ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  seq3caopr2 GIF version

Theorem seq3caopr2 10495
Description: The sum of two infinite series (generalized to an arbitrary commutative and associative operation). (Contributed by Mario Carneiro, 30-May-2014.) (Revised by Jim Kingdon, 23-Apr-2023.)
Hypotheses
Ref Expression
seqcaopr2.1 ((𝜑 ∧ (𝑥𝑆𝑦𝑆)) → (𝑥 + 𝑦) ∈ 𝑆)
seqcaopr2.2 ((𝜑 ∧ (𝑥𝑆𝑦𝑆)) → (𝑥𝑄𝑦) ∈ 𝑆)
seqcaopr2.3 ((𝜑 ∧ ((𝑥𝑆𝑦𝑆) ∧ (𝑧𝑆𝑤𝑆))) → ((𝑥𝑄𝑧) + (𝑦𝑄𝑤)) = ((𝑥 + 𝑦)𝑄(𝑧 + 𝑤)))
seqcaopr2.4 (𝜑𝑁 ∈ (ℤ𝑀))
seq3caopr2.5 ((𝜑𝑘 ∈ (ℤ𝑀)) → (𝐹𝑘) ∈ 𝑆)
seq3caopr2.6 ((𝜑𝑘 ∈ (ℤ𝑀)) → (𝐺𝑘) ∈ 𝑆)
seq3caopr2.7 ((𝜑𝑘 ∈ (ℤ𝑀)) → (𝐻𝑘) = ((𝐹𝑘)𝑄(𝐺𝑘)))
Assertion
Ref Expression
seq3caopr2 (𝜑 → (seq𝑀( + , 𝐻)‘𝑁) = ((seq𝑀( + , 𝐹)‘𝑁)𝑄(seq𝑀( + , 𝐺)‘𝑁)))
Distinct variable groups:   𝑤, + ,𝑥,𝑦,𝑧   𝑘,𝐹,𝑤,𝑥,𝑦,𝑧   𝑘,𝐺,𝑤,𝑥,𝑦,𝑧   𝑘,𝐻,𝑥,𝑦,𝑧   𝑘,𝑀,𝑤,𝑥,𝑦,𝑧   𝑘,𝑁,𝑥,𝑦,𝑧   𝑄,𝑘,𝑤,𝑥,𝑦,𝑧   𝑆,𝑘,𝑤,𝑥,𝑦,𝑧   𝜑,𝑘,𝑤,𝑥,𝑦,𝑧
Allowed substitution hints:   + (𝑘)   𝐻(𝑤)   𝑁(𝑤)

Proof of Theorem seq3caopr2
Dummy variable 𝑛 is distinct from all other variables.
StepHypRef Expression
1 seqcaopr2.1 . 2 ((𝜑 ∧ (𝑥𝑆𝑦𝑆)) → (𝑥 + 𝑦) ∈ 𝑆)
2 seqcaopr2.2 . 2 ((𝜑 ∧ (𝑥𝑆𝑦𝑆)) → (𝑥𝑄𝑦) ∈ 𝑆)
3 seqcaopr2.4 . 2 (𝜑𝑁 ∈ (ℤ𝑀))
4 seq3caopr2.5 . 2 ((𝜑𝑘 ∈ (ℤ𝑀)) → (𝐹𝑘) ∈ 𝑆)
5 seq3caopr2.6 . 2 ((𝜑𝑘 ∈ (ℤ𝑀)) → (𝐺𝑘) ∈ 𝑆)
6 seq3caopr2.7 . 2 ((𝜑𝑘 ∈ (ℤ𝑀)) → (𝐻𝑘) = ((𝐹𝑘)𝑄(𝐺𝑘)))
7 eqid 2187 . . . . 5 (ℤ𝑀) = (ℤ𝑀)
8 eluzel2 9546 . . . . . . 7 (𝑁 ∈ (ℤ𝑀) → 𝑀 ∈ ℤ)
93, 8syl 14 . . . . . 6 (𝜑𝑀 ∈ ℤ)
109adantr 276 . . . . 5 ((𝜑𝑛 ∈ (𝑀..^𝑁)) → 𝑀 ∈ ℤ)
