𝑥𝑄𝑧) + (𝑦𝑄𝑤)) = ((𝑥 + 𝑦)𝑄(𝑧 + 𝑤))) → ∀𝑧𝑆𝑤𝑆 (((seq𝑀( + , 𝐹)‘𝑛)𝑄𝑧) + ((𝐹‘(𝑛 + 1))𝑄𝑤)) = (((seq𝑀( + , 𝐹)‘𝑛) + (𝐹‘(𝑛 + 1)))𝑄(𝑧 + 𝑤)))
5936, 40, 45, 58syl21anc 1215 . . 3 ((𝜑𝑛 ∈ (𝑀..^𝑁)) → ∀𝑧𝑆𝑤𝑆 (((seq𝑀( + , 𝐹)‘𝑛)𝑄𝑧) + ((𝐹‘(𝑛 + 1))𝑄𝑤)) = (((seq𝑀( + , 𝐹)‘𝑛) + (𝐹‘(𝑛 + 1)))𝑄(𝑧 + 𝑤)))
60 oveq2 5782 . . . . . 6 (𝑧 = (seq𝑀( + , 𝐺)‘𝑛) → ((seq𝑀( + , 𝐹)‘𝑛)𝑄𝑧) = ((seq𝑀( + , 𝐹)‘𝑛)𝑄(seq𝑀( + , 𝐺)‘𝑛)))
6160oveq1d 5789 . . . . 5 (𝑧 = (seq𝑀( + , 𝐺)‘𝑛) → (((seq𝑀( + , 𝐹)‘𝑛)𝑄𝑧) + ((𝐹‘(𝑛 + 1))𝑄𝑤)) = (((seq𝑀( + , 𝐹)‘𝑛)𝑄(seq𝑀( + , 𝐺)‘𝑛)) + ((𝐹‘(𝑛 + 1))𝑄𝑤)))
62 oveq1 5781 . . . . . 6 (𝑧 = (seq𝑀( + , 𝐺)‘𝑛) → (𝑧 + 𝑤) = ((seq𝑀( + , 𝐺)‘𝑛) + 𝑤))
6362oveq2d 5790 . . . . 5 (𝑧 = (seq𝑀( + , 𝐺)‘𝑛) → (((seq𝑀( + , 𝐹)‘𝑛) + (𝐹‘(𝑛 + 1)))𝑄(𝑧 + 𝑤)) = (((seq𝑀( + , 𝐹)‘𝑛) + (𝐹‘(𝑛 + 1)))𝑄((seq𝑀( + , 𝐺)‘𝑛) + 𝑤)))
6461, 63eqeq12d 2154 . . . 4 (𝑧 = (seq𝑀( + , 𝐺)‘𝑛) → ((((seq𝑀( + , 𝐹)‘𝑛)𝑄𝑧) + ((𝐹‘(𝑛 + 1))𝑄𝑤)) = (((seq𝑀( + , 𝐹)‘𝑛) + (𝐹‘(𝑛 + 1)))𝑄(𝑧 + 𝑤)) ↔ (((seq𝑀( + , 𝐹)‘𝑛)𝑄(seq𝑀( + , 𝐺)‘𝑛)) + ((𝐹‘(𝑛 + 1))𝑄𝑤)) = (((seq𝑀( + , 𝐹)‘𝑛) + (𝐹‘(𝑛 + 1)))𝑄((seq𝑀( + , 𝐺)‘𝑛) + 𝑤))))
65 oveq2 5782 . . . . . 6 (𝑤 = (𝐺‘(𝑛 + 1)) → ((𝐹‘(𝑛 + 1))𝑄𝑤) = ((𝐹‘(𝑛 + 1))𝑄(𝐺‘(𝑛 + 1))))
6665oveq2d 5790 . . . . 5 (𝑤 = (𝐺‘(𝑛 + 1)) → (((seq𝑀( + , 𝐹)‘𝑛)𝑄(seq𝑀( + , 𝐺)‘𝑛)) + ((𝐹‘(𝑛 + 1))𝑄𝑤)) = (((seq𝑀( + , 𝐹)‘𝑛)𝑄(seq𝑀( + , 𝐺)‘𝑛)) + ((𝐹‘(𝑛 + 1))𝑄(𝐺‘(𝑛 + 1)))))
67 oveq2 5782 . . . . . 6 (𝑤 = (𝐺‘(𝑛 + 1)) → ((seq𝑀( + , 𝐺)‘𝑛) + 𝑤) = ((seq𝑀( + , 𝐺)‘𝑛) + (𝐺‘(𝑛 + 1))))
6867oveq2d 5790 . . . . 5 (𝑤 = (𝐺‘(𝑛 + 1)) → (((seq𝑀( + , 𝐹)‘𝑛) + (𝐹‘(𝑛 + 1)))𝑄((seq𝑀( + , 𝐺)‘𝑛) + 𝑤)) = (((seq𝑀( + , 𝐹)‘𝑛) + (𝐹‘(𝑛 + 1)))𝑄((seq𝑀( + , 𝐺)‘𝑛) + (𝐺‘(𝑛 + 1)))))
6966, 68eqeq12d 2154 . . . 4 (𝑤 = (𝐺‘(𝑛 + 1)) → ((((seq𝑀( + , 𝐹)‘𝑛)𝑄(seq𝑀( + , 𝐺)‘𝑛)) + ((𝐹‘(𝑛 + 1))𝑄𝑤)) = (((seq𝑀( + , 𝐹)‘𝑛) + (𝐹‘(𝑛 + 1)))𝑄((seq𝑀( + , 𝐺)‘𝑛) + 𝑤)) ↔ (((seq𝑀( + , 𝐹)‘𝑛)𝑄(seq𝑀( + , 𝐺)‘𝑛)) + ((𝐹‘(𝑛 + 1))𝑄(𝐺‘(𝑛 + 1)))) = (((seq𝑀( + , 𝐹)‘𝑛) + (𝐹‘(𝑛 + 1)))𝑄((seq𝑀( + , 𝐺)‘𝑛) + (𝐺‘(𝑛 + 1))))))
7064, 69rspc2va 2803 . . 3 ((((seq𝑀( + , 𝐺)‘𝑛) ∈ 𝑆 ∧ (𝐺‘(𝑛 + 1)) ∈ 𝑆) ∧ ∀𝑧𝑆𝑤𝑆 (((seq𝑀( + , 𝐹)‘𝑛)𝑄𝑧) + ((𝐹‘(𝑛 + 1))𝑄𝑤)) = (((seq𝑀( + , 𝐹)‘𝑛) + (𝐹‘(𝑛 + 1)))𝑄(𝑧 + 𝑤))) → (((seq𝑀( + , 𝐹)‘𝑛)𝑄(seq𝑀( + , 𝐺)‘𝑛)) + ((𝐹‘(𝑛 + 1))𝑄(𝐺‘(𝑛 + 1)))) = (((seq𝑀( + , 𝐹)‘𝑛) + (𝐹‘(𝑛 + 1)))𝑄((seq𝑀( + , 𝐺)‘𝑛) + (𝐺‘(𝑛 + 1)))))
7121, 28, 59, 70syl21anc 1215 . 2 ((𝜑𝑛 ∈ (𝑀..^𝑁)) → (((seq𝑀( + , 𝐹)‘𝑛)𝑄(seq𝑀( + , 𝐺)‘𝑛)) + ((𝐹‘(𝑛 + 1))𝑄(𝐺‘(𝑛 + 1)))) = (((seq𝑀( + , 𝐹)‘𝑛) + (𝐹‘(𝑛 + 1)))𝑄((seq𝑀( + , 𝐺)‘𝑛) + (𝐺‘(𝑛 + 1)))))