115ralrimiva 2560 . . . . . . 7 (𝜑 → ∀𝑘 ∈ (ℤ𝑀)(𝐺𝑘) ∈ 𝑆)
1211adantr 276 . . . . . 6 ((𝜑𝑛 ∈ (𝑀..^𝑁)) → ∀𝑘 ∈ (ℤ𝑀)(𝐺𝑘) ∈ 𝑆)
13 fveq2 5527 . . . . . . . 8 (𝑘 = 𝑥 → (𝐺𝑘) = (𝐺𝑥))
1413eleq1d 2256 . . . . . . 7 (𝑘 = 𝑥 → ((𝐺𝑘) ∈ 𝑆 ↔ (𝐺𝑥) ∈ 𝑆))
1514rspccva 2852 . . . . . 6 ((∀𝑘 ∈ (ℤ𝑀)(𝐺𝑘) ∈ 𝑆𝑥 ∈ (ℤ𝑀)) → (𝐺𝑥) ∈ 𝑆)
1612, 15sylan 283 . . . . 5 (((𝜑𝑛 ∈ (𝑀..^𝑁)) ∧ 𝑥 ∈ (ℤ𝑀)) → (𝐺𝑥) ∈ 𝑆)
171adantlr 477 . . . . 5 (((𝜑𝑛 ∈ (𝑀..^𝑁)) ∧ (𝑥𝑆𝑦𝑆)) → (𝑥 + 𝑦) ∈ 𝑆)
187, 10, 16, 17seqf 10474 . . . 4 ((𝜑𝑛 ∈ (𝑀..^𝑁)) → seq𝑀( + , 𝐺):(ℤ𝑀)⟶𝑆)
19 elfzouz 10164 . . . . 5 (𝑛 ∈ (𝑀..^𝑁) → 𝑛 ∈ (ℤ𝑀))
2019adantl 277 . . . 4 ((𝜑𝑛 ∈ (𝑀..^𝑁)) → 𝑛 ∈ (ℤ𝑀))
2118, 20ffvelcdmd 5665 . . 3 ((𝜑𝑛 ∈ (𝑀..^𝑁)) → (seq𝑀( + , 𝐺)‘𝑛) ∈ 𝑆)
22 fzssuz 10078 . . . . 5 (𝑀...𝑁) ⊆ (ℤ𝑀)
23 fzofzp1 10240 . . . . 5 (𝑛 ∈ (𝑀..^𝑁) → (𝑛 + 1) ∈ (𝑀...𝑁))
2422, 23sselid 3165 . . . 4 (𝑛 ∈ (𝑀..^𝑁) → (𝑛 + 1) ∈ (ℤ𝑀))
25 fveq2 5527 . . . . . 6 (𝑘 = (𝑛 + 1) → (𝐺𝑘) = (𝐺‘(𝑛 + 1)))
2625eleq1d 2256 . . . . 5 (𝑘 = (𝑛 + 1) → ((𝐺𝑘) ∈ 𝑆 ↔ (𝐺‘(𝑛 + 1)) ∈ 𝑆))
2726rspccva 2852 . . . 4 ((∀𝑘 ∈ (ℤ𝑀)(𝐺𝑘) ∈ 𝑆 ∧ (𝑛 + 1) ∈ (ℤ𝑀)) → (𝐺‘(𝑛 + 1)) ∈ 𝑆)
2811, 24, 27syl2an 289 . . 3 ((𝜑𝑛 ∈ (𝑀..^𝑁)) → (𝐺‘(𝑛 + 1)) ∈ 𝑆)
294ralrimiva 2560 . . . . . . . 8 (𝜑 → ∀𝑘 ∈ (ℤ𝑀)(𝐹𝑘) ∈ 𝑆)
30 fveq2 5527 . . . . . . . . . 10 (𝑘 = 𝑥 → (𝐹𝑘) = (𝐹𝑥))
3130eleq1d 2256 . . . . . . . . 9 (𝑘 = 𝑥 → ((𝐹𝑘) ∈ 𝑆 ↔ (𝐹𝑥) ∈ 𝑆))
3231rspccva 2852 . . . . . . . 8 ((∀𝑘 ∈ (ℤ𝑀)(𝐹𝑘) ∈ 𝑆𝑥 ∈ (ℤ𝑀)) → (𝐹𝑥) ∈ 𝑆)
3329, 32sylan 283 . . . . . . 7 ((𝜑𝑥 ∈ (ℤ𝑀)) → (𝐹𝑥) ∈ 𝑆)
3433adantlr 477 . . . . . 6 (((𝜑𝑛 ∈ (𝑀..^𝑁)) ∧ 𝑥 ∈ (ℤ𝑀)) → (𝐹𝑥) ∈ 𝑆)
357, 10, 34, 17seqf 10474 . . . . 5 ((𝜑𝑛 ∈ (𝑀..^𝑁)) → seq𝑀( + , 𝐹):(ℤ𝑀)⟶𝑆)
3635, 20ffvelcdmd 5665 . . . 4 ((𝜑𝑛 ∈ (𝑀..^𝑁)) → (seq𝑀( + , 𝐹)‘𝑛) ∈ 𝑆)
37 fveq2 5527 . . . . . . 7 (𝑘 = (𝑛 + 1) → (𝐹𝑘) = (𝐹‘(𝑛 + 1)))
3837eleq1d 2256 . . . . . 6 (𝑘 = (𝑛 + 1) → ((𝐹𝑘) ∈ 𝑆 ↔ (𝐹‘(𝑛 + 1)) ∈ 𝑆))
3938rspccva 2852 . . . . 5 ((∀𝑘 ∈ (ℤ𝑀)(𝐹𝑘) ∈ 𝑆 ∧ (𝑛 + 1) ∈ (ℤ𝑀)) → (𝐹‘(𝑛 + 1)) ∈ 𝑆)
4029, 24, 39syl2an 289 . . . 4 ((𝜑𝑛 ∈ (𝑀..^𝑁)) → (𝐹‘(𝑛 + 1)) ∈ 𝑆)
41 seqcaopr2.3 . . . . . . . 8 ((𝜑 ∧ ((𝑥𝑆𝑦𝑆) ∧ (𝑧𝑆𝑤𝑆))) → ((𝑥𝑄𝑧) + (𝑦𝑄𝑤)) = ((𝑥 + 𝑦)𝑄(𝑧 + 𝑤)))
4241anassrs 400 . . . . . . 7 (((𝜑 ∧ (𝑥𝑆𝑦𝑆)) ∧ (𝑧𝑆𝑤𝑆)) → ((𝑥𝑄𝑧) + (𝑦𝑄𝑤)) = ((𝑥 + 𝑦)𝑄(𝑧 + 𝑤)))
4342ralrimivva 2569 . . . . . 6 ((𝜑 ∧ (𝑥𝑆𝑦𝑆)) → ∀𝑧𝑆𝑤𝑆 ((𝑥𝑄𝑧) + (𝑦𝑄𝑤)) = ((𝑥 + 𝑦)𝑄(𝑧 + 𝑤)))
4443ralrimivva 2569 . . . . 5 (𝜑 → ∀𝑥𝑆𝑦𝑆𝑧𝑆𝑤𝑆 ((𝑥𝑄𝑧) + (𝑦𝑄𝑤)) = ((𝑥 + 𝑦)𝑄(𝑧 + 𝑤)))
4544adantr 276 . . . 4 ((𝜑𝑛 ∈ (𝑀..^𝑁)) → ∀𝑥𝑆𝑦𝑆𝑧𝑆𝑤𝑆 ((𝑥𝑄𝑧) + (𝑦𝑄𝑤)) = ((𝑥 + 𝑦)𝑄(𝑧 + 𝑤)))
46 oveq1 5895 . . . . . . . 8 (𝑥 = (seq𝑀( + , 𝐹)‘𝑛) → (𝑥𝑄𝑧) = ((seq𝑀( + , 𝐹)‘𝑛)𝑄𝑧))
4746oveq1d 5903 . . . . . . 7 (𝑥 = (seq𝑀( + , 𝐹)‘𝑛) → ((𝑥𝑄𝑧) + (𝑦𝑄𝑤)) = (((seq𝑀( + , 𝐹)‘𝑛)𝑄𝑧) + (𝑦𝑄𝑤)))
48 oveq1 5895 . . . . . . . 8 (𝑥 = (seq𝑀( + , 𝐹)‘𝑛) → (𝑥 + 𝑦) = ((seq𝑀( + , 𝐹)‘𝑛) + 𝑦))
4948oveq1d 5903 . . . . . . 7 (𝑥 = (seq𝑀( + , 𝐹)‘𝑛) → ((𝑥 + 𝑦)𝑄(𝑧 + 𝑤)) = (((seq𝑀( + , 𝐹)‘𝑛) + 𝑦)𝑄(𝑧 + 𝑤)))
5047, 49eqeq12d 2202 . . . . . 6 (𝑥 = (seq𝑀( + , 𝐹)‘𝑛) → (((𝑥𝑄𝑧) + (𝑦𝑄𝑤)) = ((𝑥 + 𝑦)𝑄(𝑧 + 𝑤)) ↔ (((seq𝑀( + , 𝐹)‘𝑛)𝑄𝑧) + (𝑦𝑄𝑤)) = (((seq𝑀( + , 𝐹)‘𝑛) + 𝑦)𝑄(𝑧 + 𝑤))))