721, 2, 3, 4, 5, 6, 71seq3caopr3 10254 1 (𝜑 → (seq𝑀( + , 𝐻)‘𝑁) = ((seq𝑀( + , 𝐹)‘𝑁)𝑄(seq𝑀( + , 𝐺)‘𝑁)))
Colors of variables: wff set class
Syntax hints:  wi 4  wa 103   = wceq 1331  wcel 1480  wral 2416  cfv 5123  (class class class)co 5774  1c1 7621   + caddc 7623  cz 9054  cuz 9326  ...cfz 9790  ..^cfzo 9919  seqcseq 10218
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-in1 603  ax-in2 604  ax-io 698  ax-5 1423  ax-7 1424  ax-gen 1425  ax-ie1 1469  ax-ie2 1470  ax-8 1482  ax-10 1483  ax-11 1484  ax-i12 1485  ax-bndl 1486  ax-4 1487  ax-13 1491  ax-14 1492  ax-17 1506  ax-i9 1510  ax-ial 1514  ax-i5r 1515  ax-ext 2121  ax-coll 4043  ax-sep 4046  ax-nul 4054  ax-pow 4098  ax-pr 4131  ax-un 4355  ax-setind 4452  ax-iinf 4502  ax-cnex 7711  ax-resscn 7712  ax-1cn 7713  ax-1re 7714  ax-icn 7715  ax-addcl 7716  ax-addrcl 7717  ax-mulcl 7718  ax-addcom 7720  ax-addass 7722  ax-distr 7724  ax-i2m1 7725  ax-0lt1 7726  ax-0id 7728  ax-rnegex 7729  ax-cnre 7731  ax-pre-ltirr 7732  ax-pre-ltwlin 7733  ax-pre-lttrn 7734  ax-pre-ltadd 7736
This theorem depends on definitions:  df-bi 116  df-3or 963  df-3an 964  df-tru 1334  df-fal 1337  df-nf 1437  df-sb 1736  df-eu 2002  df-mo 2003  df-clab 2126  df-cleq 2132  df-clel 2135  df-nfc 2270  df-ne 2309  df-nel 2404  df-ral 2421  df-rex 2422  df-reu 2423  df-rab 2425  df-v 2688  df-sbc 2910  df-csb 3004  df-dif 3073  df-un 3075  df-in 3077  df-ss 3084  df-nul 3364  df-pw 3512  df-sn 3533  df-pr 3534  df-op 3536  df-uni 3737  df-int 3772  df-iun 3815  df-br 3930  df-opab 3990  df-mpt 3991  df-tr 4027  df-id 4215  df-iord 4288  df-on 4290  df-ilim 4291  df-suc 4293  df-iom 4505  df-xp 4545  df-rel 4546  df-cnv 4547  df-co 4548  df-dm 4549  df-rn 4550  df-res 4551  df-ima 4552  df-iota 5088  df-fun 5125  df-fn 5126  df-f 5127  df-f1 5128  df-fo 5129  df-f1o 5130  df-fv 5131  df-riota 5730  df-ov 5777  df-oprab 5778  df-mpo 5779  df-1st 6038  df-2nd 6039  df-recs 6202  df-frec 6288  df-pnf 7802  df-mnf 7803  df-xr 7804  df-ltxr 7805  df-le 7806  df-sub 7935  df-neg 7936  df-inn 8721  df-n0 8978  df-z 9055  df-uz 9327  df-fz 9791  df-fzo 9920  df-seqfrec 10219
This theorem is referenced by:  seq3caopr  10256  ser3sub  10279
  Copyright terms: Public domain W3C validator