51502ralbidv 2511 . . . . 5 (𝑥 = (seq𝑀( + , 𝐹)‘𝑛) → (∀𝑧𝑆𝑤𝑆 ((𝑥𝑄𝑧) + (𝑦𝑄𝑤)) = ((𝑥 + 𝑦)𝑄(𝑧 + 𝑤)) ↔ ∀𝑧𝑆𝑤𝑆 (((seq𝑀( + , 𝐹)‘𝑛)𝑄𝑧) + (𝑦𝑄𝑤)) = (((seq𝑀( + , 𝐹)‘𝑛) + 𝑦)𝑄(𝑧 + 𝑤))))
52 oveq1 5895 . . . . . . . 8 (𝑦 = (𝐹‘(𝑛 + 1)) → (𝑦𝑄𝑤) = ((𝐹‘(𝑛 + 1))𝑄𝑤))
5352oveq2d 5904 . . . . . . 7 (𝑦 = (𝐹‘(𝑛 + 1)) → (((seq𝑀( + , 𝐹)‘𝑛)𝑄𝑧) + (𝑦𝑄𝑤)) = (((seq𝑀( + , 𝐹)‘𝑛)𝑄𝑧) + ((𝐹‘(𝑛 + 1))𝑄𝑤)))
54 oveq2 5896 . . . . . . . 8 (𝑦 = (𝐹‘(𝑛 + 1)) → ((seq𝑀( + , 𝐹)‘𝑛) + 𝑦) = ((seq𝑀( + , 𝐹)‘𝑛) + (𝐹‘(𝑛 + 1))))
5554oveq1d 5903 . . . . . . 7 (𝑦 = (𝐹‘(𝑛 + 1)) → (((seq𝑀( + , 𝐹)‘𝑛) + 𝑦)𝑄(𝑧 + 𝑤)) = (((seq𝑀( + , 𝐹)‘𝑛) + (𝐹‘(𝑛 + 1)))𝑄(𝑧 + 𝑤)))
5653, 55eqeq12d 2202 . . . . . 6 (𝑦 = (𝐹‘(𝑛 + 1)) → ((((seq𝑀( + , 𝐹)‘𝑛)𝑄𝑧) + (𝑦𝑄𝑤)) = (((seq𝑀( + , 𝐹)‘𝑛) + 𝑦)𝑄(𝑧 + 𝑤)) ↔ (((seq𝑀( + , 𝐹)‘𝑛)𝑄𝑧) + ((𝐹‘(𝑛 + 1))𝑄𝑤)) = (((seq𝑀( + , 𝐹)‘𝑛) + (𝐹‘(𝑛 + 1)))𝑄(𝑧 + 𝑤))))
57562ralbidv 2511 . . . . 5 (𝑦 = (𝐹‘(𝑛 + 1)) → (∀𝑧𝑆𝑤𝑆 (((seq𝑀( + , 𝐹)‘𝑛)𝑄𝑧) + (𝑦𝑄𝑤)) = (((seq𝑀( + , 𝐹)‘𝑛) + 𝑦)𝑄(𝑧 + 𝑤)) ↔ ∀𝑧𝑆𝑤𝑆 (((seq𝑀( + , 𝐹)‘𝑛)𝑄𝑧) + ((𝐹‘(𝑛 + 1))𝑄𝑤)) = (((seq𝑀( + , 𝐹)‘𝑛) + (𝐹‘(𝑛 + 1)))𝑄(𝑧 + 𝑤))))
5851, 57rspc2va 2867 . . . 4 ((((seq𝑀( + , 𝐹)‘𝑛) ∈ 𝑆 ∧ (𝐹‘(𝑛 + 1)) ∈ 𝑆) ∧ ∀𝑥𝑆𝑦𝑆𝑧𝑆𝑤𝑆 ((𝑥𝑄𝑧) + (𝑦𝑄𝑤)) = ((𝑥 + 𝑦)𝑄(𝑧 + 𝑤))) → ∀𝑧𝑆𝑤𝑆 (((seq𝑀( + , 𝐹)‘𝑛)𝑄𝑧) + ((𝐹‘(𝑛 + 1))𝑄𝑤)) = (((seq𝑀( + , 𝐹)‘𝑛) + (𝐹‘(𝑛 + 1)))𝑄(𝑧 + 𝑤)))
5936, 40, 45, 58syl21anc 1247 . . 3 ((𝜑𝑛 ∈ (𝑀..^𝑁)) → ∀𝑧𝑆𝑤𝑆 (((seq𝑀( + , 𝐹)‘𝑛)𝑄𝑧) + ((𝐹‘(𝑛 + 1))𝑄𝑤)) = (((seq𝑀( + , 𝐹)‘𝑛) + (𝐹‘(𝑛 + 1)))𝑄(𝑧 + 𝑤)))
60 oveq2 5896 . . . . . 6 (𝑧 = (seq𝑀( + , 𝐺)‘𝑛) → ((seq𝑀( + , 𝐹)‘𝑛)𝑄𝑧) = ((seq𝑀( + , 𝐹)‘𝑛)𝑄(seq𝑀( + , 𝐺)‘𝑛)))
6160oveq1d 5903 . . . . 5 (𝑧 = (seq𝑀( + , 𝐺)‘𝑛) → (((seq𝑀( + , 𝐹)‘𝑛)𝑄𝑧) + ((𝐹‘(𝑛 + 1))𝑄𝑤)) = (((seq𝑀( + , 𝐹)‘𝑛)𝑄(seq𝑀( + , 𝐺)‘𝑛)) + ((𝐹‘(𝑛 + 1))𝑄𝑤)))
62 oveq1 5895 . . . . . 6 (𝑧 = (seq𝑀( + , 𝐺)‘𝑛) → (𝑧 + 𝑤) = ((seq𝑀( + , 𝐺)‘𝑛) + 𝑤))
6362oveq2d 5904 . . . . 5 (𝑧 = (seq𝑀( + , 𝐺)‘𝑛) → (((seq𝑀( + , 𝐹)‘𝑛) + (𝐹‘(𝑛 + 1)))𝑄(𝑧 + 𝑤)) = (((seq𝑀( + , 𝐹)‘𝑛) + (𝐹‘(𝑛 + 1)))𝑄((seq𝑀( + , 𝐺)‘𝑛) + 𝑤)))
6461, 63eqeq12d 2202 . . . 4 (𝑧 = (seq𝑀( + , 𝐺)‘𝑛) → ((((seq𝑀( + , 𝐹)‘𝑛)𝑄𝑧) + ((𝐹‘(𝑛 + 1))𝑄𝑤)) = (((seq𝑀( + , 𝐹)‘𝑛) + (𝐹‘(𝑛 + 1)))𝑄(𝑧 + 𝑤)) ↔ (((seq𝑀( + , 𝐹)‘𝑛)𝑄(seq𝑀( + , 𝐺)‘𝑛)) + ((𝐹‘(𝑛 + 1))𝑄𝑤)) = (((seq𝑀( + , 𝐹)‘𝑛) + (𝐹‘(𝑛 + 1)))𝑄((seq𝑀( + , 𝐺)‘𝑛) + 𝑤))))
65 oveq2 5896 . . . . . 6 (𝑤 = (𝐺‘(𝑛 + 1)) → ((𝐹‘(𝑛 + 1))𝑄𝑤) = ((𝐹‘(𝑛 + 1))𝑄(𝐺‘(𝑛 + 1))))
6665oveq2d 5904 . . . . 5 (𝑤 = (𝐺‘(𝑛 + 1)) → (((seq𝑀( + , 𝐹)‘𝑛)𝑄(seq𝑀( + , 𝐺)‘𝑛)) + ((𝐹‘(𝑛 + 1))𝑄𝑤)) = (((seq𝑀( + , 𝐹)‘𝑛)𝑄(seq𝑀( + , 𝐺)‘𝑛)) + ((𝐹‘(𝑛 + 1))𝑄(𝐺‘(𝑛 + 1)))))
67 oveq2 5896 . . . . . 6 (𝑤 = (𝐺‘(𝑛 + 1)) → ((seq𝑀( + , 𝐺)‘𝑛) + 𝑤) = ((seq𝑀( + , 𝐺)‘𝑛) + (𝐺‘(𝑛 + 1))))
6867oveq2d 5904 . . . . 5 (𝑤 = (𝐺‘(𝑛 + 1)) → (((seq𝑀( + , 𝐹)‘𝑛) + (𝐹‘(𝑛 + 1)))𝑄((seq𝑀( + , 𝐺)‘𝑛) + 𝑤)) = (((seq𝑀( + , 𝐹)‘𝑛) + (𝐹‘(𝑛 + 1)))𝑄((seq𝑀( + , 𝐺)‘𝑛) + (𝐺‘(𝑛 + 1)))))
6966, 68eqeq12d 2202 . . . 4 (𝑤 = (𝐺‘(𝑛 + 1)) → ((((seq𝑀( + , 𝐹)‘𝑛)𝑄(seq𝑀( + , 𝐺)‘𝑛)) + ((𝐹‘(𝑛 + 1))𝑄𝑤)) = (((seq𝑀( + , 𝐹)‘𝑛) + (𝐹‘(𝑛 + 1)))𝑄((seq𝑀( + , 𝐺)‘𝑛) + 𝑤)) ↔ (((seq𝑀( + , 𝐹)‘𝑛)𝑄(seq𝑀( + , 𝐺)‘𝑛)) + ((𝐹‘(𝑛 + 1))𝑄(𝐺‘(𝑛 + 1)))) = (((seq𝑀( + , 𝐹)‘𝑛) + (𝐹‘(𝑛 + 1)))𝑄((seq𝑀( + , 𝐺)‘𝑛) + (𝐺‘(𝑛 + 1))))))
7064, 69rspc2va 2867 . . 3 ((((seq𝑀( + , 𝐺)‘𝑛) ∈ 𝑆 ∧ (𝐺‘(𝑛 + 1)) ∈ 𝑆) ∧ ∀𝑧𝑆𝑤𝑆 (((seq𝑀( + , 𝐹)‘𝑛)𝑄𝑧) + ((𝐹‘(𝑛 + 1))𝑄𝑤)) = (((seq𝑀( + , 𝐹)‘𝑛) + (𝐹‘(𝑛 + 1)))𝑄(𝑧 + 𝑤))) → (((seq𝑀( + , 𝐹)‘𝑛)𝑄(seq𝑀( + , 𝐺)‘𝑛)) + ((𝐹‘(𝑛 + 1))𝑄(𝐺‘(𝑛 + 1)))) = (((seq𝑀( + , 𝐹)‘𝑛) + (𝐹‘(𝑛 + 1)))𝑄((seq𝑀( + , 𝐺)‘𝑛) + (𝐺‘(𝑛 + 1)))))
7121, 28, 59, 70syl21anc 1247 . 2 ((𝜑𝑛 ∈ (𝑀..^𝑁)) → (((seq𝑀( + , 𝐹)‘𝑛)𝑄(seq𝑀( + , 𝐺)‘𝑛)) + ((𝐹‘(𝑛 + 1))𝑄(𝐺‘(𝑛 + 1)))) = (((seq𝑀( + , 𝐹)‘𝑛) + (𝐹‘(𝑛 + 1)))𝑄((seq𝑀( + , 𝐺)‘𝑛) + (𝐺‘(𝑛 + 1)))))
721, 2, 3, 4, 5, 6, 71seq3caopr3 10494 1 (𝜑 → (seq𝑀( + , 𝐻)‘𝑁) = ((seq𝑀( + , 𝐹)‘𝑁)𝑄(seq𝑀( + , 𝐺)‘𝑁)))
Colors of variables: wff set class
Syntax hints:  wi 4  wa 104   = wceq 1363  wcel 2158  wral 2465  cfv 5228  (class class class)co 5888  1c1 7825   + caddc 7827  cz 9266  cuz 9541  ...cfz 10021  ..^cfzo 10155  seqcseq 10458
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 710  ax-5 1457  ax-7 1458  ax-gen 1459  ax-ie1 1503  ax-ie2 1504  ax-8 1514  ax-10 1515  ax-11 1516  ax-i12 1517  ax-bndl 1519  ax-4 1520  ax-17 1536  ax-i9 1540  ax-ial 1544  ax-i5r 1545  ax-13 2160  ax-14 2161  ax-ext 2169  ax-coll 4130  ax-sep 4133  ax-nul 4141  ax-pow 4186  ax-pr 4221  ax-un 4445  ax-setind 4548  ax-iinf 4599  ax-cnex 7915  ax-resscn 7916  ax-1cn 7917  ax-1re 7918  ax-icn 7919  ax-addcl 7920  ax-addrcl 7921  ax-mulcl 7922  ax-addcom 7924  ax-addass 7926  ax-distr 7928  ax-i2m1 7929  ax-0lt1 7930  ax-0id 7932  ax-rnegex 7933  ax-cnre 7935  ax-pre-ltirr 7936  ax-pre-ltwlin 7937  ax-pre-lttrn 7938  ax-pre-ltadd 7940
This theorem depends on definitions:  df-bi 117  df-3or 980  df-3an 981  df-tru 1366  df-fal 1369  df-nf 1471  df-sb 1773  df-eu 2039  df-mo 2040  df-clab 2174  df-cleq 2180  df-clel 2183  df-nfc 2318  df-ne 2358  df-nel 2453  df-ral 2470  df-rex 2471  df-reu 2472  df-rab 2474  df-v 2751  df-sbc 2975  df-csb 3070  df-dif 3143  df-un 3145  df-in 3147  df-ss 3154  df-nul 3435  df-pw 3589  df-sn 3610  df-pr 3611  df-op 3613  df-uni 3822  df-int 3857  df-iun 3900  df-br 4016  df-opab 4077  df-mpt 4078  df-tr 4114  df-id 4305  df-iord 4378  df-on 4380  df-ilim 4381  df-suc 4383  df-iom 4602  df-xp 4644  df-rel 4645  df-cnv 4646  df-co 4647  df-dm 4648  df-rn 4649  df-res 4650  df-ima 4651  df-iota 5190  df-fun 5230  df-fn 5231  df-f 5232  df-f1 5233  df-fo 5234  df-f1o 5235  df-fv 5236  df-riota 5844  df-ov 5891  df-oprab 5892  df-mpo 5893  df-1st 6154  df-2nd 6155  df-recs 6319  df-frec 6405  df-pnf 8007  df-mnf 8008  df-xr 8009  df-ltxr 8010  df-le 8011  df-sub 8143  df-neg 8144  df-inn 8933  df-n0 9190  df-z 9267  df-uz 9542  df-fz 10022  df-fzo 10156  df-seqfrec 10459
This theorem is referenced by:  seq3caopr  10496  ser3sub  10519
  Copyright terms: Public domain W3C validator